VISA

NI-VISA" User Manual

W:SA:'['I‘%TWAEINTS June 1998 Edition

Part Number 321074D-01

Internet Support

E-mail: support@natinst.com
FTP Siteftp.natinst.com

Web Addresswww.natinst.com

Bulletin Board Support

BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,

Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725 725 11,
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 413091,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200,
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1996, 1998 National Instruments Corporation. All rights reserved.

Important Information

Copyright

Trademarks

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of
the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right
to make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages

arising out of or related to this document or the information contained in it.

EXCEPRASSPECIFIEBEREINNATIONALINSTRUMENTS/IAKESNONVARRANTIESEXPRES®RMPLIED ANDSPECIFICALLYDISCLAIMS
ANYWARRANTYORMERCHANTABILITY ORFITNES$ORPARTICULARPURPOSECUSTOMER SRIGHTTORECOVERAMAGESCAUSED
BYFAULTORNEGLIGENCEONTHEPARTOFNATIONAL INSTRUMENTSSHALLBELIMITED TOTHEAMOUNTTHERETOFORPAIDBY THE
CUSTOMERNATIONALINSTRUMENTSVILLNOTBELIABLEFORDAMAGESRESULTINGFROM_OSSOPATA PROFITSUSEDFPRODUCTS
ORINCIDENTAL ORCONSEQUENTIALDAMAGES, EVENIFADVISEDOFTHEPOSSIBILITYTHEREOF Thislimitationoftheliability of

National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any
action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third partres, or othe
events outside reasonable control.

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

CVI™, LabVIEW™, NI-488.2™, NI-VISA™, NI-VXI™, and VXIpc™ are trademarks of National Instruments
Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the
user or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

Contents

About This Manual
Organization of ThiS ManUal............ccccuviiiiiiiie e iX
Conventions Used in ThisS Manual..........cccooviiiiiiiiieceee s X
How to Use ThiS DOCUMENT SELcciiriiiiieiiiiie et Xi
Related DOCUMENTALION........cciiriiiireieiree et Xi
Customer COMMUNICALIONc.vviiiiiie e Xii
Chapter 1
Introduction
HOW t0 USE ThiS MANUALeeiiiiiiiiiiie e 1-1
What YOU Need t0 Get Startedc..eeviiiiiiiiiiiiiiiee et 1-1
INTrOAUCHION 0 VISA ...ttt e st eeeeanes 1-2
Chapter 2
Introductory Programming Examples
Example of Message-Based CommuNiCationc..uveiiiiiiiiiiiiiiiiiiiieeee e 2-1
EXAMPIE 2-1..ceeeieeeeeeee et a e 2-2
EXamPIe 2-1 DISCUSSIONiieiiiiieeeiaeaae ettt e e e e e e ettt e e e e e e e e e e e nnnreneees 2-3
Example of Register-Based COMMUNICALION.............eeiiiiiiiiiiiiiiiiiiiieeee e 2-4
EXAMPIE 2-2...cceeeeee e 2-5
EXamPIe 2-2 DISCUSSIONuieiiiiieieiea e e e ettt e e et e e e e e e e e s sneneenees 2-6
Example of Handling EVENLScooiiiiiiiiiiieie ettt 2-7
CAlIDACKS ... e e e e e 2-7
O U =10 oo T U TP PPPPTRTTRN 2-7
EXAMPIE 2-3.. e a e 2-8
EXampPIe 2-3 DISCUSSIONuiieiiiiiieeieeae e ettt e e e e e e et e e e e e e e e e s e annnbnnees 2-9
EXamPIe Of LOCKING.......uueiieiiiiieaiii et e e e e e e 2-10
EXAMPIE 2-4....ceeeeee e e 2-10
EXamMPIe 2-4 DISCUSSIONuiieiiiiieeeieeeee ettt e e e e ettt e e e e e e e e e e e anenereees 2-11
Chapter 3
VISA Overview
INEFOAUCTIONeeii ettt e e e e s ren e e e s 31......
ODbJECHIVES Of VISA...ceeeeeeteee ettt ea e a e e e e e aaaeaaes 3-2
Interactive COoNtrol OF VISA ...t 3-3
Programming With VISA ... e a e e e e 3-7
Beginning TerminolOgy ... e e e e e e e e e 3-7

© National Instruments Corporation v NI-VISA User Manual

Contents

Communication ChanNElS..........ooi i 3-8
The RESOUICE MANAGETciiiiiiiiiieiiiieie ettt e 3-10
Register COMMUNICALION.coiiiiiiiiiiiiiie et 3-11
Example of Interface Independence...........cccooviiiiiiiiiiiiii e 3-12
Chapter 4
Initializing Your VISA Application
[a1 goTo [UTo1 1o] o PP TP PPPTT 4:1.......
OPENING @ SESSION ..ttt e ettt e e e e e e e e bbb e et e e e e e e e e s aa bbb bbe et eeeaaaeeeaaannnsbeeeees 4-1
EXAMPIE 4-1 ... a e e 4-2
FINAING RESOUICES ...ttt ettt e e e e e e e s e bbbt e e e e e e e e e e e e anneees 4-4
EXAMPIE 4-2 ... 4-4
Finding VISA Resources Using Regular EXpresSions...........oooocvvvvieieeeeeeaenn. 4-6
Attribute-Based Resource MatChing..........cccooiiiiiiiiiieiiiee i 4-8
EXAMPIE 4-3 .. e a e e 4-10
COoNFIQUING @ SESSION....cci ittt e ettt e e e e e e e s s e s bbb beeeeaaaaeeeaaanans 4-11
ACCESSING ALLIDULES ... 4-11
Common Considerations for Using Attributes............cccoiiieee, 4-11
Chapter 5
Message-Based Communication
[0 [0 ox 1T] o I USROS 5:1.......
BASIC 1/O SEIVICESeeiiiieeeitie ettt sttt 5-1
Synchronous Read/WIite SEIVICES........cciiiiiiiiiiieiieieiee e s e e sceeer e e e e e s 5-2
Asynchronous Read/WHIite SEIVICES.......uuuiiieeiiiiiiiiiiieeeeieee e ssssirveeereeae e e 5-3
ClEAT SEIVICEeiiiiiiiiiie e et snneeas 5-4
L1 [[ST = Vo = PSSR 5-5
Status/Service REQUESE SEIVICEuviiiiiiiiie e e e e e 5-6
FOrmMatted 1/O SEIVICESuuiiiiiiiiiee ettt e e e e e e e b e 5-7
Formatted 1/O OPEratioNSuueuiiiiiieie e i e e e e 5-7
1/0O BUffer OPerationsccooviiiiiii i a e e e e e e e e e aa e e 5-8
Variable List OPerationScceiiiiiiiei e 5-8
Manually Flushing the Formatted I/O BUffers...........cccovvviveviiiiiiiiiiiicceenen, 5-9
Automatically Flushing the Formatted I/O Buffers.......cccccoevvvvvvvviincciiieninnnn. 5-9
Resizing the Formatted I/O BUffers..........ccooovvvveiiiiiiccccceee e, 5-10
Controlling the Serial I/O BUfers.........ccooiiiiiiiieer e 5-11
Example VISA Message-Based Application..............coevuviiiiiiiiiiiiiiiiiiiiisinee e ee e 5-12
EXAMPIE 5= e a e e 5-12

NI-VISA User Manual vi © National Instruments Corporation

Contents

Chapter 6

Chapter 7
VISA Events

Chapter 8
VISA Locks

Register-Based Communication
Ta1rgoTo [UTo1{ o] o IR PT PP POUR 6-1......
High-Level ACCESS OPEIatiONSuuiiiiiiiiieee ettt e e e e e e e e e e eeeeeas 6-2
High-Level BIOCK OPEratiONScciiiiii ittt eee e e e e e e e 6-4
LOW-LeVel ACCESS OPEIAtIONSuuuiiiiiiiiaaae e ettt e e e e e e e e e e e e e e e e e s aebeebeeeees 6-5
Overview of Register Accesses from COMPULETS........cooviiiiiiiiiiiiiieeeeee s 6-5
Using VISA to Perform Low-Level Register ACCESSEScccuuvveeeeeeeeiiiiiininn. 6-7
Operations versus Pointer DereferencCe ... 6-8
Manipulating the POINTEr ... 6-8
EXAMPIE 8Lttt a e e e e 6-9
BUS EITOIS ... 6-10
Comparison of High-Level and Low-Level ACCESSoocuuviiiiiiiiiieieiiiieiieeeee e 6-10
SPEEA - e e et aaaaaa s 6-10
BASE Of USE ...ttt 6-10
Accessing Multiple ADdreSSs SPaCES.......cooviiiiiiiiiiiieiee e 6-11
Shared Memory OPEratiONSooiiiuiiiiiieit ettt e e e e e e e e e e e e e e s eannbeeeeeas 6-11
Shared Memory Sample COUE.........uuuiiiiiiiaiiiiiieee e 6-12
EXAMPIE B2t a s 6-12
T goTe [0 ox1To] o P PP PT RO 7:1......
YU o] o o] 1= To I AT o (PSRRI 7-2
Enabling and Disabling EVENES............uuiiiiiiiiiiiiiccieeee e e e eee s 7-3
L 11 =1 o PP I:4......
CAIIDACKS ...t 7:6......
CallDACK MOUES ... 7-6
INAEPENdENt QUEUESuvueeieiiieee et e e e e e e e e e e e e e e e et ee e eas 7-7
The userHandle Parameterccoooiiiiie i 7-8
Queuing and Callback Mechanism Sample Code...........cccovvvvviviiiiiiiiiiiiiiii e 7-8
EXAMPIE 7= e a e e e e e e e e et ———————— 7-9
The Life of the EVENE CONEXEcciiiiiiiieiiiiiie e 7-11
Event Context with the Queuing Mechanism..............ccccoveviiiiiieviiieen 7-11
Event Context with the Callback Mechanismccccoooiiiiiii s 7-11
5ot =T o] 1o o I F= 1 To | 11 s o PP 7-12
T a1 0T 0T34 o ISP 8-1......
LOCK TYPES ittt ettt ettt ibne e s ssire e e e s snbneeessnnneeessnnnne Pl 8

© National Instruments Corporation vii NI-VISA User Manual

Contents

LOCK SAIING ..ttt e 8-2
Acquiring an Exclusive Lock While Owning a Shared LocK......................... 8-3
[N =1S] (Yo I o Tod & U PREPRRR 8-3
LOCKING SAMPIE COUEooiiiiiiiie ettt e eaneeas 8-3
EXAMPIE 8-L ... 8-4
Chapter 9
NI-VISA Platform-Specific and Portability Issues
Programming CONSIAEIatioNSoo.uuiiiiiiiieiie et e e eeeeas 9-2
Debugging Tool for WIndows 95/NTooiiiiiiiiieiiaeeeee e 9-2
Multiple Applications Using the NI-VISA DFHVer.........ccccccoiiiiiiiiiiiiiniaeeeee 9-2
Low-Level ACCESS FUNCHIONS ...ttt 9-2
Interrupt Callback Handlerseueoiiiiiiiiiii e 9-3
Multiple Interface SUPPOIT ISSUES.......uuuiiiiiiieiiii it 9-5
VX1 and GPIB PIAtfOrMSoooiiiiieieiet et 9-5
Multiple GPIB-VXI SUPPOI ...ttt 9-5
Serial POt SUPPOIt ...ttt e e e e e seb e eeeas 9-5
VIME SUPDPOIT - e e e e e e e e e e e eeeeeeeeeeeeeeeenenees 9-6
WINAOWS 3.X ISSUEBS ...ttt ettt e e e e e e e e s e bbb e et e e e e e e e e e s s nnnbbeeneeas 9-7
INSEAlAtioN OVEIVIEW ... 9-7
MEMOIY MOGEI ... 9-7
APPlICAtioN STACK SIZE ...ccooiiiiiiii e 9-7
Appendix A
Visual Basic Examples
Appendix B
Customer Communication
Glossary
Index
Tables
Table 1-1. N LY 1Y AN W] o] Lo o S 1-3
Table 9-1. How VISA Invokes Callbackscccocovveeiiiiii e 9-4
Table 9-2. How Serial Ports Are NUMberedccooovviiieeiiiiieeee e 9-6

NI-VISA User Manual viii © National Instruments Corporation

About This Manual

Organization of This Manual

TheNI-VISA User Manuais organized as follows:

© National Instruments Corporation

Chapter 1)ntroduction discusses how to use this manual, lists what
you need to get started, and contains a brief description of the VISA
Library.

Chapter 2)ntroductory Programming Examplemtroduces some
examples of common communication with instruments.

Chapter 3VISA Overviewcontains an overview of the VISA Library.

Chapter 4)nitializing Your VISA Applicationdescribes the steps
required to prepare your application for communication with your
device.

Chapter 5Message-Based Communicatishows how to use the
VISA library in message-based communication.

Chapter 6Register-Based Communicatj@hows how to use the
VISA library in register-based communication.

Chapter 7VISA Eventsdescribes the VISA event model and how to
use it.

Chapter 8VISA Locksdescribes how to use locks in VISA.

Chapter 9NI-VISA Platform-Specific and Portability Issyes
discusses programming information for you to consider when
developing applications that use the NI-VISA driver.

Appendix A,Visual Basic Exampleshows the Visual Basic syntax of
the ANSI C examples given earlier in this manual. The examples use
the same numbering sequence for easy reference.

Appendix B,Customer Communicatipoontains forms you can use to
request help from National Instruments or to comment on our products
and manuals.

TheGlossarycontains an alphabetical list and description of terms
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

Thelndexcontains an alphabetical list of key terms and topics in this
manual, including the page where you can find each one.

ix NI-VISA User Manual

About This Manual

Conventions Used in This Manual

»

bold

bold italic

italic

monospace

monospace bold

monospace italic

paths

NI-VISA User Manual

The following conventions are used in this manual:

The» symbol leads you through nested menu items and dialog box
options to a final action. For example, the sequéiile>Page
Setup»Options»Substitute Fontslirects you to pull down theile menu,
select théPage Setuptem, selecOptions, and finally select the
Substitute Fontsoptions from the last dialog box.

The e symbol indicates that the text following it applies only to a specific
product or a specific operating system.

This icon to the left of bold italicized text denotes a note, which alerts you
to important information.

Bold text denotes the names of menus, menu items, parameters, dialog
boxes, dialog box buttons or options, icons, windows, or Windows 95 tabs.

Bold italic text denotes a note, caution, or warning.

Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text from which you supply the
appropriate word or value, as in Windows. 3.

Text in this font denotes text or characters that you should literally enter
from the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives, paths,
directories, programs, subprograms, subroutines, device names, functions,
operations, variables, filenames and extensions, and for statements and
comments taken from programs.

Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

Italic text in this font denotes that you must enter the appropriate words or
values in the place of these items.

Paths in this manual are denoted using backslashes (\) to separate drive
names, directories, folders, and files.

X © National Instruments Corporation

About This Manual

How to Use This Document Set

Use the documentation that came with your GPIB and/or VXI hardware
and software for Windows to install and configure your system.

Refer to the Read Me First document for information on installing the
NI-VISA distribution media.

Use theNI-VISA User Manudor detailed information on how to program
using VISA.

Use the NI-VISA online help or thél-VISA Programmer Reference
Manualfor specific information about the attributes, events, and
operations, such as format, syntax, parameters, and possible errors.

¢ Windows 95/NT users—TheNI-VISA Programmer Reference Manisl
notincluded in Windows 95/NT kits. Windows 95/NT users can access this
information through thé&ll-visa.hlp file at
Start»Programs»VXIpnp»VISA Help.

Related Documentation

The following documents contain information that you may find helpful as
you read this manual:

» ANSI/IEEE Standard 488.1-198EEE Standard Digital Interface for
Programmable Instrumentation

 ANSI/IEEE Standard 488.2-199IEEE Standard Codes, Formats,
Protocols, and Common Commands

 ANSI/IEEE Standard 1014-198IEEE Standard for a Versatile
Backplane Bus: VMEbus

 ANSI/IEEE Standard 1155-1999MEbus Extensions for
Instrumentation: VXlbus

« ANSI/ISO Standard 9899-199Brogramming Language C

* NI-488.2 Function Reference Manual for DOS/Winddvational
Instruments Corporation

* NI-488.2 User Manual for Windowblational Instruments
Corporation

¢ NI-VXI Programmer Reference ManuBlational Instruments
Corporation

* NI-VXI User ManuglNational Instruments Corporation

© National Instruments Corporation Xi NI-VISA User Manual

About This Manual

e VPP-1,Charter Document

¢ VPP-2,System Frameworks Specification

e VPP-3.1,Instrument Drivers Architecture and Design Specification
¢ VPP-3.2Instrument Driver Functional Body Specification

* VPP-3.3,Instrument Driver Interactive Developer Interface
Specification

e VPP-3.4,Instrument Driver Programmatic Developer Interface
Specification

e VPP-4.3,The VISA Library

* VPP-4.3.2VISA Implementation Specification for Textual Languages
* VPP-4.3.3VISA Implementation Specification for the G Language

¢ VPP-5VXI Component Knowledge Base Specification

* VPP-6,Installation and Packaging Specification

« VPP-7,Soft Front Panel Specification

e VPP-8,VXI Module/Mainframe to Receiver Interconnection

¢ VPP-9,Instrument Vendor Abbreviations

Customer Communication

NI-VISA User Manual

National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make it
easy for you to contact us, this manual contains comment and configuration
forms for you to complete. These forms are in Appendi€@stomer
Communicatiopat the end of this manual.

Xii © National Instruments Corporation

Introduction

This chapter discusses how to use this manual, lists what you need to
get started, and contains a brief description of the VISA Library. The
National Instruments implementation of VISA is knownNdsVISA

How to Use This Manual

This manual provides a sequential introduction to setting up a system to use
VISA and then using and programming the environment. Please gather all
the components described in the next sectidimat You Need to Get

Started The Read Me First document included with your kit explains how
to install and set up your system.

Once you have set up your system, you can use Chapter 2 to guide yourself
through some simple examples. Chapters 3 through 8 contain more
in-depth information about the different elements that make up the VISA
system.

What You Need to Get Started

[l Appropriate hardware, in the form of a National Instruments GPIB,
GPIB-VXI, MXI/VXI or serial interface board. For serial support, the
computer’s standard serial ports are sufficient.

[0 NI-488.2 and/or NI-VXI installed on your system. For serial support,
the system’s serial drivers are sufficient.

NI-VISA distribution media

If you have a GPIB-VXI command module from another vendor, you
need that vendor’s GPIB-VXI VISA component. It will be installed
into the<VXIPNPPATH\< Framework >\bin directory. For example,
the Hewlett-Packard component for the HPE1406 would be:

C:\VXIpnp\Win95\bin\HPGPVX32.dll

© National Instruments Corporation 1-1 NI-VISA User Manual

Chapter 1 Introduction

Introduction to VISA

NI-VISA User Manual

The main objective of the VXlug&play Systems Alliance is to increase
ease of use for end users of VXI technology through open, multivendor
VXI systems. The alliance members share a common vision for
multivendor systems architecture, encompassing both hardware and
software. This common vision enables the members to work together to
define and implement standards for system-level issues beyond the scope
of the VXlbus specifications.

As a step toward industry-wide software compatibility, the alliance
developed one specification for 1/0 software—the Virtual Instrument
System Architecture, or VISA. The VISA specification defines a
next-generation I/O software standard not only for VXI, but also for GPIB
and serial interfaces. With the VISA standard endorsed by over 35 of the
largest instrumentation companies in the industry including Tektronix,
Hewlett-Packard, and National Instruments, VISA unifies the industry to
make software interoperable, reusable, and able to stand the test of time.
Before VISA, there were many different commercial implementations of
I/0O software for VXI, GPIB, and serial interfaces; however, none of these
I/0 software products were standardized or interoperable.

When the VISA standard was initially endorsed, commercial VISA
products were not yet available. To quickly realize the benefits of

VXI plugé&play, the alliance developed the VISA Transition Library (VTL)
specification. The VTL reflected the alliance’s strategy to deliver
multivendor software interoperability, while at the same time moving the
entire industry towards a common, robust VISA foundation for the future.
Software written to VTL, such as instrument drivers and executable soft
front panels, will also run on present and future VISA implementations
without modification.

All' VXI plug&play products are classified within a framework. The concept
of a framework was developed by the \BKig&play Systems Alliance to
categorize operating systems, programming languages, and I/O software
libraries to bring the most useful products to the most end-users. A
framework is a logical grouping of the choices that you face when
designing a test and measurement system. You must always choose an
operating system and a programming language along with an application
development environment (ADE) when building a system. There are
trade-offs associated with each of these decisions; many configurations are
possible. The VXplug&play Systems Alliance grouped the most popular

1-2 © National Instruments Corporation

Chapter 1 Introduction

operating systems, ADEs, and programming languages into distinct
frameworks and defined in-depth specifications to guarantee
interoperability of the components within each framework.

This manual describes how to use NI-VISA, the National Instruments
implementation of the VISA I/O standard, in any environment using
LabWindows/CVI, any ANSI C compiler, or Microsoft Visual Basic.

NI-VISA currently supports the frameworks and programming languages

shown in Table 1-1. For information on programming VISA from
LabVIEW, refer to the VISA documentation included with your LabVIEW

software.

Table 1-1. NI-VISA Support

Programming Language/

Operating System Environment Framework
Windows 3x LabWindows/CVI, ANSI C, | WIN

Visual Basic

LabVIEW GWIN
Windows 95 LabWindows/CVI, ANSI C, | WIN95

Visual Basic

LabVIEW GWIN95
Windows NT LabWindows/CVI, ANSI C, | WINNT

Visual Basic

LabVIEW GWINNT
Solaris 1x LabWindows/CVI, ANSIC | SUN
Solaris 2x LabVIEW GSUN
HP-UX 9 ANSI C, LabWindows/CVI* | HPUX
HP-UX 10 LabVIEW GHPUX
Mac 68K ANSI C *x
Mac PPC LabVIEW >k
VxWorks ANSI C *x
* Although the LabWindows/CVI development environment is not available on HP-UX,
the run-time libraries are. Therefore, a LabWindows/CVI application developed on
another framework can be ported to HP-UX without modification.
** This framework is not defined by the VElug&play Systems Alliance, but is still
supported by NI-VISA.

© National Instruments Corporation

NI-VISA User Manual

Chapter 1 Introduction

You may find that programming with NI-VISA is not significantly different
from programming with the 1/0 software products that are currently
available. However, the programming concepts, model, and paradigm that
NI-VISA uses create a solid foundation for taking advantage of VISAs
more powerful features in the future.

NI-VISA User Manual 1-4 © National Instruments Corporation

Introductory Programming
Examples

This chapter introduces some examples of common communication
with instruments. To help you become comfortable with VISA, the
examples avoid VISA terminology. Chapten3SA Overviewlooks at
these examples again but using VISA terminology and focusing more
on how they explain the VISA model.

Note The examples in this chapter show C source code. You can find the same examples
in Visual Basic syntax in Appendix Ayisual Basic Examples

Example of Message-Based Communication

Serial, GPIB, and VXI systems all have a definition of message-based
communication. In GPIB and serial, the messages are inherent in the design
of the bus itself. For VXI, the messages actually are sent via a protocol
known asword serial which is based on register communication. In either
case, the end result is sending or receiving strings.

Example 2-1shows the basic steps in any VISA program.

© National Instruments Corporation 2-1 NI-VISA User Manual

Chapter 2

Introductory Programming Examples

Example 2-1

#include "visa.h"

#define MAX_CNT 200

int main(void)

{
ViStatus status; /* For checking errors */
ViSession defaultRM, instr; /* Communication channels */
ViuInt32 retCount; /* Return count from string 1/0 */
ViChar bufferfMAX_CNT]; [* Buffer for string 1/10 */
/* Begin by initializing the system */
status = viOpenDefaultRM(&defaultRM);
if (status < VI_SUCCESS) {

[* Error Initializing VISA...exiting */
return -1;
}
/* Open communication with GPIB Device at Primary Addr 1 */
/* NOTE: For simplicity, we will not show error checking */
status = viOpen(defaultRM, "GPIBO0::1::INSTR", VI_NULL, VI_NULL,
&instr);

[* Set the timeout for message-based communication */
status = viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);
[* Ask the device for identification */
status = viWrite(instr, "*IDN?\n", 6, &retCount);
status = viRead(instr, buffer, MAX_CNT, &retCount);
[* Your code should process the data
/* Close down the system
status = viClose(instr);
status = viClose(defaultRM);
return O;

}

NI-VISA User Manual 2-2

*

*

© National Instruments Corporation

Chapter 2 Introductory Programming Examples

Example 2-1 Discussion
We can break down Example 2-1 into the following steps.

1.

© National Instruments Corporation

Begin by initializing the VISA system. For this task you use
viOpenDefaultRM() , which opens a communication channel with
VISA itself. This channel has a purpose similar to a telephone line.
The function call is analogous to picking up the phone and dialing the
operator. From this point on, the phone line connects you to the driver.
Any communication on the line is between you and the driver only.
Chapter 3VISA Overviewhas more details about

viOpenDefaultRM() , but for now it is sufficient for you to

understand that the function initializes VISA and must bditste

VISA function called in your program.

Now you must open a communication channel to the device itself using
viOpen() . Notice that this function uses the handle returned by
viOpenDefaultRM() to identify the VISA driver. You then specify

the address of the device you want to talk to. Continuing with the
phone analogy, this is like asking the operator to dial a number for you.
In this case, you want to address a GPIB device at primary address 1
on the GPIBO bus. The value foin the GPIB token (GPIBO in this
example) indicates which GPIB board you want. This means that you
can have multiple GPIB boards installed in the computer, each
controlling independent buses. For more information on address
strings,viOpen() , andviOpenDefaultRM() , see Chapter 4,

Initializing Your VISA Application

The twoVI_NULL s following the address string are not important at
this time. They specify that the session should be initialized using
VISA defaults. FinallyyiOpen() returns the communication channel
to the device in the parametestr . From now on, whenever you
want to talk to this device, you use thstr variable to identify it.
Notice that you do not use thefaultRM handle again. The main use
of defaultRM is to open channels to devices. You do not use this
handle again until you are ready to end the program.

At this point you need to set a timeout value for message-based
communication. A timeout value is important in message-based
communication to determine what should happen when the device
stops communicating. VISA has a common function to set values such
as theseviSetAttribute() . This function sets values such as
timeout and the termination character for the communication channel.
In this example, notice that the function callit®etAttribute()

sets the timeout to be 5 s (5000 ms) for both reading and writing
strings.

2-3 NI-VISA User Manual

Chapter 2 Introductory Programming Examples

4. Now that you have the communication channel set up, you can perform
string 1/0 using theiwrite() andviRead() functions. Notice that
this is the section of the programming code that is unique for
message-based communication. Opening communication channels, as
described in steps 1 and 2, and closing the channels, as described in
step 5, are the same for all VISA programs. The parameters that these
calls use are relatively straightforward.

a. First you identify which device you are talking to witktr

b. Nextyou give the string to send, or what buffer to put the response
in.

c. Finally, specify the number of characters you are interested in.

For more information on these functions, see Chapter 5,
Message-Based Communicatiddso refer to the NI-VISA online
help or theNI-VISA Programmer Reference Manual

5. When you are finished with your device I/O, you can close the
communication channel to the device with i@ose() function.

Notice that the program shows a second cailttose() . Whenyou

are ready to shut down the program, or at least close down the VISA
driver, you use&iClose() to close the communication channel
returned bwiOpenDefaultRM()

Example of Register-Based Communication

Note

NI-VISA User Manual

You can skip over this section if you are exclusively using GPIB or serial
communication. Register-based programming applies only to VXI, GPIB-VXI,
or PXI.

VISA has two standard methods for accessing registers. The first method
usesHigh-Level AccesBinctions. You can use these functions to specify

the address to access; the functions then take care of the necessary details
to perform the access, from mapping an I/O window to checking for
failures. The drawback to using these functions is the amount of software
overhead associated with them.

To reduce the overhead, VISA also hasv-Level Accesiinctions. These
functions break down the tasks done by the High-Level Access functions
and let the program perform each task itself. The advantage is that you can
optimize the sequence of calls based on the style of register I/O you are
about to perform. However, you must be more knowledgeable about how
register accesses work. In addition, you cannot check for errors easily. The
following example shows how to perform register 1/O using the High-Level

2-4 © National Instruments Corporation

Chapter 2 Introductory Programming Examples

Access functions, which is the method we recommend for new users. If you
are an experienced user or understand register I/O concepts, you can use the
Low-Level Access Operatiossction in Chapter &egister-Based
Communication

05 Note Examples 2-2 through 2-4 udeold text to distinguish lines of code that are

different from the other examples in this chapter.

Example 2-2

#include "visa.h"

int main(void)

{

ViStatus status; /* For checking errors */
ViSession defaultRM, instr; /* Communication channels */
ViUIntl6 devicelD; /* To store the value */
/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);
if (status < VI_SUCCESS) {

[* Error Initializing VISA...exiting */
return -1;
}
/* Open communication with VXI Device at Logical Addr 16 */
/* NOTE: For simplicity, we will not show error checking */
status = viOpen(defaultRM, " VXI0::16::INSTR ", VI_NULL, VI_NULL,
&instr);
/* Read the Device ID, and write to memory in A24 space */

status = viln16(instr, VI_A16_SPACE, 0, &devicelD);
status = viOutl16(instr, VI_A24_SPACE, 0, 0x1234);

/* Close down the system */
status = viClose(instr);

status = viClose(defaultRM);

return O;

© National Instruments Corporation 2-5 NI-VISA User Manual

Chapter 2 Introductory Programming Examples

Example 2-2 Discussion

The general structure of this example is very similar to that of Example 2-1.
For this reason, we merely point out the basic differences as denoted in
bold text:

« Adifferent address string is used for the VXI device.

e The string functions fronkExample 2-lare replaced with register
functions.

The address string is still the same format as the address string in
Example 2-1but it has replaced the GPIB with VXI. Again, remember
that the difference in the address string name is the extent to which the
specific interface bus will be important. Indeed, since this is a simple string,
it is possible to have the program read in the string from a user input or a
configuration file. Thus, the program can be compiled and is still portable
to different platforms, such as from a GPIB-VXI to a MXIbus board.

As you can see from the programming code, you use different functions to
perform I/O with a register-based device. The functising6() and
viout16() read and write 16-bit values to registers in either the A16, A24,
or A32 space of VXI. As with the message-based functions, you start by
specifying which device you want to talk to by supplyingitise

variable. You then identify the address space you are targeting, such as
VI_A16_SPACE.

The next parameter warrants close examination. Notice that we want to
read in the value of the Device ID register for the device at logical address
16. Logical addresses start at offset 0xC00O0 in A16 space, and each logical
address gets 0x40 bytes of address space. Because the Device ID register is
the first address within that 0x40 bytes, the absolute address of the Device
ID register for logical address 16 is calculated as follows:

0xCO000 + (0x40 * 16) = 0xC400

However, notice that the offset we supplied was 0. The reason for this is that
theinstr parameter identifies which device you are talking to, and
therefore the driver is able to perform the address calculation itself. The 0
indicates the first register in the 0x40 bytes of address space, or the Device
ID register. The same holds true for theut16() call. Even in A24 or

A32 space, although it is possible that you are talking to a device whose
memory starts at 0x0, it is more likely that the VXI Resource Manager has
provided some other offset, such as 0x200000 for the memory. However,
becausénstr identifies the device, and the Resource Manager has told

NI-VISA User Manual 2-6 © National Instruments Corporation

Chapter 2 Introductory Programming Examples

the driver the offset address of the device’s memory, you do not need to
know the details of the absolute address. Just provide the offset within the
memory space, and VISA does the rest.

Again, when you are done with the register I/O,wi€®se() to shut
down the system.

Example of Handling Events

When dealing with instrument communication, it is very common for the
instrument to require service from the controller when the controller is not
actuallylookingat the device (an asynchronous event, or simpgvany.
Examples of this are the service request (SRQ), interrupts, and signals. In
VISA, you can handle these and other events through either callbacks or a
software queue.

Callbacks

Using callbacks, you can have sections of code that are never explicitly
called by the program, but instead are called by the driver whenever an
event occurs. Due to their asynchronous nature, callbacks can be difficult
to incorporate into a traditional, sequential flow program. Therefore, we
recommend the queuing method of handling events for new users. If you
are an experienced user or understand callback concepts, look at the
Callbackssection in Chapter ¥/ISA Events

Queuing

When using a software queue, the driver detects the asynchronous event but
does not alert the program to the occurrence. Instead, the driver maintains
a list of events that have occurred so that the program can retrieve the
information later. With this technique, the program can periodically poll

the driver for event information or halt the program until the event has
occurred Example 2-Frograms an oscilloscope to capture a waveform.
When the waveform is complete, the instrument generates a VXI interrupt,
so the program must wait for the interrupt before trying to read the data.

© National Instruments Corporation 2-7 NI-VISA User Manual

Chapter 2 Introductory Programming Examples

Example 2-3

#include "visa.h"

int main(void)

{
ViStatus status; [* For checking errors */
ViSession defaultRM, instr; /* Communication channels */
ViEventType eventType; [* To identify event */
ViEvent eventData; /* To hold event info */
Viuint16 statID; [* Interrupt Status 1D */
/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {
[* Error Initializing VISA...exiting */
return -1;

}

[* Open communication with VVXI Device at Logical Address 16 */

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL, VI_NULL,
&instr);

[* Enable the driver to detect the interrupts */
status = viEnableEvent(instr, VI_EVENT_VXI_SIGP, VI_QUEUE, VI_NULL);

[* Send the commands to the oscilloscope to capture the */
[* waveform and interrupt when done */

status = viwaitOnEvent(instr, VI_EVENT_VXI_SIGP, 5000, &eventType,

&eventData);
if (status < VI_SUCCESS) {
[* No interrupts received after 5000 ms timeout */
viClose(defaultRM);
return -1;

}

[* Obtain the information about the event and then destroy the */

[* event. In this case, we want the status ID from the interrupt. */

status = viGetAttribute(eventData, VI_ATTR_SIGP_STATUS_ID, &statID);
status = viClose(eventData);

[* Your code should read data from the instrument and process it.*/

NI-VISA User Manual 2-8 © National Instruments Corporation

Chapter 2 Introductory Programming Examples

[* Stop listening to events */
status = viDisableEvent(instr, VI_EVENT_VXI_SIGP, VI_QUEUE);

/* Close down the system */
status = viClose(instr);

status = viClose(defaultRM);

return O;

Example 2-3 Discussion

As you can see, this programming code presents some new functions you
need to use. The first two functions you will notice\aiEmableEvent()
andviDisableEvent() . These functions tell the VISA driver which

events to listen for—in this case e EVENT_VXI_SIGP , or VXI Signal
Processor events. These events cover both VXI interrupts and VXI signals.
In addition, these functions tell the driver how to handle the events when
they occur. In this example, the driver is instructed to queUQUEUE

the events until asked for them. Notice tinatr is also supplied to the
functions. This shows that the VISA driver performs all event handling on
a per-communication-channel basis.

When the driver is ready to handle events, you are free to write code that
will result in an event being generated. In the example above, this is shown
as a comment block because the exact code depends on the device.
However, after you have set the device up to interrupt when it is ready, the
program must wait for the interrupt. This is accomplished by the
viwaitOnEvent() function. Here you specify what events you are

waiting for and how long you want to wait. The program then blocks until
the event occurs. Therefore, after thwaitOnEvent() call is finished,
either it has timed out (5 s in the above example) or it has caught the
interrupt. After some error checking to determine which case is true and
whether it was successful, you can obtain information from the event
throughviGetAttribute() . When you are finished with the event data
structure ¢ventData), destroy it by callingiClose() on it. You can

now continue with the program and retrieve the data. The rest of the
program is the same as the previous examples.

Notice the difference in the way you shut down the program if a timeout has
occurred. You do not need to close the communication channel with the
device, but only with the VISA driver. You can do this because the VISA
specification requires that the driver close any channels opened off a
channel to the drivedéfaultRM) when the driver channel is closed. As a

© National Instruments Corporation 2-9 NI-VISA User Manual

Chapter 2 Introductory Programming Examples

result, when you need to shut down a program quickly, such as in the case
of an error, you can simply close the channel to the driver and VISA
handles the rest of the details for you. However, VISA does not clean up
anything not associated with VISA, such as memory you have allocated.
You are still responsible for those items.

Example of Locking

Example 2-4

#include "visa.h"

#define MAX_CNT 200

int main(void)

Occasionally you may need to prevent other applications from using the
same resource that you are using. VISA has a service tatladgthat

you can use to gain exclusive access to a resource. VISA also has another
locking option in which you can have multiple sessions share a lock.
Because lock sharing is an advanced topic that may involve inter-process
communication, see th@ck Sharingsection in Chapter 8/ISA Locksfor

more informationExample 2-4uses the simpler form, the exclusive lock,

to prevent other VISA applications from modifying the state of the

specified serial port.

{
ViStatus status; /* For checking errors */
ViSession defaultRM, instr; /* Communication channels */
ViuInt32 retCount; /* Return count from string 1/0O */
ViChar buffer[MAX_CNT]; /* Buffer for string 1/0 */
/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);
if (status < VI_SUCCESS) {

[* Error Initializing VISA...exiting */
return -1;
}
/* Open communication with Serial Port 1 */
/* NOTE: For simplicity, we will not show error checking */
status =viOpen(defaultRM, "ASRL1::INSTR" ,VI_NULL,VI_NULL, &instr);

NI-VISA User Manual

2-10 © National Instruments Corporation

Chapter 2 Introductory Programming Examples

[* Set the timeout for message-based communication */
status = viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

/* Lock the serial port so that nothing else can use it */
status = viLock(instr, VI_EXCLUSIVE_LOCK, 5000, VI_NULL, VI_NULL);

[* Set serial port settings as needed */
/* Defaults = 9600 Baud, no parity, 8 data bits, 1 stop bit */

status = viSetAttribute(instr, VI_ATTR_ASRL_BAUD, 2400);

status = viSetAttribute(instr, VI_ATTR_ASRL_DATA BITS, 7);

/* Ask the device for identification */
status = viWrite(instr, "*IDN?\n", 6, &retCount);
status = viRead(instr, buffer, MAX_CNT, &retCount);

/* Unlock the serial port before ending the program */
status = viUnlock(instr);

/* Your code should process the data */

/* Close down the system */
status = viClose(instr);

status = viClose(defaultRM);

return O;

Example 2-4 Discussion

As you can see, the program does not differ with respect to controlling the
instrument. The ability to lock and unlock the resource simply involves
inserting theviLock() andviUnlock() operations around the code that
you want to ensure is protected, as far as the instrument is concerned.

To lock a resource, you use tieock() operation on the session to the
resource. Notice that the second parameter BXCLUSIVE_LOCK This
parameter tells VISA that you want this session to be the only session that
can access the device. The next paramg®80 , is the time in

milliseconds you are willing to wait for the lock. For example, another
program may have locked its session to the resource before you. Using this
timeout feature, you can tell your program to wait until either the other
program has unlocked the session, or 5 s have passed, whichever comes
first.

© National Instruments Corporation 2-11 NI-VISA User Manual

Chapter 2 Introductory Programming Examples

NI-VISA User Manual

The final two parameters are used in the lock sharing featuiteook()

and are discussed further in Chaptev B A LocksFor most applications,
however, these parameters are sett8lULL . Notice that if theviLock()

call succeeds, you then have exclusive access to the device. Other programs
do not have access to the device at all. Therefore, you should hold a lock
only for the time you need to program the device, especially if you are
designing a VXplug&play instrument driver. Failure to do so may cause
other applications to block or terminate with a failure.

To end the example, the application cailénlock() when it has
acquired the data from the instrument. At this point, the resource is
accessible from any other session in any application.

2-12 © National Instruments Corporation

VISA Overview

This chapter contains an overview of the VISA Library.

Introduction

The history of instrumentation reached a milestone with the ability to
communicate with an instrument from a remote computer. Before this time,
you had to perform data collection and analysis manually through the
controls on the instrument’s front panel. Controlling instruments
programmably brought a great deal of power and flexibility with the
capability to control devices faster and more accurately without the need
for human supervision. As time went on, the substantial programming task
was alleviated by application development environments such as
LabVIEW and LabWindows/CVI. These applications increased
productivity, but instrumentation system developers were still faced with
the details of programming the instrument or the device interface bus.

The VISA Library significantly reduces the time and effort involved in
programming different interfaces. Instead of using a different Application
Programmer’s Interface (API) devoted to each interface bus, you can use
the VISA API whether your system uses a GPIB, VXI, GPIB-VXI, PXl,

or serial controller.

As an example, consider the case of the GPIB-VXI controller. You can use
this device to communicate with VXI devices, but through a GPIB cable.
In other words, you use a GPIB interface with GPIB software to send
commands to VXI devices. There is no way for you to ignore the interface
through which you must communicate. If you want to access the registers
on the VXI device, you must use GPIB string communication to ask the
GPIB-VXI to perform this action. Indeed, the specification of the
GPIB-VXI (VXI-5) does not even standardize the commands necessary
to do this task.

© National Instruments Corporation 3-1 NI-VISA User Manual

Chapter 3 VISA Overview

Objectives of VISA

NI-VISA User Manual

The main objective of the VXlug&play Systems Alliance is to increase

ease of use for end users of VXI technology through open, multivendor

VXI systems. Instrument programmers need a software architecture that
exports the capabilities of tlidevicesnot the interface bus. In addition,

they need to be consistent across the devices and interface buses. Realizing
these goals results in a simpler model to understand and reduces the number
of functions the user needs to learn.

Using the example of the GPIB-VXI, a software driver that satisfies these
goals should be capable of sending and receiving messages (string
communication) to and from message-based devices. In addition,

the communication functions should be the same, regardless of the
interface through which these messages are sent. Any functionality that the
device exports—such as message or register communication—should be
accessible regardless of the capabilities of the interface bus. Moreover,
you should be able to access this functionality througlkdhee functions
regardless of the interface bus you are using.

With the vast number of choices in instrumentation and software now
available, most users do not want to be limited to a specific vendor for their
systems. Instead, they prefer the freedom to select the best instruments and
software available from multiple vendors and have it all work together with
minimal effort. The IEEE 488.1 and IEEE 488.2 standards for GPIB and
the IEEE 1155 standard for VXI ensured that the hardware would be
interoperable, but such standards did not apply to the software. Therefore,
the ideal new driver architecture should be a standard adopted by as many
of the major vendors as possible to ensure that any code written for your
instrument is portable across vendors as well as operating systems.

Finally, most instruments export a set of commands to which they will
respond. Because the instrument needs to be flexible, these commands are
often primitive functions of the device and require several commands to
group them together so that the device can perform common tasks. As a
result, programmers are faced with a lot of overhead. Rather than making
a simple request tget the dataone must issue a series of commands to

do task Ado task Band so on, prior to making the actual request to get

the data.

3-2 © National Instruments Corporation

Chapter 3 VISA Overview

National Instruments began to ease this burden with the development of
instrument driverswhich encapsulate these primitive commands inside
functions to perform the common tasks so users get up and running much
faster. The major drawback has been that it is difficult to keep up with the
number of new devices that appear in the marketplace. So, another
objective for this ideal driver would be for it to be an accepted standard for
creating instrument drivers. Then the vendors of the instruments could
create the instrument drivers themselves and be assured that they can cover
most of the systems on the market.

The VXIplug&play Systems Alliance formed to create this software
architecture. The name of the driveMiESA for Virtual Instrument
Software Architecture. With VISA, you can benefit from the
interface-independence features and the newly defined standard for
instrument drivers. Future versions of VISA will support more advanced
features, such as finer control of instruments and distribution across
networks.

Interactive Control of VISA

NI-VISA comes with a utility called VISA Interactive Control (VISAIC)
on all platforms that support VISA, with the exception of Macintosh and
VxWorks. This utility gives you access to all of VISA’s functionality
interactively, in an easy-to-use graphical environment. It is a convenient
starting point for program development and learning about VISA.

When VISAIC runs, it automatically finds all of the available resources in
the system and lists the instrument descriptors for each of these resources
under the appropriate resource type. This information is displayed on the
VISA I/O tab.

© National Instruments Corporation 3-3 NI-VISA User Manual

Chapter 3

VISA Overview

NI-VISA User Manual

The following figure shows the VISAIC opening window.

File Edit View Help

Winsthumenirse
VISA1/O | Soft Front Panels| NIIO| SCrpyigitas:

= Niew By Type = “iew By Connection

S |

o[GPIB2 (GPIB-ENET)
| L@ GPIBZ:2:NETR
=352 WHI0 (PCEME-2)
1 VHINMEMACC
;IVEID0INSTR
[=- 35 Mainframe 1
FVHID CINETR
SVEIDCZIINGTR
=- B ASRL (COM1)
L S ASRL1:INETR
=- W ASRLIO (LPT1)

[+]

Fesource to Open:

The Soft Front Panelstab of the main VISAIC panel gives you the option
to launch the soft front panels of any \p¥igé&play instrument drivers that
have been installed on the system.

TheNI I/O tab gives you the option to launch the NI-VXI interactive utility
or the NI-488 interactive utility. This gives you convenient links into the
interactive utilities for the drivers VISA calls in case you would like to try
debugging at this level.

Double-clicking on any of the instrument descriptors shown in the VISAIC
window opens a session to that instrument. Opening a session to the
instrument produces a window with a series of tabs for interactively
running VISA commands. The exact appearance of these tabs depends on
which compatibility mode VISAIC is in. To access the compatibility mode
and other VISAIC preferences selé&adit»Preferences...to bring up the
following window.

3-4 © National Instruments Corporation

Chapter 3 VISA Overview

" Preferences x|

Freterences will be applied to new session windows.

Class Tab Color Compatibility Mode
li ﬁ et ietasarey]
Operation Tak Calar Lab*IEWY

Default Resource YWiew
Selected Tah Text Calar ﬁ By Cannection

] By Type

I~ Show VIS4 session number inwindow title

™ Show duplicate GPIB and GFIB-=| resources
I Show Memony Access resources

™ Load configured setiings {(when available)

Cancel Default

The VISA implementations are slightly different in LabVIEW and
LabWindows/CVI. These differences are reflected in the operation tabs
that are shown when you open a session to a resource.

¢ Windows 95/NT users—VISAIC detects whether you have LabVIEW
and/or LabWindows/CVI installed on your system and sets the
compatibility mode accordingly.

If you change the preferences, the new preferences take effect for any
subsequent session you open.

© National Instruments Corporation 3-5 NI-VISA User Manual

Chapter 3

VISA Overview
When a session to a resource is opened interactively, a window similar to
the following appears. This window uses the LabVIEW compatibility
mode.
VXI0:2:INSTR (Session 0x00444B888) _ o]

Template | Basic /0| Fegister /0]
Enahle Eventl Disahle Eventl_ Discard Events| Malt on Eventl
Froperty Mode (Read) | Froperty Node (rita)

Attribute Name Current Yalue

User Data Vl =0

Lock | Unluckl

Return Yalue

[

=T Cluery the value of the specified attribute. Execute |

NI-VISA User Manual

Three main tabs appear in the window. The initial tab i3 &meplate tab,

which contains all of the operations dealing with events, properties, and
locks. Notice that there is a separate tab for each of these operations under
the main tab. The other main tabs Besic 1/0 andRegister 1/0. The

Basic I/Otab contains the operations for message-based instruments, while
theRegister /0O tab contains the operations for register-based instruments.
TheRegister I/Otab does not appear for either GPIB or Serial instruments.

3-6 © National Instruments Corporation

Chapter 3 VISA Overview

Programming with VISA

Chapter 2)ntroductory Programming Exampleistroduced some

examples of how to write code for the VISA driver. However, the chapter
deliberately avoided using VISA terminology to show that writing
programs under VISA can be very straightforward and similar to software
drivers you have used in the past. This section looks at these examples
again, but this time from the perspective of the underlying architecture.

Beginning Terminology

Let us begin by defining some terminology. Typical device capabilities
include sending and receiving messages, responding to register accesses,
requesting service, being reset, and so on. One of the underlying premises
of VISA, as defined in the previous section, is to export the capabilities of
the devices—independent of the interface bus—to the user. Therefore,
when creating the building blocks for VISA, it is important to focus on
these basic device capabilities. VISA encapsulates each of these abilities
into aresource

A resource is simply a complete description of a particular set of
capabilities of a device. For example, to be able to write to a device, you
need a function you can use to send messag®gite() . In addition,

there are certain details you need to consider, such as what the termination
character is, if any, and how long the function should try to communicate
before timing out. Those of you familiar with this methodology might
recognize this approach akject-orientedOO) design. Indeed, VISA is
based on OO design. In keeping with the terminology of OO, we call the
functions of these resourceperationsand the details, such as the
termination characteattributes

An important resource under VISA is ti¢STRResource. This resource
encapsulates all of the basic device functions together so that you can
communicate with the device through a single resource. The INSTR
Resource exports the most commonly used features of these resources and
is sufficient for most instrument drivers.

Another resource type is the Memory AccesMBMACCResource. The
MEMACC Resource allows interface-level accesses, such as that used by
NI-VXI, but is still independent of the actual interface type.

© National Instruments Corporation 3-7 NI-VISA User Manual

Chapter 3 VISA Overview

Returning toExample 2-1in Chapter 2|ntroductory Programming
Exampleslook at the point where the program has opened a
communication channel with a message-based device. Remember that
because of interface independence, it does not matter whether the device is
GPIB or VXI. You want to send the identification quetigN?\n , to the

device. Because of the possibility that the device or interface could fail, you
want to ensure that the computer will not hang in the event that no one ever
receives the string. Therefore, the first step is to tell the resource to time out
after 5 s (5000 ms):

status = viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

You have just set an attributel (ATTR_TMO_VALUE of the resource.
From now on, your communication to this resource through this
communication channeihgtr) will have a timeout of 5 s.

The fact that you are dealing with an OO-based driver is somewhat
irrelevant at this point. As you become more experienced with VISA, you
will see more of the benefits of this approach. But for now, you can see that
you can set the timeout with an operation (function) in a manner similar to
that used with other drivers. In addition, the operation you need to
remember—viSetAttribute() —is the same operation you use to set
any feature of any resource.

Now you send the string to the device:

status = viWrite(instr, "*IDN?\n", 6, &retCount);

Again, this is a familiar approach to programming. You use a write
operation to send a string to a device. For now, it is sufficient for you to
understand that you can use a single operatidwrite() —to send a
message to a device, regardless of the interface to which it is connected.

Continuing, you read back the string with a read operation:
status = viRead(instr, buffer, 200, &retCount);

See Chapter 9ylessage-Based Communicatiéor more information.

Communication Channels

NI-VISA User Manual

The examples from Chapterlgtroductory Programming Examplessed

an operation calledOpen() to open communication channels with the
instruments. In VISA terminology, this channel is known asssionA
session connects you to the resource you addressedviopea()

operation and keeps your communication and attribute settings unique
from other sessions to the same resource. In VISA, a resource can have

3-8 © National Instruments Corporation

Chapter 3 VISA Overview

multiple sessions to it from the same program and even from other
programs simultaneously. Therefore you must consider some things about
the resource to Hecal, that is, unique to the session, and other things to be
global, that is, common for all sessions to the resource.

If you look at the descriptions of the various attributes supported by the
VISA resources, you will see that some are marietlal (such as
VI_ATTR_INTF_TYPE) and others are markdatal (such as
VI_ATTR_TMO_VALUE For example, the interface bus that the resource is
using to communicate with the devied (ATTR_INTF_TYPE) is the same

for everyone talking to the resource and is therefglelaal attribute
However, different programs may have different timeout requirements and
so the timeout value/(_ ATTR_TMO_VALUE for communication is bcal
attribute

Again, look atExample 2-1To open communication with the instrument,
that is, to create a session to the INSTR Resource, you ug®peea()
operation as shown below:

status = viOpen(defaultRM, "GPIBO0::1::INSTR", VI_NULL,
VI_NULL ,&instr);

In this case, the interface to which the instrument is connected is important,
but only as a means to uniquely identify the instrument. The code above
references a GPIB device on bus number 0 with primary address 1. The
access mode and timeout valuesvi@pen() are bothvi_NULL. Other
values are defined, bmt_NULL is recommended for both new users and

all instrument drivers.

However, notice the statement has two sessions in the parameter list for
viOpen() —defaultRM andinstr . Why do you need two sessions? As
you will see in a momentjOpen() is an operation on@sourceknown

as the Resource Manager, so you must have a communication channel to
this resource. However, what you want is a session tostreiment this

is what is returned iimstr

For the entire duration that you communicate with this GPIB instrument,
you use the session returnedristr as the communication channel.
When you are finished with the communication, you need to close the
channel. This is accomplished throughti@ose() operation as shown
below:

status = viClose(instr);

© National Instruments Corporation 3-9 NI-VISA User Manual

Chapter 3 VISA Overview

At this point, the communication channel is closed but you are still free to
open it again or open a session to another device. Notice that ymi do
need to close a session to open another session. You can have as many
sessions to different devices as you want.

The Resource Manager

The previous section briefly mentioned the Resource Manager Resource.
What exactly is a Resource Manager? If you have worked with VXI, you
are familiar with the VXI Resource Manager. Its job is to search the VXI
chassis for instruments, configure them, and then return its findings to the
user. The VISA Resource Manager has a similar function. It scans the
system to find all the devices connected to it through the various interface
buses and then controls the access to them. Notice that the Resource
Manager simply keeps track of the resources and creates sessions to them
as requested. You do not go through the Resource Manager with every
operation defined on a resource.

Again referring tdExample 2-1notice that the first line of code is a
function call to get a session to the Default Resource Manager:

status = viOpenDefaultRM(&defaultRM);
= Note viOpenDefaultRM() is afunction call, not anoperation call.

An operation is a property of a resource that you call by way of a session.
TheviOpenDefaultRM() function returns a unique session to the Default
Resource Manager, but does not require some other session to operate.
Therefore this function is not a property of any resource—not even the
Resource Manager Resource. It is provided by the VISA driver itself.

Now that you have a communication channel (session) to the Resource
Manager, you can ask it to create sessions to instruments for you. In
addition to this, VISA also defines operations that can be invoked to query
the Resource Manager about other resources it knows about. You can use
theviFindRsrc() operation to give the Resource Manager a search
string, known as a regular expression, for instruments in the system. See
Chapter 4]nitializing Your VISA Applicatiorfor more information about
viFindRsrc()

NI-VISA User Manual 3-10 © National Instruments Corporation

Chapter 3 VISA Overview

Register Communication

Now that you know more about communicating with message-based
devices, you can move on to register communication. The only types of
devices VISA supports that can export register accesses are VXI and PXI
devices. However, VISA has defined these resources to be expandable to
other types of devices in the future.

Refer toExample 2-2n Chapter 2|ntroductory Programming Examples

You open communication to the Resource Manager and the resource in the
same manner as Example 2-1but this time you specify a VXI device.

This example uses what are known asHigh-Level Accesmethods to

read and write registers. For example, if you want to read a 16-bit
register—say the ID register of the device—use the following call:

status = viln16(instr, VI_A16_SPACE, 0x0, &devicelD);

Notice that the offset requested is 0. This is the offset of the ID register for
a VXI device, but it is not the absolute address of the register in A16 space.
This is becausistr is a session to the instrument, not to the VXI
memory space; therefore, all offsets are from the base address of the
instrument. For example, if this same device also shared its memory in A24
space at 0x200000, you could write to the first memory location of this
shared memory as follows:

status = viOut16(instr, VI_A24_SPACE, 0x0, 0x1234);

Thus, the offset when using an INSTR resource is 0x0, not 0x200000.
VISA also supports sessions to the interface bus itself via the MEMACC
Resource. Refer to Chapter®egister-Based Communicatidor more
information about this resource.

These methods are known asliigh-LevelAccess methods to distinguish
them from theLow-LevelAccess methods. The High-Level Access

methods encapsulate all the necessary code to perform a read or a write of
a register, including mapping any necessary access windows and handling
errors, such as a bus error. In contrast, the Low-Level Access methods do
not. Instead, you map the windows yourself and VISA does not monitor for
errors. Refer to Chapter Register-Based Communicatjdor more

information about accessing register-based devices with both the
High-Level Access and the Low-Level Access methods.

© National Instruments Corporation 3-11 NI-VISA User Manual

Chapter 3 VISA Overview

Example of Interface Independence

NI-VISA User Manual

Now that you are more familiar with the architecture of the VISA driver,
look at the GPIB-VXI interface board to see if VISA gives you
independence from the interface connecting the instruments.

The GPIB-VXI device translates GPIB bus communication to VXIbus
communication and vice versa. Its main purpose is to let GPIB users add
VXI devices to their systems inexpensively. Using GPIB driver software,
you can communicate with VXI devices usimgssageghe same way you
program stand-alone GPIB instruments.

But how do you perform register accesses to the VXI devices? Up to this
point, you were required to send messages to the GPIB-VXI itself and ask
it to perform the register access. It would then return the result of the 1/0 in
another string. For example, when talking to the National Instruments
GPIB-VXI/C with NI-488.2, the register access looks like the following
when using NI-488 function calls:

dev = ibdev(boardID, PrimAddr, SecAddr, TMO, EOT, EOS);
status = ibwrt(dev, "A24 #h200000, #h1234", cnt);

If you are using NI-488.2 routines, the same call is:
Send(boardID, Address, "A24 #h200000, #h1234", DABend);

If you had ever planned to move your code to a MXI or embedded VXI
controller solution, you would spend a great deal of time changing your
GPIB calls to VXI calls, especially when considering register accesses.
VISA has been designed to eliminate problems such as this limitation. If
you are talking to a VXI instrument, you can perform register 1/O
regardless of whether you are connected via GPIB, MXI, or an embedded
VXI computer. In addition, the code is the same for all three cases.
Therefore the code for writing to the A24 register through a GPIB-VXI is
now precisely the same as given previously irRbgister Communication
section:

status = viOut16(instr, VI_A24 SPACE, 0x0, 0x1234);
The fact that GPIB messages are necessary is no longer important; you can

let the driver take care of those details. Program your instrument based on
its capabilities.

3-12 © National Instruments Corporation

Initializing Your VISA
Application

This chapter describes the steps required to prepare your application for
communication with your device.

Introduction

A powerful feature of VISA is the concept of a single interface for finding
and accessing devices on various platforms. The VISA Resource Manager
does this by exporting services for controlling and managing resources.
These services include, but are not limited to, assigning unique resource
addresses and unique resource IDs, locating resources, and creating
sessions.

Each session contains all the information necessary to configure the
communication channel with a device, as well as information about the
device itself. This information is encapsulated inside a generic structure
called amattribute. You can use the attributes to configure a session or to
find a particular resource.

Opening a Session

When trying to access any of the VISA resources, the first step is

to get a reference to the default Resource Manager by calling
viOpenDefaultRM() . Your application can then use the session
returned from this call to open sessions to resources controlled by that
Resource Manager, as shown in the following example.

Note The examples in this chapter show C source code. You can find the same examples
in Visual Basic syntax in Appendix AYisual Basic Examples

© National Instruments Corporation 4-1 NI-VISA User Manual

Chapter 4

Initializing Your VISA Application

Example 4-1

#include "visa.h"

int main(void)

{
ViStatus status;
ViSession defaultRM, instr;
/* Open Default RM */
status = viOpenDefaultRM(&defaultRM);
if (status < VI_SUCCESS) {
[* Error Initializing VISA...exiting */
return -1;
}
[* Access other resources */
status = viOpen(defaultRM, "GPIB::1::INSTR", VI_NULL, VI_NULL,
&instr);
[* Use device and eventually close it. */
viClose(instr);
viClose(defaultRM);
return O;
}
As shown in this example, you use th@pen() call to open new
sessions. In this call, you specify which resource to access by using a string
that describes the resource. The following table shows the format for this
string. Square brackets indicate optional string segments.
Interface Syntax
VXI VXI[board]:: VXl logical address [::INSTR]
GPIB-VXI GPIB-VXI[board]:: VXl logical address [::INSTR]
GPIB GPIB[board |:: primary address [:: secondary address][::INSTR]
ASRL ASRL[board][::INSTR]
VXI VXI[board 1::MEMACC
GPIB-VXI GPIB-VXI[board]::MEMACC

NI-VISA User Manual 4-2 © National Instruments Corporation

Chapter 4 Initializing Your VISA Application

Use the VXI keyword for VXI instruments via either embedded or MXlbus
controllers. Use the GPIB-VXI keyword for a GPIB-VXI controller. Use
the GPIB keyword to establish communication with a GPIB device. Use the
ASRL keyword to establish communication with an asynchronous serial
(such as RS-232) device.

Refer to Chapter NI-VISA Platform-Specific and Portability Issyésr

help in determining exactly which resource you may be accessing. In some
cases, such as serial (ASRL) resources, the naming conventions with other
serial naming conventions may be confusing. In the Windows platform,
COML1 corresponds to ASRL1, unlike in LabVIEW where COM1 is
accessible using port number 0.

The default values for optional string segments are as follows.

Optional String Segment Default Value
board 0
secondary address none

The following table shows examples of address strings.

Address String Description

VXI0::1::INSTR A VXI device at logical address 1 in VX
interface VXIO

GPIB-VXI::9:INSTR A VXI device at logical address 9 in a
GPIB-VXI controlled VXI system

GPIB::1::0:INSTR A GPIB device at primary address 1 and
secondary address 0 in GPIB interface D

ASRL1:INSTR A serial device attached to interface
ASRL1

VXI::MEMACC Board-level register access to the VXI
interface

GPIB-VXI1::MEMACC Board-level register access to GPIB-VX]|

interface number 1

© National Instruments Corporation 4-3 NI-VISA User Manual

Chapter 4

Initializing Your VISA Application

Finding Resources

As shown in the previous section, you can create a session to a resource
using theviOpen() call. However, before you use this call you need to
know the exact location (address) of the resource you want to open. To find
out what resources are currently available at a given point in time, you can
use the search services provided bywiRmdRsrc() operation, as

shown in the following example.

Notice that while this sample function returns a session, it does not return
the reference to the resource manager session opened within the same
function. If you use this style of initialization routine, you can get the
reference to the resource manager session later by querying the attribute
VI_ATTR_RM_SESSIONbefore closing the INSTR session. You can then

close the resource manager session vittlose()

Example 4-2

#include "visa.h"

#define MANF_ID OxFF6 /* 12-bit VXI manufacturer ID of device */
#define MODEL_CODE 0OxOFE /* 12-bit or 16-bit model code of device */

/* Find the first matching device and return a session to it */
ViStatus autoConnect(ViPSession instrSesn)

{

ViStatus status;

ViSession defaultRM, instr;
ViFindList fList;

ViChar desc[VI_FIND_BUFLEN];
ViUInt32 numlnstrs;

ViUIlntl6 iManf, iModel;

status = viOpenDefaultRM(&defaultRM);
if (status < VI_SUCCESS) {
[* Error initializing VISA ... exiting */
return status;
}
/* Find all VXI instruments in the system */
status = viFindRsrc(defaultRM, "?*VXI[0-9]*::?*INSTR", &fList,
&numinstrs, desc);

NI-VISA User Manual 4-4 © National Instruments Corporation

Chapter 4 Initializing Your VISA Application

if (status < VI_SUCCESS) {

[* Error finding resources ... exiting */
viClose(defaultRM);
return status;

}

/* Open a session to each and determine if it matches */

while (numinstrs--) {
status = viOpen(defaultRM, desc, VI_NULL, VI_NULL, &instr);
if (status < VI_SUCCESS) {
viFindNext(fList, desc);
continue;
}
status = viGetAttribute(instr, VI_ATTR_MANF_ID, &iManf);
if ((status < VI_SUCCESS) || (iManf != MANF_ID)) {
viClose(instr);
viFindNext(fList, desc);
continue;
}
status = viGetAttribute(instr, VI_ATTR_MODEL_CODE, &iModel);
if ((status < VI_SUCCESS) || (iModel != MODEL_CODE)) {
viClose(instr);
viFindNext(fList, desc);
continue;

}

/* We have a match, return the session without closing it */
*instrSesn = instr;

viClose(fList);

/* Do not close defaultRM, as that would close instr too */
return VI_SUCCESS;

}

/* No match was found, return an error */
viClose(fList);

viClose(defaultRM);

return VI_ERROR_RSRC_NFOUND;

As this example shows, you can w#éndRsrc() to get a list of

matching resource names, which you can then further examine one at a time
usingviFindNext() . Remember to free the space allocated by the system
by invokingviClose() on the list referenctist

© National Instruments Corporation 4-5 NI-VISA User Manual

Chapter 4 Initializing Your VISA Application

Finding VISA Resources Using Regular Expressions

NI-VISA User Manual

UsingviFindRsrc() to locate a resource in a VISA system requires a

way for you to identify which resources you are interested in. The VISA
Resource Manager accomplishes this through the use of regular
expressions, which specify a match for certain resources in the system.
Regular expressions are strings consisting of ordinary characters as well as
certain characters with special meanings that you can use to search for
patterns instead of specific text. Regular expressions are based on the idea
of matching, where a given string is tested to seenifitcheshe regular
expression; that is, to determine if it fits the pattern of the regular
expression. You can apply this same concept to a list of strings to return a
subset of the list that matches the expression.

The following table defines the special characters and syntax rules used in
VISA regular expressions.

Special Characters

and Operators Meaning
? Matches any one character.
\ Makes the character that follows it an

ordinary character instead of special
character. For example, when a
question mark follows a backslash
(\?), it matches the character instead
of any one character.

[list] Matches any one character from the
enclosedist . You can use a hyphen
to match a range of characters.

[Mist] Matches any character not in the
enclosedist . You can use a hyphen
to match a range of characters.

* Matches 0 or more occurrences of the
preceding character or expression.

+ Matches 1 or more occurrences of the
preceding character or expression.

4-6 © National Instruments Corporation

Chapter 4 Initializing Your VISA Application

Special Characters
and Operators Meaning

explexp Matches either the preceding or
following expression. The or operator
matches the entire expression that
precedes or follows it and not just the
character that precedes or follows it.
For exampleyXI|GPIB means
(VXD|(GPIB) , notVX(l|G)PIB

(exp) Grouping characters or expressions.

The priority, orprecedenc®f the operators in regular expressions is as
follows:

* The grouping operatd@y in a regular expression has the highest
precedence.

« The+ and* operators have the next highest precedence.
e The or operator has the lowest precedence.

Notice that in VISA, the stringGPIB?*INSTR" applies to both GPIB and
GPIB-VXI instruments.

The following table lists some examples of valid regular expressions that
you can use witRiFindRsrc()

Regular Expression Sample Matches
GPIB?*INSTR MatchesGPIBO::2::INSTR
GPIB1::1::1::INSTR , and

GPIB-VXI1::8::INSTR

GPIB[0-9]*::?*INSTR MatchesGPIBO0::2::INSTR and
GPIB1::1::1::INSTR but not
GPIB-VXI1::8::INSTR

GPIB["0]::?*INSTR MatchesGPIB1::1::1::1INSTR but
notGPIBO::2::INSTR or
GPIB12::8::INSTR

VXI?*INSTR MatchesvXI0::1::INSTR but not
GPIB-VXIO::1::INSTR

GPIB-VXI?*INSTR MatchesGPIB-VXI0::1::INSTR but
notVvXI0::1::INSTR

© National Instruments Corporation 4-7 NI-VISA User Manual

Chapter 4 Initializing Your VISA Application

Regular Expression Sample Matches

2*VXI[0-9]*::?*INSTR MatchesvXI0::1::INSTR and
GPIB-VXIO0::1::INSTR

ASRL[0-9]*::?*INSTR MatchesASRL1::INSTR but not
VXI0::5::INSTR

ASRL1+:INSTR MatchesASRL1::INSTR and
ASRL11:INSTR but not
ASRL2:INSTR .

(GPIB|VXI)?*INSTR MatchesGPIB1::5:.INSTR and
VXI10::3::INSTR but not
ASRL2::INSTR .

(GPIBO|VXI0)::1::INSTR MatchesGPIBO::1::INSTR and
VXIO0::1::INSTR

?*INSTR Matches all INSTR (device) resources.

2*VXI[0-9]*::?*MEMACC MatchesvXI0::MEMACC and
GPIB-VXI1::MEMACC .

VXIO0::?* MatchesvXI0::1::INSTR ,
VXI0::2::INSTR , and
VXI0::MEMACC.

?* Matches all resources.

Notice that in VISA, the regular expressions used for resource matching are
not case sensitive. For example, callufgndRsrc() with

"VXI?*INSTR" would return the same resources as invoking it with
"vxi?*instr"

Attribute-Based Resource Matching

NI-VISA User Manual

VISA can also search for a resource based on the values of the resource’s
attributes. TheiFindRsrc() search expression is handled in two parts:
the regular expression for the resource string and the (optional) logical
expression for the attributes. Assuming that a given resource matches the
given regular expression, VISA checks the attribute expression for a match.
The resource matches the overall string if it matches both parts.

Attribute matching works by using familiar constructs of logical operations
such as AND&&), OR (|), and NOT (). Equal €=) and unequal£)

apply to all types of attributes, and you can additionally compare numerical
attributes using other common comparaters<(>=, and<=).

4-8 © National Instruments Corporation

Chapter 4 Initializing Your VISA Application

You are free to make attribute matching expressions as complex as you like,
using multiple ANDs, ORs, and NOTSs. Precedence applies as follows:

* The grouping operat@y in an attribute matching expression has the
highest precedence.

« The NOT! operator has the next highest precedence.
» The AND && operator has the next highest precedence.
* The OR operatgt has the lowest precedence.

The following table shows three examples of matching based on attributes.

Expression Meaning
GPIB[0-9]*::?*::?*::INSTR Find all GPIB devices that have secondary
{VI_ATTR_GPIB_SECONDARY_ADDR > 0 && addresses from 1 to 9.
VI_ATTR_GPIB_SECONDARY_ADDR < 10}

ASRL?*INSTR{VI_ATTR_ASRL_BAUD == 9600} Find all serial ports configured at 9600 baud.
P*VXI?INSTR{VI_ATTR_MANF_ID == Find all VXI instrument resources with
OXFF6 && !(VI_ATTR_VXI_LA ==0 || manufacturer ID of FF6 and which are not

VI_ATTR_SLOT <= 0)}

logical address 0, slot 0, or external controllers.

Notice that onlyglobal VISA attributes are permitted in the attribute
matching expression.

The following example is similar to Example 4-2, except that it uses a
regular expression with attribute matching. Notice that because only the
first match is neede®|_NULL is passed for both thhetCount and

findList parameters. This tells VISA to automatically close the find list
rather than return it to the application.

© National Instruments Corporation 4-9 NI-VISA User Manual

Chapter 4

Initializing Your VISA Application

Example 4-3

#include <stdio.h>
#include "visa.h"

#define MANF_ID OxFF6 /* 12-bit VXI manufacturer ID of device */
#define MODEL_CODE OxOFE /* 12-bit or 16-bit model code of device */
/* Find the first matching device and return a session to it */
ViStatus autoConnect2(ViPSession instrSesn)
{
ViStatus status;
ViSession defaultRM, instr;
ViChar desc[VI_FIND_BUFLEN], regExToUse[VI_FIND_BUFLEN];
status = viOpenDefaultRM(&defaultRM);
if (status < VI_SUCCESS) {
[* Error initializing VISA ... exiting */
return status;
}
/* Find the first matching VXI instrument */
sprintf(regExToUse,
"PRVXI[0-91*:: ?*INSTR{VI_ATTR_MANF_ID==0x%x&&VI_ATTR_MODEL_CODE==0x%x}",
MANF_ID, MODEL_CODE);
status = viFindRsrc(defaultRM, regExToUse, VI_NULL, VI_NULL, desc);
if (status < VI_SUCCESS) {
[* Error finding resources ... exiting */
viClose(defaultRM);
return status;
}
status = viOpen(defaultRM, desc, VI_NULL, VI_NULL, &instr);
if (status < VI_SUCCESS) {
viClose(defaultRM);
return status;
}
*instrSesn = instr;
[* Do not close defaultRM, as that would close instr too */
return VI_SUCCESS;
}

NI-VISA User Manual 4-10 © National Instruments Corporation

Chapter 4 Initializing Your VISA Application

Configuring a Session

After the Resource Manager opens a session, communication with the
device can usually begin using the default session settings. However, in
some cases such as ASRL (serial) resources, you need to set some other
parameters such as baud rate, parity, and flow control before proper
communication can begin. GPIB and VXI sessions may have still other
configuration parameters to set, such as timeouts and end-of-transmission
modes, although in general the default settings should suffice.

Accessing Attributes

VISA uses two operations for obtaining and setting
parameters-viGetAttribute() andviSetAttribute() . Attributes
not only describe the state of the device, but also the method of
communication with the device.

For example, you could use the following code to obtain the logical address
of a VXI address:

status = viGetAttribute(instr, VI_ATTR_VXI_LA, &Laddr);

and the variableéaddr would contain the device’s address. If you want to
set an attribute, such as the baud rate of an ASRL session, you could use:

status = viSetAttribute(instr, VI_ATTR_ASRL_BAUD,
baudrate);

Notice that some attributes are read-only, such as logical address, while
others are read/write attributes, such as the baud rate. Also, some attributes
apply only to certain types of sessioxs;ATTR_VXI_LA would not exist

for an ASRL device. If you attempted to use it, the status parameter would
return with the cod®l_ERROR_NSUP_ATTR

Refer to the online help or to thd-VISA Programmer Reference Manual
for a list of all available attributes you can use for each supported interface.

Common Considerations for Using Attributes

As you set up your sessions, there are some common attributes you can use
that will affect how the sessions handle various situations. For currently
supported session types, all support the setting of timeout values and
termination methods:

* VI_ATTR_TMO_VALUHIenotes how long (in milliseconds) to wait for
accesses to the device. Defaults to two seconds (2000 ms).

© National Instruments Corporation 4-11 NI-VISA User Manual

Chapter 4 Initializing Your VISA Application

NI-VISA User Manual

e VI_ATTR_TERMCHAR_ENets whether a termination character
specified byvI_ATTR_TERMCHARvill be used on read operations.

e VI_ATTR_SEND_END_ENletermines whether to use an END bit on
your write operations. Defaults Yo_TRUE.

Various interfaces have other types of attributes that may affect channel
communication. The following two VXI attributes are important for
high-level accesses:

* VI_ATTR_DEST_BYTE_ORDERpecifies whether to write words in big
endian or little endian byte order. Default3/10BIG_ENDIAN .

* VI_ATTR_SRC_BYTE_ORDERpecifies whether to read words in big
endian or little endian byte order. Default3/10BIG_ENDIAN .

Because ASRL devices have much more variation in the communication
channel, be sure to set the following parameters correctly:

e VI_ATTR_ASRL_BAUDsets the baud rate. Defaults to 9600.

e VI_ATTR_ASRL_DATA BITS sets the number of data bits.
Defaults to 8.

e VI_ATTR_ASRL_PARITY sets the parity. Defaults to
VI_ASRL_PAR_NONE

e VI_ATTR_ASRL_STOP_BITS sets the number of stop bits. Defaults to
VI_ASRL_STOP_ONH10).

e VI_ATTR_ASRL_FLOW_CNTREets the method for limiting overflow
on transfers between the devices. Defaultd tdSRL_FLOW_NONE
(no method of flow control).

Check theSerial Port Supporsection in Chapter HNI-VISA
Platform-Specific and Portability Issue® verify you are establishing
connection to the correct port. Refer to the online help or thIFNASA
Programmer Reference Manuak a complete range of values for the
attributes. Some other useful ASRL attributes are as follows:

e VI_ATTR_ASRL_END_IN defines the method of terminating reads.
Defaults tovi_ASRL_END_TERMCHAR his means that the read
operation will stop whenever the character specified by
VI_ATTR_TERMCHARS encountered, regardless of the state of
VI_ATTR_TERMCHAR_EN

* VI_ATTR_ASRL_END_oOuUTlefines the method of terminating writes.
Defaults tovi_ASRL_END_NONEThis means that the setting of
VI_ATTR_SEND_ENis irrelevant.

4-12 © National Instruments Corporation

Message-Based Communication

This chapter shows how to use the VISA library in message-based
communication.

Introduction

Whether you are using RS-232, GPIB, or VXI, message-based
communication is a standard protocol for controlling and receiving data
from instruments. Because most message-based devices have similar
capabilities, it is natural that the driver interface should be consistent.
Under VISA, controlling message-based devices is the same regardless
of whether those devices are serial, GPIB, or VXI instruments.

VISA message-based communication includes the Basic I/O Services and
the Formatted 1/O Services from within the VISA Instrument Control
Resource (INSTR). All sessions to a VISA Instrument Control Resource
(INSTR) opened usingOpen() have full message-based communication
capabilities. Of course, if the device is a register-based VXI device, the
message-based operations return an error sS0dERROR_NSUP_OPEBR

to indicate that thislevicedoes not support the operations, although the
sessiorstill provides access to them. This chapter discusses the uses of the
Basic I/0O Services and the Formatted I/O Services provided by the INSTR
Resource in a VISA application.

Basic 1/0 Services

The VISA Instrument Control Resource lets a controller interact with the
device that it is associated with by providing the controller with services to
do the following:

* Send blocks of data to the device

* Request blocks of data from the device

» Send the device clear command to the device
e Trigger the device

* Find information about the status of the device

© National Instruments Corporation 5-1 NI-VISA User Manual

Chapter 5 Message-Based Communication

I+ Note For serial instruments, the 1/0O protocol must be seMio ASRL_488 for the clear,
trigger, and status services to be enabled.

The following sections describe the operations provided by the VISA
Instrument Control Resource for the Basic I/O Services.

Synchronous Read/Write Services

The most straightforward of the operationséRead() andviwrite()

which perform the actual receiving and sending of strings. Notice that these
operations look upon the data as a string and do not interpret the contents.
For this reason, the data could be messages, commands, or binary encoded
data, depending on how the device has been programmed. For example, the
IEEE 488.2 commantiIDN? is a message that is sent in ASCII format.
However, an oscilloscope returning a digitized waveform may take each
16-bit data point and put it end to end as a series of 8-bit characters. The
following code segment shows a program requesting the waveform that the
device has captured.

status = viWrite(instr, "READ:WAVFM:CH1", 14, &retCount);
status = viRead(instr, buffer, 1024, &retCount);

Now the character arrayuffer contains the data for the waveform, but
you still do not know how the data is formatted. For example, if the data
points werel, 2, 3, .the buffer might be formatted as “1,2,3,...”. However,

if the data were binary encoded 8-bit values, the first byteffsr would

be 1—not the ASCII character 1, but the actual value 1. The next byte
would be neither a comma nor the ASCII character 2, but the actual value
2, and so on. Refer to the documentation that came with the device for
information on how to program the device and interpret the responses.

The various ways that a string can be sent is the next issue to consider in
message-based communication. For example, the actual mechanism for
sending a byte differs drastically between GPIB and VXI; however,

both have similar mechanisms to indicate when the last byte has been
transferred. Under both systems, a device can specify an actual character,
such as linefeed, to indicate that no more data will be sent. This is known
as the End Of String (EOS) character and is common in older GPIB
devices. The obvious drawback to this mechanism is that you must send an
extra character to terminate the communication, and you cannot use this
character in your messages. However, both GPIB and VXI can specify that
the current byte is the last byte. GPIB uses the EOI line on the bus, and VXI
uses the END bit in the Word Serial command that encapsulates the byte.

NI-VISA User Manual 5-2 © National Instruments Corporation

Chapter 5 Message-Based Communication

You need to determine how to inform the driver which mechanism to use.
As was discussed in ChapteA8SA OverviewVISA uses a technique
known asattributesto hold this information. For example, to tell the driver
to use the EOI line or END bit, you set MieATTR_SEND_END_EN

attribute to true.

status = viSetAttribute(instr, VI_ATTR_SEND_END_EN, VI_TRUE);

You can terminate reads on a carriage return by using the following code.

status = viSetAttribute(instr, VI_ATTR_TERMCHAR, 0x0D);
status = viSetAttribute(instr, VI_ATTR_TERMCHAR_EN, VI_TRUE);

Refer to the NI-VISA online help or tHe¢l-VISA Programmer Reference
Manualfor a complete list and description of the available attributes.

Asynchronous Read/Write Services

In addition to the synchronous read and write services, VISA has
operations for asynchronous 1/0O. The functionality of these operations is
identical to that of the synchronous ones; therefore, the topics covered in
the previous section apply to asynchronous read and write operations as
well. The main difference is that a job ID is returned from the asynchronous
I/O operations instead of the transfer status and return count. You then wait
for an I/O completion event, from which you can get that information.

Note You must enable the session for the I/O completion event before beginning an
asynchronous transfer.

One other difference is the timeout attributé, ATTR_TMO_VALUEThis
attribute may or may not apply to asynchronous operations, depending on
the implementation. If you want to ensure that asynchronous operations
never time out, even on implementations thatise the timeout attribute,

set the attribute value ¥d_TMO_INFINITE . If you want to ensure that
asynchronous operations do not last beyond a certain period of time, even
on implementations thalo notuse the timeout attribute, you should abort
the 1/0 using theiTerminate() operation if it does not complete within

the expected time, as shown in the following code.

status = viEnableEvent(instr, VI_EVENT_IO_COMPLETION, VI_QUEUE,
VI_NULL);
status = viWriteAsync(instr, "READ:WAVFM:CH1" ,14, &jobID);
status = viwaitOnEvent(instr, VI_EVENT_IO_COMPLETION, 10000,
&etype, &event);
if (status < VI_SUCCESS) {
status = viTerminate(instr, VI_NULL, jobID);
/* now the 1/0O completion event should exist in the queue */

© National Instruments Corporation 5-3 NI-VISA User Manual

Chapter 5 Message-Based Communication

status = viWwaitOnEvent(instr, VI_EVENT_IO_COMPLETION, 0,

&etype, &event);

As long as an asynchronous operation is successfully posted (if the return
value from the asynchronous operation is greater than or equal to
VI_SUCCESS, there will always be exactly one I/O completion event
resulting from the transfer. However, if the asynchronous operation
(viReadAsync() orviwriteAsync()) returns an error code, there will
notbe an 1/0 completion event. In the above example, if the I/O has not
completed in 10 seconds, the call/tterminate() aborts the I/0O and
results in the I/O completion event being generated.

The I/O completion event has attributes containing information about the
transfer status, return count, and more. For a more complete description of
the 1/O completion event and its attributes, refer taMh®ISA

Programmer Reference Manuai to the NI-VISA online help. For a more
detailed example using asynchronous 1/O,EBemple 7-1in Chapter 7,

VISA Events

Note The asynchronous I/O services are not available when programming with Visual

Basic.

Clear Service

NI-VISA User Manual

When communicating with a message-based device, particularly when you
are first developing your program, you may need to tell the device to clear
its 1/0 buffers so that you can start again. In addition, if a device has more
information than you need, you may want to read until you have everything
you need and then tell the device to throw the rest awayiClear()

operation performs these tasks.

More specifically, the clear operation lets a controller send the device clear
command to the device it is associated with, as specified by the interface
specification and the type of device. The action that the device takes
depends on the interface to which it is connected.

* For a GPIB device, the controller sends the IEEE 488.1 SDC (04h)
command.

* For a VXI or MXI device, the controller sends the Word Serial Clear
(FFFFh) command.

« For a serial device, the controller sends the stri@agS\n* . The I/O
protocol must be set toi_ASRL_488 for this service to be available
to serial devices.

5-4 © National Instruments Corporation

Trigger Service

Chapter 5 Message-Based Communication

For more details on these clear commands, refer to your device
documentation, the IEEE 488.1 standard, or the VXlbus specification.

Most instruments can be instructed to wait until they receive a trigger
before they start performing operations such as generating a waveform,
reading a voltage, and so on. Under GPIB, this trigger is a software
command sent to the device. Under VXI, this could either be a software
trigger or a hardware trigger on one of the multiple TTL/ECL trigger lines
on the VXlbus backplane.

VISA uses the same operationiAssertTrigger() —to perform these
actions. Which trigger method (software or hardware) you use is dependent
on a combination of an attributél(ATTR_TRIG_ID) and a parameter to

the operation. For example, to send a software trigger by default under
either interface, you use the following code.

status = viSetAttribute(instr, VI_ATTR_TRIG_ID, VI_TRIG_SW);
status = viAssertTrigger(instr, VI_TRIG_PROT_DEFAULT);

Of course, you need to set the attribute only once at the beginning of the
program, not every time you assert the trigger. If you want to assert a VXI
hardware trigger, such as a SYNC pulse, you can use the following code.

status = viSetAttribute(instr, VI_ATTR_TRIG_ID, VI_TRIG_TTL3);
status = viAssertTrigger(instr, VI_TRIG_PROT_SYNC);

Keep in mind that VISA currently usegvice triggeringThat is, each call

to viAssertTrigger() is associated with a specific device through the
session used in the call. Future versions of VISA will give you full access
to interface triggering, but at this time all functionality is defined on a
per-device basis.

However, the VXI hardware triggers by definition havierface-level
triggering. In other words, you cannot prevent two devices from receiving
a SYNC pulse of TTL3 if both devices are listening to the line. Therefore,
if you need to trigger multiple devices off a single VXI trigger line, you can
do this by sending the trigger to any one of the devices on the line.

© National Instruments Corporation 5-5 NI-VISA User Manual

Chapter 5

Message-Based Communication

Status/Service Request Service

NI-VISA User Manual

}/*End IF SRQ

It is fairly common for a device to need to communicate with a controller
at a time when the controller is not planning to talk with the device. For
example, if the device detects a failure or has completed a data acquisition
sequence, it may need to get the attention of the controller. In both GPIB
and VXI, this is accomplished through a Service Request (SRQ). Although
the actual technique for delivering this service request to the controller
differs between the two interfaces, the end result is that an event
(VI_EVENT_SERVICE_REQis received by the VISA driver. You can find
more details on event notification and handling in Chaptert&yductory
Programming Examplesnd Chapter A/ISA EventsAt this time, just
assume that the program has received the event and has a handle to the data
through theeventContext parameter.

Under VISA, thevl_EVENT_SERVICE_REQevent contains no additional
information other than the type of event. Therefore, by using
viGetAttribute() on theeventContext parameter, as shown in the
following code, the program can identify the event as a service request.

status = viGetAttribute(eventContext,VI_ATTR_EVENT_TYPE, &eventType);

You can retrieve the status byte of the device by issuing a

viReadSTB() operation. This is especially important because on some
interfaces, such as GPIB, it is not always possible to know which device
has asserted the service request untiRaadSTB() is performed.

This means that all sessions to devices on the bus with the service
request may receive a service request event. Therefore, you should
always check the status byte to ensure that your device was the one that
requested service. Even if you have only one device asserting a service
request, you should still callReadSTB() to guarantee delivery of

future service request events. For example, the following code checks
the type of event, performsviReadSTB() , and then checks the result.

status = viGetAttribute(eventContext, VI_ATTR_EVENT_TYPE,

&eventType);

if (eventType == VI_EVENT_SERVICE_REQ) {
status = viReadSTB(instr, &statusByte);
if ((status >= VI_SUCCESS) && (statusByte & 0x40)) {
/* Perform action based on Service Request */

/* Otherwise ignore the Service Request */

*

5-6 © National Instruments Corporation

Chapter 5 Message-Based Communication

Formatted 1/0 Services

The Formatted 1/0O Services perform formatted and buffered 1/O for
devices. A formatted write operation writes to a buffer inside the driver,
while a formatted read operation reads from a buffer inside the driver.
Buffering improves system performance by having the driver perform the
I/0 with the device only at certain times, such as when the buffer is full.
The driver is then able to send larger blocks of information to the device at
a time, improving overall throughput.

The buffer operations also provide control over the low-level serial driver
buffers. See the secti@ontrolling the Serial I/O Bufferkater in this
chapter for more information on that topic.

Formatted 1/0 Operations

The main two operations under the formatted 1/O servicesranatf()
andviScanf() . Although this section discusses these two operations
only, this material also applies to other formatted I/O routines such as
ViVPrintf() andvivScanf() . These operations derive their names

from the standard C string I/O functions. Likéntf() andscanf()

these operations let you use special format strings to dynamically create or
parse the string. For example, a common command for instruments is the
"F x" command for functiox. This could beF1" for volt measurement,

"F2" for ohm measurement, and so on. With formatted 1/O, you can select
the type of measurement and use only a single operation to send the string.
Consider the following code segment.

/* Retrieve user's selections. Assume the variable */

/* X holds the choice from the following menu: */

/* 1) VDC, (2) Ohms, (3) Amps */
status = viPrintf(instr, "F%d", X);

Here, the variabl corresponds to the type of measurement denoted by a
number matching the function number for the instrument. Without
formatted 1/O, the result would have been either:

sprintf(buffer, "F%d", X);
viWrite(instr, buffer, strlen(buffer), &retCount);

or

© National Instruments Corporation 5-7 NI-VISA User Manual

Chapter 5 Message-Based Communication

switch(X) {
case 1:
ViWrite(instr, "F1", 2, &retCount);
break;
case 2:
ViWrite(instr, "F2", 2, &retCount);
break;

}

In addition, there is an operatigiQueryf() that combines the
functionality of aviPrintf() followed by aviScanf() operation.
viQueryf() is used to query the device for information:

status = viQueryf(instr,"*IDN?\n","%s",buf);

I/0 Buffer Operations

Another method for communicating with your instruments using formatted
I/0 functions is using the formatted 1/O buffer functioviSPrintf()

viSScanf() ,viBufRead() , andviBufWrite() . You can use these
functions to manipulate a buffer that you will send or receive from an
instrument.

For example, you may want to bring information from a device into a buffer
and then manipulate it yourself. To do this, first ¢@lfRead() , which
reads the string from the instrument into a user-specified buffer. Then use
viSScanf() to extract information from the buffer. Similarly, you can
format a buffer wittviSPrintf() and then useBufWrite() tosend it

to an instrument.

As you can see, the formatted I/O approach is the simplest way to get the
job done. Because of the variety of modifiers you can use in the format
string, this section does not go into any more detail on these operations.
Please refer either to the NI-VISA online help or to Chapt@perations,

in theNI-VISA Programmer Reference Mantiat more information.

Variable List Operations

NI-VISA User Manual

You can also use another form of the standard formatted 1/0O operations
known asvariable ListoperationsviVPrintf() , VIVSPrintf() ,
viVScanf() ,viVSScanf() , andvivQueryf() . These functions are
identical in their operation to the ANSI C versions of variable list
operations. Please see your C reference guide for more information.

5-8 © National Instruments Corporation

Chapter 5 Message-Based Communication

Manually Flushing the Formatted 1/0 Buffers

This section describes flushing issues that are related to formatted 1/0
buffers. The descriptions apply to all buffered read and buffered write
operations. For example, thi@rintf() description applies equally to
other buffered write operationg\{Printf() andviBufWrite()).
Similarly, theviScanf() description applies to other buffered read
operations\ivScanf() andviBufRead()).

Flushing a write buffer immediately sends any queued data to the device.
Flushing a read buffer discards the data in the read buffer. An empty read
buffer guarantees that the next callt®canf() , viBufRead() ,ora

related operation reads data directly from the device rather than from
gueued data residing in the read buffer.

The easiest way to flush the buffers is with an explicit califiosh()

This operation can actually flush the buffers in two ways. The simpler way
uses discard flags. These flags tell the driver to discard the contents of the
bufferswithoutperforming any 1/O to the device. For example,

status = viFlush(instr, VI_READ_BUF_DISCARD);

However, the flush operation can also complete the current I/O before
flushing the buffer. For a write buffer, this simply means to send the rest of
the buffer to the device. However, for a read buffer, the process is more
involved. Because you could be in the middle of a read from the device (that
is, the device still has information to send), it is possible to have the driver
check the buffer for an EOS or END bit/EOI signal. If such a value exists
in the buffer, the contents of the buffer are discarded. However, if the driver
can find no such value, it begins reading from the device until it detects the
end of the communication and then discards the data. This process keeps
the program and device in synchronization with each other. See the
description of theiFlush() operation in the NI-VISA online help or in
theNI-VISA Programmer Reference Mandiat more information.

Automatically Flushing the Formatted 1/0 Buffers

Although you can explicitly flush the buffers by making a call to
viFlush() , the buffers are flushed implicitly under some conditions.
These conditions vary for théPrintf() andviScanf() operations.
In addition, you can modify the conditions through attributes.

The write buffer is maintained by th#rintf() , ViVPrintf() ,
viBufWrite() , andvivQueryf() (write side) operations. To explicitly
flush the write buffer, you can make a call toutréush() operation with
a write flag set.

© National Instruments Corporation 5-9 NI-VISA User Manual

Chapter 5 Message-Based Communication

The standard conditions for automatically flushing the buffer are as
follows.

« Whenever the END indicator is sent. The indicator could be either the
EOS character or the END bit/EOI line, depending on the current state
of the attributes which select these modes.

e When the write buffer is full.
« Inresponse to a call tdaSetBuf() with thevl_WRITE_BUF flag set.

In addition to these rules, thé ATTR_WR_BUF_OPER_MOBRHTibute can
modify the flushing of the buffer. The default setting for this attribute is
VI_FLUSH_WHEN_FUL|which means that the preceding three rules apply.
However, if the attribute is set ¥ _FLUSH_ON_ACCESSthe buffer is
flushed with every call t@iPrintf() andviVPrintf() , essentially
disabling the buffering mode.

The read buffer is maintained by thi§canf() , vivScanf()

viBufRead() , andvivQueryf() (read side) operations. To explicitly
flush the read buffer, you can make a call toviRlish() operation with
aread flag set. The only rule for automatically flushing the read buffer is in
response to th@SetBuf() operation. However, as with the write buffer,
you can use an attribute to control how to flush the buffer:
VI_ATTR_RD_BUF_OPER_MODEH the attribute is set to
VI_FLUSH_DISABLE, the buffer is flushed only when an explicit call to
viFlush() is made. If this attribute is set¥ FLUSH_ON_ACCESSthe
buffer is flushed at the end of every callviBcanf()

In addition to the preceding rules and attributes, the formatted 1/O buffers
of a session to a given device are reset whenever that device is cleared
through theviClear() operation. At such atime, the read and write buffer
must be flushed and any ongoing operation through the read/write port
must be aborted.

Resizing the Formatted 1/0 Buffers

NI-VISA User Manual

The read and write buffers, as mentioned previously, can be dynamically
resized using theiSetBuf() operation. Remember that this operation
automatically flushes the buffers, so it is best to set the size of the buffers
before beginning the actual 1/0 calls. You specify which buffer you want
to modify and then the size of the buffer you require. It is important to
check the return code of this operation because you may be requesting a
buffer beyond the size that the system can allocate at the time. If this
occurs, the buffer size is not changed.

5-10 © National Instruments Corporation

Chapter 5 Message-Based Communication

For example, to set both the read and write buffers to 8 KB, use the
following code.

status = viSetBuf(instr, VI_READ_BUF | VI_WRITE_BUF, 8192);

Controlling the Serial 1/0 Buffers

TheviFlush() andviSetBuf() operations also provide a control
mechanism for the low-level serial driver buffers. The default size of
these buffers is 0, which guarantees that all 1/O is flushed on every access.
To improve performance, you can alter the size of the output or input
serial buffers by invoking theiSetBuf() ~ operation with the
VI_ASRL_OUT_BUForVI_ASRL_IN_BUF flag, respectively. When the
buffer size is non-zero, I/0 to serial devices is not automatically flushed.
You can force the output serial buffer to be flushed by invoking the
viFlush() operation withvl_ASRL_OUT_BUF Alternatively, you can

call viFlush() with VI_ASRL_OUT_BUF_DISCARDo empty the output
serial buffer without sending any remaining data to the device. You can
also callviFlush() with eithervl_ASRL_IN_BUF or
VI_ASRL_IN_BUF_DISCARD to empty the input serial buffer (both flags
have the same effect and are provided only for API consistency).

Note Not all VISA implementations may support setting the size of either the serial
input or output buffers. In such an implementation, théSetBuf() operation
will return a warning. While this should not affect most programs, you can at least
detect this lack of support if a specific buffer size is required for performance
reasons. If serial buffer control is not supported in a given implementation, we
recommend that you use some form of handshaking (controlled via the
VI_ATTR_ASRL_FLOW_CNTRAttribute), if possible, to avoid loss of data.

When using formatted I/O in conjunction with serial devices, calling
viFlush() on a formatted I/O buffer has the same effect on the
corresponding serial buffer. For example, invokiiiush() with
VI_WRITE_BUF flushes the formatted 1/O output buffer first, and then the
low-level serial output buffer. Similarly;l WRITE_BUF_DISCARD

empties the contents of both the formatted I/O and low-level serial output
buffers.

© National Instruments Corporation 5-11 NI-VISA User Manual

Chapter 5 Message-Based Communication

Example VISA Message-Based Application

The following is an example VISA application using message-based
communication.

% Note This example shows C source code. You can find the same example in Visual Basic
syntax in Appendix AVisual Basic Examples

Example 5-1

#include "visa.h"

int main(void)

{
ViSession defaultRM, instr;
Viuint32 retCount;

ViChar idnResult[72];

ViChar resultBuffer[256];

ViStatus status;

[* Open Default Resource Manager */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {
[* Error Initializing VISA...exiting */
return -1;

}

[* Open communication with GPIB Device at Primary Addr 1 */

/* NOTE: For simplicity, we will not show error checking */
viOpen(defaultRM, "GPIB::1::INSTR", VI_NULL, VI_NULL, &instr);

[* Initialize the timeout attribute to 10 s */
viSetAttribute(instr, VI_ATTR_TMO_VALUE, 10000);

[* Set termination character to carriage return (\r=0x0D) */
viSetAttribute(instr, VI_ATTR_TERMCHAR, 0x0D);

viSetAttribute(instr, VI_ATTR_TERMCHAR_EN, VI_TRUE);

[* Don't assert END on the last byte */
viSetAttribute(instr, VI_ATTR_SEND_END_EN, VI_FALSE);

[* Clear the device */
viClear(instr);

I* Request the IEEE 488.2 identification information */
viWrite(instr, "*IDN?\n", 6, &retCount);

viRead(instr, idnResult, 72, &retCount);

NI-VISA User Manual 5-12 © National Instruments Corporation

/* Use idnResult and retCount to parse device info

[* Trigger the device for an instrument reading
viAssertTrigger(instr, VI_TRIG_PROT_DEFAULT);
/* Receive results

viRead(instr, resultBuffer, 256, &retCount);

/* Close sessions

viClose(instr);

viClose(defaultRM);

return O;

© National Instruments Corporation 5-13

Chapter 5 Message-Based Communication

*/

*/

*/

*/

NI-VISA User Manual

Register-Based Communication

This chapter shows how to use the VISA library in register-based
communication.

Note You can skip this chapter if you are using GPIB or serial controllers exclusively.
Register-based programming applies only to VXI or GPIB-VXI.

Introduction

Register-based devices (RBDs) are a class of devices that are simple and
relatively inexpensive to manufacture. Communication with such devices
is usually accomplished via reads and writes to registers. VISA has the
ability to read from and write to individual device registers, as well as a
block of registers, through the Memory I/O Services.

In addition to accessing RBDs, VISA also provides support for memory
management of the memory exported by a device. For example, both local
controllers and remote devices can have general-purpose memory in
A24/A32 space. With VISA, although the user must know how each remote
device accesses its own memory, the memory management aspects of local
controllers are handled through tBkeared Memorpperations—

viMemAlloc() andviMemFree() . For more information on this topic,

refer to theShared Memory Operatiorsection later in this chapter.

With the Memory 1/O Services, you access the device registers based on the
session to the device. In other words, if a session communicates with a
device at VXI logical address 16, you cannot use Memory I/O Services on
that session to access registers on a device at any other logical address. The
range of address locations you can access with Memory I/O Services on a
session is the range of address locations assigned to that device. This is true
for both High-Level and Low-Level Access operations.

To facilitate access to the device registers for multiple devices, VISA
allows you to open a MEMACC (memory access) session. A session to a
MEMACC Resource allows an application to access the entire memory
range for a specified address space. The MEMACC Resource supports the

© National Instruments Corporation 6-1 NI-VISA User Manual

Chapter 6

I+ Note

15 Note

High-Level Access Operations

Register-Based Communication

same high-level and low-level operations as the INSTR Resource. The only
difference is that all register addresses are absolute addresses in VXlbus

address space.

A session to a MEMACC Resource supports only the high-level, low-level, and
resource template operations. A MEMACC session does not support the other
INSTR operations.

In VISA, you can choose between two styles for accessing

registers—High-Level Access or Low-Level Access. Both styles have
operations to read the value of a device register and write to a device
register, as shown in the following table. In addition, there are high-level
operations designed to read or write a block of data. The block-move
operations do not have a low-level counterpart.

High-Level High-Level Low-Level
Access Block Access
Read viln8() viMoveln8() viPeek$8()
viln16() viMoveln16() viPeek16()
viln32() viMoveln32() viPeek32()
Write viout8() viMoveOut8() viPoke8()
viout16() viMoveOut16() viPoke16()
viout32() viMoveOut32() viPoke32()

The remainder of this chapter usesxin the names of some operations to denote
that the information applies to 8-bit, 16-bit, and 32-bit reads and writes. For
exampleyiln XX) refers tovilng()

The following sections show the benefits of each style so you can make an
informed choice of which is more appropriate for your programming

requirements.

, viln16()

, andviln32()

NI-VISA User Manual

The High-Level Access (HLA) operatiomgn XxX) andviOut XX)

have a simple and easy-to-use interface for performing register-based
communication. The HLA operations in VISA are wholly self-contained,

in that all the information necessary to carry out the operation is contained
in the parameters of the operation. The HLA operations also perform all the
necessary hardware setup as well as the error detection and handling. There
is no need to call other operations to do any other activity related to the
register access. For this reason, you should use HLA operations if you are

just becoming familiar with the system.

6-2

© National Instruments Corporation

Chapter 6 Register-Based Communication

To useviln XX) orviOut XX) operations to access a register on a
device, you need to have the following information about the register:

» The address space where the register is located. In a VXl interface bus,
for example, the address space can be A16, A24, or A32.

» The offset of the register relative to the device for the specified address
space. You do not need to know the actual base address of the device,
just the offset.

Note When using the MEMACC Resource, you need to provide the absolute VXI
address (base + offset) for the register.

The following sample code reads the Device Type register of a VXI device
located at offset O from the base address in A16 space, and writes a value
to the A24 shared memory space at offset 0x20 (this offset has no special
significance).

status = viln16(instr, VI_A16_SPACE, 0, &retValue);

status = viOut16(instr, VI_A24_SPACE, 0x20, 0x1234);

With this information, the HLA operations perform the necessary hardware
setup, perform the actual register 1/0O, check for error conditions, and
restore the hardware state. To learn how to perform these steps individually,
see the Low-Level Access operations.

The HLA operations can detect and handle a wide range of possible errors.
HLA operations perform boundary checks and return an error code
(VI_ERROR_INV_OFFSET to disallow accesses outside the valid range of
addresses that the device supports. The HLA operations also trap and
handle any bus errors appropriately and then report the bus error as
VI_ERROR_BERR

That is all that is really necessary to perform register 1/0. For more

examples of HLA register 1/O, please $s6@ample 2-2n Chapter 2,
Introductory Programming Examples

© National Instruments Corporation 6-3 NI-VISA User Manual

Chapter 6 Register-Based Communication

High-Level Block Operations

The high-level block operationéVoveln XX () andviMoveOut XX)

have a simple and easy-to-use interface for reading and writing blocks of
data residing at either the same or consecutive (incrementing) register
addresses. Like the high-level access operations, the high-level block
operations can detect and handle many errors and do not require calls to the
low-level mapping operations. Unlike the high-level access operations, the
high-level block operations do not have a direct low-level counterpart. To
perform block operations using the low-level access operations, you must
map the desired region of memory and then perform multipéek XX
orviPoke XX) operation invocations, instead of a single call to

viMoveln XX) orviMoveOut XX) .

To use the block operations to access a device, you need to have the
following information about the registers:

« The address space where the registers are located. In a VXI interface,
for example, the address space can be A16, A24, or A32.

* The beginning offset of the registers relative to the device for the
specified address space.

Note You do not need to know the actual base address of the device, just the offset.
e The number of registers or register values to access.

The default behavior of the block operations is to access consecutive
register addresses. However, you can change this behavior using the
attributesvi_ATTR_SRC_INCREMENTfor viMoveln XX)) and
VI_ATTR_DEST_INCREMENTfor viMoveOut XX)). If the value is

changed from 1 (the default value, indicating consecutive addresses) to 0
(indicating that registers are to be treated as FIFOs), then the block
operations performs the specified number of accesses to the same register
address.

Note The range value of O for th&|_ATTR_SRC_INCREMEN®&Nd
VI_ATTR_DEST_INCREMENTttributes may not be supported on all VISA
implementations. In this case, you may need to perform a manual FIFO block
move using individual calls to the high-level or low-level access operations.

If you are using the block operations in the default mode (consecutive
addresses), the number of elements that you want to access may not go
beyond the end of the device’s memory in the specified address space.

NI-VISA User Manual 6-4 © National Instruments Corporation

Chapter 6 Register-Based Communication

In other words, the following code sample reads the device's entire register
set in A16 space:

status =viMoveln16(instr, VI_A16_SPACE, 0, 0x20, regBuffer16);

Notice that although the device has 0x40 bytes of registers in A16 space,
the fourth parameter is 0x20. Why is this? Since the operation accesses
16-bit registers, the actual range of registers read is 0x20 accesses times
2 B, or all 0x40 bytes.

When using the block operations to access FIFO registers, the number of
elements to read or write is not restricted, because all accesses are to the
same register and never go beyond the end of the device’s memory region.
The following sample code writes 4 KB of data to a device’s FIFO register
in A16 space at offset 0x10 (this offset has no special significance):

status = viSetAttribute(instr, VI_ATTR_DEST_INCREMENT, 0);
status = viMoveOut32(instr, VI_A16_SPACE, 0x10, 1024, regBuffer32);

Low-Level Access Operations

Low-Level Access (LLA) operations provide a very efficient way to

perform register-based communication. LLA operations incur much less
overhead than HLA operations for certain types of accesses. LLA
operations perform the same steps that the HLA operations do, except that
each individual task performed by an HLA operation is an individual
operation under LLA.

Overview of Register Accesses from Computers

Before learning about the LLA operations, first consider how a computer
can perform a register access to an external device. There are two possible
ways to perform this access. The first and more obvious, although
primitive, is to have some hardware on the computer that communicates
with the external device.

You would have to follow these steps:

1. Write the address you want.

2. Specify the data to send.

3. Send the command to perform the access.

As you can see, this method involves a great deal of communication with
the local hardware.

© National Instruments Corporation 6-5 NI-VISA User Manual

Chapter 6 Register-Based Communication

NI-VISA User Manual

The National Instruments MXI plug-in cards and embedded VXI
computers use a second, much more efficient method. This method
involves taking a section of the computer’s address spacaampingthis
space to another space, such as the VXI A16 space.

To understand how mapping works, you must first remember that memory
and address space are two different things. For example, most 32-bit CPUs
have 4 GB oaddress spacdut havenemorymeasured in megabytes. This
means that the CPU can put out ov&bssible addresses onto the local
bus, but only a small portion of that corresponds to memory. In most cases,
the memory chips in the computer will respond to these addresses.
However, because there is less memory in the computer than address space,
National Instruments can adérdware that responds to other addresses.
This hardware can then modify the address, according tadbping

that it has, to a VXI address and perform the access on the VXlbus
automatically. The result is that the computer acts as if it is performing a
local access, but in reality the access has been mapped out of the computer
and to the VXIbus.

For example, consider an Intel 80x86-based computer running Windows.
The addresses from 0xD000O0 to OxXDFFFF (64 KB of addresses) do not
correspond to any memory. You could add an AT-MXI board that listens for
0xD0000 to OXDFFFF on the bus, and instruct it to map any addresses it
finds in this range to the 64 KB of VXI A16 space. It does this by taking
the 0xD off the address so that it has a pure 64 KB address. For example,
0xDCO000 would be mapped to OxC000 in A16 space, which is the base
address for a device at Logical Address 0. The same technique is used for
other VXI address spaces as well. For example, if you wanted to access
registers at 0x200000 in A24 space, you would tell the AT-MXI to strip off
the0xD as before, but this time add 0x200000 to the resulting address and
send it out to the VXlbus.

You may wonder what the difference is between the efficient method and
the primitive method. They seem to be telling the hardware the same
information. However, there are two important differences. In the primitive
method, the communication described must take placeafdraccess.

However, the efficient method requires only occasional communication

with the hardware. Only when you want a different address space or an
address outside of the window (which was 64 KB long in the previous
example) do you need to reprogram the hardware. In addition, when you
have set up your hardware, you can use standard memory access methods,
such as pointer dereferences in C, to access the VXIbus.

6-6 © National Instruments Corporation

Chapter 6 Register-Based Communication

Using VISA to Perform Low-Level Register Accesses

The first LLA operation you need to call to access a device register is the
viMapAddress() operation, which sets up the hardware window and
obtains the appropriate pointer to access the VXI address space. The
viMapAddress() operation first programs the hardware to map local
CPU addresses to VXI addresses as described in the previous section. In
addition, it returns a pointer that you can use to access the registers.

The following code is an example of programming the hardware to access
Al6 space.

status = viMapAddress(instr, VI_A16_SPACE, 0, 0x40, VI_FALSE,
VI_NULL, &address);

This sample code sets up the hardware to map A16 space, starting at offset
0 for 0x40 bytes, and returns the pointer to the windoaddness .

Remember that the offset is relative to the base address of the device we are
talking to through thaastr session, not from the base of A16 space itself.
Therefore, offset 0 does not mean address 0 in A16 space, but rather the
starting point of the device’s A16 memory. You can ignorethEALSE
andVI_NULL parameters for the most part because they are reserved for
definition by a future version of VISA.

Note To access the device registers through a MEMACC session, you need to provide
the absolute VXIbus addresses (base address for device + register offset in device
address space).

If you need more than a single map for a device, you must open a second
session to the device, because VISA currently supports only a single map
per session. There is very low overhead in having two sessions because
sessions themselves do not take much memory. However, you need to keep
track of two session handles. Notice that this is different from the maximum
number of windows you can have on a system. The hardware for the
controller you are using may have a limit on the number of unique windows

it can support.

When you are finished with the window or need to change the mapping to
another address or address space, you must first unmap the window using
theviunmapAddress() operation. All you need to specify is which

session you used to perform the map.

status = viUnmapAddress(instr);

© National Instruments Corporation 6-7 NI-VISA User Manual

Chapter 6 Register-Based Communication

Operations versus Pointer Dereference

After theviMapAddress() operation returns the pointer, you can

use it to read or write registers. VISA provides ¢ireek XX) and

viPoke XX) operations to perform the accesses. On many systems,
theviMapAddress() operation returns a pointer that you can also
dereference directly, rather than calling the LLA operations. The
performance gain achievable by using pointer dereferences over operation
invocations is extremely system dependent. To determine whether you can
use a pointer dereference to perform register accesses on a given mapped
session, examine the value of tHeATTR_WIN_ACCESSattribute. If the

value isVI_DEREF_ADDRIt is safe to perform a pointer dereference.

To make your code portable across different platforms, we recommend
that you always use the accessor operatiofiBeek xX) and

viPoke XX) —as a backup method to perform register 1/O. In this way,
not only is your source code portable, but your executable can also have
binary compatibility across different hardware platforms, even on systems
that do not support direct pointer dereferences:

viGetAttribute(instr, VI_ATTR_WIN_ACCESS, &access);
if (access == VI_DEREF_ADDR)

*address = 0x1234;
else

viPokel6(instr, address, 0x1234);

Manipulating the Pointer

Every time you caNiMapAddress() , the pointer you get back is valid for
accessing a region of addresses. Therefore, if yowibabAddress()

with mapBase set to address 0 anthpSize to 0x40 (the configuration
register space for a VXI device), you can access not only the register
located at address 0, but also registers in the same vicinity by manipulating
the pointer returned byiMapAddress() . For example, if you want to
access another register at address 0x2, you can add 2 to the pointer. You
can add up to and including Ox3F to the pointer to access these registers in
this example because we have specified 0x40 as the map size. However,
notice that you cannot subtract any value fromathieess variable

because the mapping starts at that location and cannot go backwards.
Example 6-1shows how you can access other registers &udress .

Note The examples in this chapter show C source code. You can find the same examples
in Visual Basic syntax in Appendix AYisual Basic Examples

NI-VISA User Manual 6-8 © National Instruments Corporation

Chapter 6

Example 6-1

#include "visa.h"
#define ADD_OFFSET (addr, offs) (((ViPByte)addr) + (offs))

int main(void)

{

ViStatus status; /* For checking errors
ViSession defaultRM, instr; /* Communication channels
ViAddr address; /* User pointer

ViuInt16 value; [* To store register value

/* Begin by initializing the system
status = viOpenDefaultRM(&defaultRM);
if (status < VI_SUCCESS) {
[* Error Initializing VISA...exiting
return -1;

}

/* Open communication with VXI Device at Logical Address 16
/* NOTE: For simplicity, we will not show error checking

&instr);

Register-Based Communication

*
*/
*/
*/

*/

*/

*/

*/
status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL, VI_NULL,

status=viMapAddress(instr,VI_A16_SPACE,0,0x40,VI_FALSE,VI_NULL,

&address);

viPeek16(instr, address, &value);
/* Access a different register by manipulating the pointer. */
viPeek16(instr, ADD_OFFSET(address, 2), &value);

status = viunmapAddress(instr);
/* Close down the system
status = viClose(instr);

status = viClose(defaultRM);
return O;

© National Instruments Corporation 6-9

*

NI-VISA User Manual

Chapter 6 Register-Based Communication

Bus Errors

The LLA operations do not report bus errors. In fei€teek xX) and

viPoke XX) do not report any error conditions. However, the HLA
operations do report bus errors. When using the LLA operations, you must
ensure that the addresses you are accessing are valid.

Comparison of High-Level and Low-Level Access

Speed

Note

Ease of Use

NI-VISA User Manual

In terms of the speed of developing your application, the HLA operations
are much faster to implement and debug because of the simpler interface
and the status information received after each access. For example, HLA
operations encapsulate the mapping and unmapping of hardware windows,
which means that you do not need to eallapAddress() and
viUnmapAddress() separately.

For speed of execution, the LLA operations perform faster when used for
several random register 1/0 accesses in a single window. Kryouthat

the next several accesses are within a single window, you can perform the
mapping just once and then each of the accesses has minimal overhead.

The HLA operations will be slower because they must perform a map,
access, and unmap within each call. Even if the window is correctly
mapped for the access, the HLA call at the very least needs to perform some
sort of check to determine if it needs to remap. Furthermore, because HLA
operations encapsulate many status-checking capabilities not included in
LLA operations, HLA operations have higher software overhead. For these
reasons, HLA is slower than LLA in many cases.

For block transfers, the high-leveliMove XX) operations perform the fastest.

HLA operations are easier to use because they encapsulate many status
checking capabilities not included in LLA operations, which explains the
higher software overhead and lower execution speed of HLA operations.
HLA operations also encapsulate the mapping and unmapping of hardware
windows, which means that you do not need tovildtpAddress() and
viunmapAddress() separately.

6-10 © National Instruments Corporation

Chapter 6 Register-Based Communication

Accessing Multiple Address Spaces

You can use LLA operations to access only the address space currently
mapped. To access a different address space, you need to perform a
remapping, which involves callingunmapAddress() and

viMapAddress() . Therefore, LLA programming becomes more
complex, without much of a performance increase, for accessing several
address spaces concurrently. In these cases, the HLA operations are
superior.

In addition, if you have several sessions to the same or different devices all
performing register 1/0, they must compete for the finite number of
windows available. When using LLA operations, you must allocate the
windows and always ensure that the program does not ask for more
windows than are available. The HLA operations avoid this problem by
restoring the window to the previous setting when they are done. Even if all
windows are currently in use by LLA operations, you can still use HLA
functions because they will save the state of the window, remap, access, and
then restore the window. As a result, you can have an unlimited number of
HLA windows.

Shared Memory Operations

Note

There are two distinct cases for using shared memory operations. In the first case,
the local controller exports general-purpose memory to the A24/A32 space. In the
second case, remote devices export memory into A24/A32 space. Unlike the first
case, the memory exported to A24/A32 space may not be general purpose, so the
VISA Shared Memory services do not control memory on remote devices.

A common configuration in a VXI system is to export memory to either the
A24 or A32 space. The local controller usually can export such memory.
This memory can then be used to buffer the data going to or from the
instruments in the system. However, a common problem is preventing
multiple devices from using the same memory. In other words, a memory
manager is needed on this memory to prevent corruption of the data.

The VISA Shared Memory operationsiMemAlloc() and

viMemFree() —provide the memory management for a specific device,
namely, the local controller. Since these operations are part of the INSTR
resource, they are associated with a single VXI device. In addition, because
a VXl device can export memory in either A24 or A32 space (but not both),
the memory pool available to these operations is defined at startup. You can
determine whether the memory resides in A24 or A32 space by querying
the attributevi_ ATTR_MEM_SPACE

© National Instruments Corporation 6-11 NI-VISA User Manual

Chapter 6 Register-Based Communication

Shared Memory Sample Code

The following example shows how these shared memory operations work
by incorporating them intBxample 6-1Their main purpose is to allocate

a block of memory from the pool that can then be accessed through the
standard register-based access operations (high level or low level). The
INSTR resource for this device ensures that no two sessions requesting
memory receive overlapping blocks.

Note Example 6-2isesbold text to distinguish lines of code that are different from
those inExample 6-1

Example 6-2

#include "visa.h"
#define ADD_OFFSET (addr, offs) (((ViPByte)addr) + (offs))

int main(void)

{
ViStatus status; /* For checking errors */
ViSession defaultRM, self ; /* Communication channels */
ViAddr address; [* User pointer */
ViBusAddress offset; /* Shared memory offset */
Viuilntl6 addrSpace; /* Shared memory space */
Viuilntl6 value; [* To store register value */
/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);
if (status < VI_SUCCESS) {
[* Error Initializing VISA...exiting */

return -1;
}
/* Open communication with VXI Device at Logical Address 0 */
/* NOTE: For simplicity, we will not show error checking */
status = viOpen(defaultRM, " VXI0::0:INSTR ", VI_NULL, VI_NULL,
&self);
/* Allocate a portion of the device's memory */

status = viMemAlloc(self, 0x100, &offset);

[* Determine where the shared memory resides */
status = viGetAttribute(self, VI_ATTR_MEM_SPACE, &addrSpace);

NI-VISA User Manual 6-12 © National Instruments Corporation

Chapter 6 Register-Based Communication

status = viMapAddress(self, addrSpace, offset , 0x100, VI_FALSE,
VI_NULL, &address);

viPeek16(self , address, &value);
/* Access a different register by manipulating the pointer. */
viPeek16(self , ADD_OFFSET(address, 2), &value);

status = viUnmapAddress(self);
status = viMemFree(self, offset);

/* Close down the system */
status = viClose(self);

status = viClose(defaultRM);

return O;

© National Instruments Corporation 6-13 NI-VISA User Manual

VISA Events

This chapter describes the VISA event model and how to use it. The
following sections discuss the various events VISA supports and the event
handling paradigm.

Introduction

VISA defines a common mechanism to notify an application when certain
conditions occur. These conditions or occurrences are referredveras

An event is a means of communication between a VISA resource and its
applications. Typically, events occur because of a condition requiring the
attention of applications.

The VISA event model provides the following two different ways for an
application to receive event notification:

» The first method uses a queuing mechanism. You can use this method
to place all of the occurrences of a specified event in a queue. The
gueuing mechanism is generally useful for noncritical events that do
not need immediate servicing. TReieuingsection in this chapter
describes this mechanism in detail.

» The other method is to have VISA invoke a function that the program
specifies prior to enabling the event. This is known eallaack
handlerand is invoked on every occurrence of the specified event.
The callback mechanism is useful when your application requires an
immediate response. Ti@allbackssection in this chapter describes
this mechanism in detail.

The queuing and callback mechanisms are suitable for different
programming styles. However, because these mechanisms work
independently of each other, you can have them both enabled at the
same time.

© National Instruments Corporation 7-1 NI-VISA User Manual

Chapter 7 VISA Events

Supported Events

NI-VISA User Manual

The following four events are currently defined for the Instrument Control
Resource. These eventsmmt apply to the Memory Access Resource.

e VI_EVENT_SERVICE_REQService Request) is a notification of a
service request from the device on a specific session.

e VI_EVENT_VXI_SIGP (VXI Signal Processor) is a notification of a
VXlbus signal or VXIlbus interrupt from the device. Notice that VISA
supports th&/I_EVENT_VXI_SIGP event only for VXI interfaces, so
you can enable sessions only to VXI devices for this event.

e VI_EVENT_VXI_VME_INTR (VXI/VME Interrupt) is a notification of
a VXlbus interrupt from the device. Notice that VISA supports the
VI_EVENT_VXI_VME_INTR event only for VXI or VME interfaces, so
you can enable sessions only to VXI or VME devices for this event.

e VI_EVENT_TRIG (VXI Trigger) is a notification of a VXIlbus trigger.
VXlbus interfaces support this event. Therefore, you can enable
sessions only to VXI devices for this event.

VISA defines following two events fdyoththe Instrument Control
Resource and the Memory Access Resource.

e VI_EVENT_IO_COMPLETION(I/O Completion) is a notification that
an asynchronous 1/O operation has completed.

The I/O Completion event applies to all asynchronous operations,
which currently includesiReadAsync(), viwriteAsync() ,and
viMoveAsync() . You can use all three operations with the INSTR
Resource but onlyiMoveAsync() with the MEMACC Resource.

e VI_EVENT_EXCEPTION(Exception) is a notification that an error
condition has occurred during an operation invocation.

The exception event supports only the callback model. Refer to the
Exception Handlingsection at the end of this chapter for more
information about this event type.

VISA events use a list of attributes to maintain information associated
with the event. You can access the event attributes using the
viGetAttribute() operation, just as for the session and resource
attributes.

All VISA events support the generic event attribute
VI_ATTR_EVENT_TYPE This attribute provides the type of the
event—whether Service Request, VXI Signal Processor, VXI/VME
Interrupt, VXIbus Trigger, or I/O Completion, or Exception.

7-2 © National Instruments Corporation

Chapter 7 VISA Events

In addition to this attribute, individual events may define attributes
to hold additional event information. Currently, only the
VI_EVENT_SERVICE_REQevent doesot define additional attributes.

* VI_EVENT_VXI_SIGP definesvl ATTR_SIGP_STATUS_ID, which
contains the 16-bit Status/ID value retrieved during the interrupt or
from the Signal register.

* VI_EVENT_TRIG definesvi ATTR_RECV_TRIG_ID, which provides
the trigger line on which the trigger was received.

* VI_EVENT_IO_COMPLETIONdefines, among other attributes,
VI_ATTR_STATUSandVI_ATTR_RET_COUN;which provide
information about how the asynchronous 1/O operation completed.

* VI_EVENT_VXI_VME_INTR definesvl_ ATTR_INTR_STATUS_ID
andVI_ATTR_RECV_INTR_LEVEL which provide the interrupt status
and interrupt level, respectively.

* VI_EVENT_EXCEPTIONdefinesvi_ATTR_STATUSand
VI_ATTR_OPER_NAMEwhich provide information about what error
was generated and which operation generated it, respectively.

All the attributes VISA events support are read-only attributes; a user
application cannot modify their values. Refer to the NI-VISA online help
or to theNI-VISA Programmer Reference Mantiad detailed information
on the specific events.

Enabling and Disabling Events

Before a session can use either the VISA callback or queuing mechanism,
you need to enable the session to sense events. You can use the
viEnableEvent() operation to enable an event using either of the
mechanisms. You can also enable events using a combination of both
queuing and callback mechanisms by (bit-wise) ORing together the
different mechanisms.

For example, to enable th& EVENT_VXI_SIGP event for queuing, use
the following code:

status = viEnableEvent(instr, VI_EVENT_VXI_SIGP, VI_QUEUE,
VI_NULL);

However, to enable the same event for both queuing and callbacks, change
the code as follows:

status = viEnableEvent(instr, VI_EVENT_VXI_SIGP,
VI_QUEUE | VI_HNDLR, VI_NULL);

© National Instruments Corporation 7-3 NI-VISA User Manual

Chapter 7 VISA Events

Notice also thatiEnableEvent() can add to the number of mechanisms
in use during a session. For example, if you have enabled the application
for queuing, it can make a subsequent caliEaableEvent()

specifying the callback mechanism. The end result idbtitathe queuing

and callback mechanisms are enabled.

You cannot use théEnableEvent() operation to decrease the number
of mechanisms on which a session is enabled for sensing. Instead, you must
useviDisableEvent() for that purpose. For example, if you have
enabled a session for both QUEUEandVI_HNDLR, a subsequent call to
viEnableEvent() with themechanismparameter set tl_ QUEUEdoes

not change the mechanism to queuing only, but returns with the success
codeVI_SUCCESS_EVENT_ENmeaning that the specified event is enabled
for at least one of the specified mechanisms. To disable the callback
mechanism, calliDisableEvent() with its mechanismparameter set

to VI_HNDLR. This action disables the callback mechanism but keeps the
queuing method of notification enabled, as in the following example:

status = viDisableEvent(instr, VI_EVENT_VXI_SIGP, VI_HNDLR);

Queuing

TheviEnableEvent() operation also automatically enables the
hardware, if necessary for detecting the event. The hardware is enabled
when the first call teiEnableEvent() for the event is made from any of
the sessions currently active. SimilaklisableEvent() disables the
hardware when the last enabled session disables itself for the event.

The queuing mechanism in VISA gives an application the flexibility to
receive events only when it requests them. An application uses the
viwaitOnEvent() operation to retrieve the event information. However,

in addition to retrieving events from the queue, you can also use
viwaitOnEvent() in your application to halt the current execution and
wait for the event to arrive. Both of these cases are discussed in this section.

The event queuing process requires that you first enable the session to sense
the particular event type. When enabled, the session can automatically
queue the event occurrences as they happen. A session can later dequeue
these events using thévaitOnEvent() operation. You can set the

timeout tovl_TMO_IMMEDIATEIf you want your application to check if

any event of the specified event type exists in the queue.

Note Each session has a queue for each of the possible events that can occur. This
means that each queue is per sessamd per event.

NI-VISA User Manual

7-4 © National Instruments Corporation

Chapter 7 VISA Events

An application can also us@VaitOnEvent() to wait for events if none
currently exists in the queue. When you select a non-zero timeout value
(something other thavi_TMO_IMMEDIATE), the operation retrieves the
specified event if it exists in the queue and returns immediately. Otherwise,
the application waits until the specified event occurs or until the timeout
expires, whichever occurs first. When an event arrives and causes
viwaitOnEvent() to return, the event is not queued for the session on
which the wait operation was invoked. However, if any other session is
currently enabled for queuing, the event is placed on the queue for that
session.

You can useiDisableEvent() to disable event queuing on a session, as
discussed in the previous section. If you disable the queue, no further event
occurrences are queued, but event occurrences that were already in the
event queue are retained. Your application carvitggitOnEvent() to
dequeue these retained events in the same manner as previously described.
The wait operation does not need to have events enabled to work; however,
the session must be enabled to detect new events. An application can
explicitly clear (flush) the event queue with WiBiscardEvents()

operation.

The event queues in VISA are of fixed length, but you can specify the size
of a queue by using thé ATTR_MAX_QUEUE_LENGTi@mplate attribute.

This attribute specifies the maximum number of events that can be placed
on queue.

Note If the event queue is full and a new event arrives, the new event is discarded.

VISA does not currently let you dynamically configure queue lengths. That
is, you can only modify the queue length before the first invocation of the
viEnableEvent() operation, as shown in the following code segment.

status = viSetAttribute(instr, VI_ATTR_MAX_QUEUE_LENGTH, 10);
status = viEnableEvent(instr, VI_EVENT_SERVICE_REQ, VI_QUEUE,
VI_NULL);

SeeExample 2-3n Chapter 2|ntroductory Programming Examplefor
an example of handling events via the queue mechanism.

© National Instruments Corporation 7-5 NI-VISA User Manual

Chapter 7 VISA Events

Callbacks

Callback Modes

NI-VISA User Manual

The VISA event model also allows applications to install functions that can
be called back when a particular event type is received. You need to install
a handler before enabling a session to sense events through the callback
mechanism. Refer to the sectibhe userHandle Parametéater in this
chapter for more information. The procedure works as follows:

1. Use thevilnstallHandler() operation to install handlers to
receive events.

2. Use theviEnableEvent() operation to enable the session for the
callback mechanism as described earlier iftebling and Disabling
Eventssection.

3. The driver invokes the handler on every occurrence of the specified
event.

4. VISA provides the event context in tbentext parameter of
viEventHandler() . Theevent contex like a data structure, and
contains information about the specific occurrence of the event. Refer
to the sectioMhe Life of the Event Contdater in this chapter for
more information on event context.

You can now have multiple handlers per session in the current revision of
VISA. If you have multiple handlers installed for the same event type on
the same session, each handler is invoked on every occurrence of that event
type. The handlers are invoked in reverse order of installation; that is, in
Last In First Out (LIFO) order. For a given handler to prevent other handlers
on the same session from being executed, it should return the value
VI_SUCCESS_NCHAINather than/l_SUCCESS This doesot affect the
invocation of event handlers on other sessions or in other processes.

VISA gives you the choice of two different modes for using the callback
mechanism. You can use either direct callbacks or suspended callbacks.
You can have only one of these callback modes enabled at any one time.

To use the direct callback mode, spetifyHNDLR in themechanism
parameter. In this mode, VISA invokes the callback routine at the time the
event occurs.

To use the suspended callback mode, sp&tifUSPEND_HNDLRN the
mechanismparameter. In this mode, VISA does not invoke the callback
routine at the time of event occurrence; instead, the events are placed on a
suspended handler queue. This queue is similar to the queue used by the

7-6 © National Instruments Corporation

Chapter 7 VISA Events

gueuing mechanism except that you cannot access it directly. You can
obtain the events on the queue only by re-enabling the session for callbacks.
You can flush the queue withiDiscardEvents()

For example, the following code segment shows how you can halt the
arrival of events while you perform some critical operations that would
conflict with code in the callback handler. Notice that no events are lost
while this code executes, because they are stored on a queue.

status = viEnableEvent(instr, VI_EVENT_SERVICE_REQ,VI_HNDLR,
VI_NULL);

status = viEnableEvent(instr, VI_EVENT_SERVICE_REQ,
VI_SUSPEND_HNDLR, VI_NULL);

[*Perform code that must not be interrupted by a callback. */

status = viEnableEvent(instr, VI_EVENT_SERVICE_REQ, VI_HNDLR,
VI_NULL);

When you switch the event mechanism frémHNDLR to
VI_SUSPEND_HNDLRthe VISA driver can still detect the events. For
example, VXI interrupts still generate a local interrupt on the controller and
VISA handles these interrupts. However, the event VISA generates for the
VXl interrupt is now placed on the handler queue rather than passed to the
application. When the critical section completes, switching the mechanism
from VI_SUSPEND_HNDLMack tovl_HNDLR causes VISA to call the
application’s callback functions whenever it detects a new exsanell as

for every event waiting on the handler queue.

Independent Queues

As stated previously, the callback and the queuing mechanisms operate
totally independently of each other, so VISA keeps the information for
event occurrences separately for both mechanisms. Therefore, VISA
maintains the suspended handler queue separately from the event queue
used for the queuing mechanism. MMeATTR_MAX_QUEUE_LENGTH
attribute mentioned earlier in tigueuingsection of this chapter applies

to the suspended handler queue as well as to the queue for the queuing
mechanism. However, because these queues are separate, if one of the
queues reaches the predefined limit for storing event occurrences, it does
not directly affect the other mechanism.

© National Instruments Corporation 7-7 NI-VISA User Manual

Chapter 7 VISA Events

The userHandle Parameter

When usingilnstallHandler() to install handlers for the callback
mechanism, your application can useukerHandle parameter to supply
a reference to any application-defined valliais reference is passed back
to the application as theserHandle parameter to the callback routine
during handler invocation. By supplying different values for this
parameter, applications can install the same handler with different
application-defined contexts.

For example, applications often need information that was received in the
callback to be available for the main program. In the past, this has been
done through global variables. In VISéserHandlegives the application
more modularity than is possible with global variables. In this case, the
application can allocate a data structure to hold information locally. When
itinstalls the callback handler, it can pass the reference to this data structure
to the callback handler via tserHandle This means that the handler can
store the information in the local data structure rather than a global data
structure.

For another example, consider an application that installs a handler with a
fixed value of 0x1 for theiserHandle parameter. It can install the same
handler with a different value, say 0x2, for the same event type on another
session. However, installations of the same handler are different from one
another. Both handlers are invoked when the event of the given type occurs
but in one invocation the value passedserHandleis Ox1 and in the other

it is Ox2. As a result, you can uniquely identify VISA event handlers by a
combination of the handler address and user context pair.

This structure also is important when the application attempts to remove the
handler. The operationUninstallHandler() requires not only the
handler’s address but also tieerHandlevalue to correctly identify which
handler to remove.

Queuing and Callback Mechanism Sample Code

NI-VISA User Manual

Example 7-1demonstrates the use of both the queuing and callback
mechanisms in event handling. In the program, a message is sentto a GPIB
device telling it to read some data. When the data collection is complete,
the device asserts SRQ, informing the program that it can now read data.
After reading the device’s status byte, the handler begins to read
asynchronously using a buffer of information that the main program
passes to it.

7-8 © National Instruments Corporation

Chapter 7 VISA Events

7+ Note This example shows C source code. You can find the same example in Visual Basic
syntax in Appendix AVisual Basic Examples

Example 7-1

#include "visa.h"
#include <stdlib.h>

#define MAX_CNT 1024

/* This function is to be called when an SRQ event occurs */
/* Here, an SRQ event indicates the device has data ready */
ViStatus _VI_FUNCH myCallback(ViSession vi, ViEventType etype,

ViEvent event, ViAddr userHandle)

{
ViJobld jobID;
ViStatus status;
Viuint16 stb;
status = viReadSTB(vi, &stb);
status = viReadAsync(vi,(ViBuf)userHandle,MAX_CNT,&joblID);
return VI_SUCCESS;

}

int main(void)

{
ViStatus status;
ViSession defaultRM, gpibSesn;
ViBuf bufferHandle;

ViuInt32 retCount;

ViEventType etype;

ViEvent event;

/* Begin by initializing the system *

status = viOpenDefaultRM(&defaultRM);
if (status < VI_SUCCESS) {

[* Error initializing VISA...exiting */
return -1;
}
/* Open communication with GPIB device at primary address 2 */
status = viOpen(defaultRM, "GPIBO0::2::INSTR", VI_NULL, VI_NULL,
&gpibSesn);
/* Allocate memory for buffer */

© MNational Instruments Corporation 7-9 NI-VISA User Manual

Chapter 7 VISA Events

/* In addition, allocate space for the ASCIlI NULL character */
bufferHandle = (ViBuf)malloc(MAX_CNT+1);

/* Tell the driver what function to call on an event */

status=vilnstall[Handler(gpibSesn,VI_EVENT_SERVICE_REQ, myCallback,
bufferHandle);

/* Enable the driver to detect events */

status = viEnableEvent(gpibSesn, VI_EVENT_SERVICE_REQ, VI_HNDLR, VI_NULL);
status = viEnableEvent(gpibSesn, VI_EVENT_IO_COMPLETION, VI_QUEUE, VI_NULL);

/* Tell the device to begin acquiring a waveform */
status = viWrite(gpibSesn, "EOx51; W1", 9, &retCount);

[* The device asserts SRQ when the waveform is ready */
/* The callback begins reading the data */
[* After the data is read, an I/O completion event occurs */

status = viwaitOnEvent(gpibSesn, VI_EVENT_IO_COMPLETION, 20000,
&etype, &event);
if (status < VI_SUCCESS) {

[* Waveform not received...exiting */
free(bufferHandle);
viClose(defaultRM);
return -1;
}
/* Your code should process the waveform data */
/* Close the event context */

viClose(event);

[* Stop listening for events */

status = viDisableEvent(gpibSesn, VI_ALL_ENABLED_EVENTS,
VI_ALL_MECH);

status = viUninstallHandler(gpibSesn, VI_EVENT_SERVICE_REQ,
myCallback,bufferHandle);

[* Close down the system */
free(bufferHandle);

status = viClose(gpibSesn);

status = viClose(defaultRM);

return O;

NI-VISA User Manual 7-10 © National Instruments Corporation

Chapter 7 VISA Events

The Life of the Event Context

The event context that the VISA driver generates when an event occurs is
a data object that contains the information about the event. Because it is
more than just a simple variable, memory allocation and deallocation
becomes important.

Event Context with the Queuing Mechanism

When you use the queuing mechanism, the event context is returned when
you callviwaitOnEvent() . The driver has created this data structure, but

it cannot destroy it until you tell it to. For this reason, in VISA you call
viClose() on the event context so the driver can free the memory for you.
Always remember to caliClose() when you are done with the event.

If you know the type of event you are receiving, and the event does not
provide any useful information to your application other than whether it
actually occurred, you can pasis NULL as theoutEventType and
eventContextparameters as shown in the following example:

status = viwaitOnEvent(gpibSesn, VI_EVENT_SERVICE_REQ, 5000,
VI_NULL, VI_NULL);

In this case, VISA automatically closes the event data structure rather than
returning it to you; callingiClose() on the event context is therefore
both unnecessary and incorrect.

Event Context with the Callback Mechanism

In the case of callbacks, the event is passed to you in a function, so the
driver has a chance to destroy it when the function ends. This has two
important repercussions. First, you do not need tovitzitise() on the
event inside the callback function. Indeed, calling this operation on the
event could lead to serious problems because VISA will access the event
(to close it) when your callback returns. Secondly, the event itself has a life
only as long as the callback function is executing. Therefore, if you want to
keep any information about the event after the callback function, you
should useiGetAttribute() to retrieve the information for storage.

Any references to the event itself becomes invalid when the callback
function ends.

© National Instruments Corporation 7-11 NI-VISA User Manual

Chapter 7

VISA Events

Exception Handling

By using the VISA evenyl_EVENT_EXCEPTION you can have one point

in your code that traps all errors and handles them appropriately. This
means that after you install and enable your VISA exception handler, you
do not have to check the return status from each operation, which makes the
code easier to read and maintain. How an application handles error codes
is specific to both the device and the application. For one application, an
error could mean different things from different devices, and might even
be ignored under certain circumstances; for another, any error could always
be fatal.

For an application that needs to treat all errors as fatal, one possible use for
this event type would be to print out a debug message and then exit the
application. Because the method of installing the handler and then enabling
the event has already been covered, the following code segment shows only
the handler itself:

ViStatus _VI_FUNCH myEventHandler (ViSession vi, ViEventType etype,

ViEvent event, ViAddr uHandle)

ViChar rsrcName[256], operName[256];

ViStatus stat;
ViSession rm;

if (etype == VI_EVENT_EXCEPTION) {

viGetAttribute(vi,VI_ATTR_RSRC_NAME,rsrcName);
viGetAttribute(event,VI_ATTR_OPER_NAME,operName);
viGetAttribute(event,VI_ATTR_STATUS, &stat);

}

printf(

"Session 0x%08IX to resource %s caused error 0x%08IX in operation %s.\n",
vi,rsrcName,stat,operName);

/* Use this code only if you will not return control to VISA */
viGetAttribute(vi,VI_ATTR_RM_SESSION,&rm);
viClose(event);

viClose(vi);
viClose(rm);

exit(-1); /* exit the application immediately */

[* code for other event types */
return VI_SUCCESS;

NI-VISA User Manual

7-12 © National Instruments Corporation

Chapter 7 VISA Events

If you wanted just to print out a message, you would leave out the code that
closes the objects and exits. Notice that in this code segment, the event
object is closed inside of the callback, even though we just recommended
in the previous section that you not do this! The reason that we do it here is
that the code will never return control to VISA—calliggt() will return
control to the operation system instead. This is the only case where you
should ever invokeiClose() within a callback.

Another (more advanced) use of this event type is for throwing C++
exceptions. Because VISA exception event handlers are invoked in the
context of the same thread in which the error condition occurs, you can
safely throw a C++ exception from the VISA handler. Like the example
above, you would invokeiClose() on the exception event (but you

would probably not close the actual session or its resource manager
session). You would also need to include the information about the VISA
exception (for example, the status code) in your own exception class (of the
type that you throw), since this will not be available once the VISA event
is closed.

Throwing C++ exceptions introduces several issues to consider. First, if
you have mixed C and C++ code in your application, this could introduce
memory leaks in cases where C functions allocate local memory on the
heap rather than the stack. Second, if you use asynchronous operations, an
exception is thrown only if the error occurs before the operation is posted
(for example, if the error generatedvis ERROR_QUEUE_ERRQRf the

error occurs during the operation itself, the status is returned as part of the
VI_EVENT_IO_COMPLETIONevent. This is important because that event
may occur in a separate thread, due to the nature of asynchronous I/O.
Therefore, you should not use asynchronous operations if you wish to
throw C++ exceptions from your handler.

© National Instruments Corporation 7-13 NI-VISA User Manual

VISA Locks

This chapter describes how to use locks in VISA.

Introduction

VISA introduces locks for access control of resources. In VISA,
applications can open multiple sessions to a resource simultaneously and
can access the resource through these different sessions concurrently. In
some cases, applications accessing a resource must restrict other sessions
from accessing that resource. For example, an application may need to
execute a write and a read operation as a single step so that no other
operations intervene between the write and read operations. The
application can lock the resource before invoking the write operation and
unlock it after the read operation, to execute them as a single step. VISA
defines a locking mechanism to restrict accesses to resources for such
special circumstances.

The VISA locking mechanism enforces arbitration of accesses to resources
on an individual basis. If a session locks a resource, operations invoked by
other sessions are serviced or returned with a locking error, depending on
the operation and the type of lock used.

Lock Types

VISA defines two different types, or modes, of loaksclusiveand
sharedlocks, which are denoted by EXCLUSIVE_LOCKand
VI_SHARED_LOCKrespectivelyviLock() is used to acquire a lock on
aresource, andUnlock() is used to release the lock.

If a session has an exclusive lock, other sessions cannot modify global
attributes or invoke operations, but can still get attributes and set local
attributes. If the session has a shared lock, other sessions that have shared
locks can also modify global attributes and invoke operations.

Regardless of which type of lock a session has, if the session is closed
without first being unlocked, VISA automatically performsinlock()
on that session.

© National Instruments Corporation 8-1 NI-VISA User Manual

Chapter 8 VISA Locks

Lock Sharing

NI-VISA User Manual

Because the locking mechanism in VISA is session based, multiple threads
sharing a session that has locked a VISA resource have the same privileges
for accessing the resource. However, some applications might have
separate sessions to a resource for these multiple threads, and might require
that all the sessions in the application have the same privileges as the
session that locked the resource. In other cases, there might be a need to
share locks among sessions in different applications. Essentially, sessions
that have a lock to a resource may share the lock with certain sessions, and
exclude access from other sessions.

This section discusses the mechanism that makes it possible to share locks.
VISA defines a lock type~4_SHARED_LOCK-that gives exclusive

access privileges to a session, along with the capability to share these
exclusive privileges at the discretion of the original session. When locking
sessions with a shared lock, the locking session gains an access key. The
session can then share this lock with any other session by passing the access
key. VISA allows user applications to specify an access key to be used for
lock sharing, or VISA can generate the access key for an application.

If the application chooses to specify tiecessKeyother sessions that

want access to the resource must choose the same acopssKeyfor

locking the resource. Otherwise, when VISA generateadbessKeythe
session that gained the shared lock should maketessKeavailable to

other sessions for sharing access to the locked resource. Before the other
sessions can access the locked resource, they must acquire the lock using
the same access key in tecessKeyparameter of theiLock()

operation. InvokingiLock() with the same access key will register the
new session with the same access privileges as the original session. All
sessions that share a resource should synchronize their accesses to maintain
a consistent state of the resource. The following code is an example of
obtaining a shared lock with a requested name:

status = viLock(instr, VI_SHARED_LOCK, 15000,
"MyLockName", accessKey);

This example attempts to acquire a shared lock'WighockName" as the
requestedKey and a timeout of 15 s. If the call is successfatessKey
will contain"MyLockName" . If you want to have VISA generate a key,
simply pas%/I_NULL in place of'MyLockName" and VISA will return a
unique key inaccessKeythat other sessions can use for locking the
resource.

8-2 © National Instruments Corporation

Chapter 8 VISA Locks

Acquiring an Exclusive Lock While Owning a Shared Lock

When multiple sessions have acquired a shared lock, VISA allows one of
the sessions to acquire an exclusive lock as well as the shared lock it is
holding. That is, a session holding a shared lock can also acquire an
exclusive lock using théLock() operation. The session holding both the
exclusive and shared lock has the same access privileges it had when it was
holding only the shared lock. However, the exclusive lock precludes other
sessions holding the shared lock from accessing the locked resource. When
the session holding the exclusive lock unlocks the resource using the
viUnlock() ~ operation, all the sessions (including the one that acquired

the exclusive lock) again have all the access privileges associated with the
shared lock. This circumstance is useful when you need to synchronize
multiple sessions holding a shared lock. A session holding an exclusive and
shared lock can also be useful when one of the sessions needs to execute in
a critical section.

Nested Locks

VISA supports nested locking. That is, a session can lock the same resource
multiple times (for the same lock type). Unlocking the resource requires an
equal number of invocations of thi&inlock() operation. Each session
maintains a separate lock count for each type of locks. Repeated
invocations of theiLock() operation for the same session increase the
appropriate lock count, depending on the type of lock requested. In the case
of shared locks, nestingLock() calls return with the sanaecessKey

every time. In the case of exclusive lockitpck() does not return an
accessKeyregardless of whether it is nested. For each invocation of
viUnlock() , the lock count is decremented. VISA unlocks a resource
only when the lock count equals 0.

Locking Sample Code

Example 8-luses a shared lock because two sessions are opened for
performing trigger operations. The first session receives triggers and the
second session sources triggers. A shared lock is needed because an
exclusive lock would prohibit the other session from accessing the same
resource. IiwaitOnEvent() fails, this example performs/eClose()

on the resource manager without unlocking or closing the sessions. When
the resource manager session closes, all sessions that were opened using it
automatically close as well. Likewise, remember that closing a session that
has any lock results in automatically releasing its lock(s).

© National Instruments Corporation 8-3 NI-VISA User Manual

Chapter 8 VISA Locks

I+ Note This example shows C source code. You can find the same example in Visual Basic
syntax in Appendix AVisual Basic Examples

Example 8-1

#include "visa.h"
#define MAX_COUNT 128

int main(void)

{
ViStatus status; /* For checking errors */
ViSession defaultRM; /* Communication channels */
ViSession instrIN, instrOUT; /* Communication channels */
ViChar accKey[VI_FIND_BUFLEN]; /* Access key for lock */
ViByte buffMAX_COUNT]; /* To store device data */
ViEventType etype; [* To identify event */
ViEvent event; /* To hold event info */
Viuint32 retCount; /* To hold byte count */
/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {
[* Error Initializing VISA...exiting */
return -1;

}

[* Open communications with VXI Device at Logical Addr 16 */

status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL, VI_NULL,
&instriN);

status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL, VI_NULL,
&instrOUT);

/* We open two sessions to the same device */
/* One session is used to assert triggers on TTL channel 4 */
/* The second is used to receive triggers on TTL channel 5 */

/* Lock first session as shared, have VISA generate the key */
/* Then lock the second session with the same access key */

status = viLock(instrIN, VI_SHARED_LOCK, 5000, VI_NULL, accKey);

status = viLock(instrOUT, VI_SHARED_LOCK, VI_TMO_IMMEDIATE, accKey,
accKey);

NI-VISA User Manual 8-4 © National Instruments Corporation

Chapter 8

[* Set trigger channel for sessions */
status = viSetAttribute(instrIN, VI_ATTR_TRIG_ID,VI_TRIG_TTL5);
status = viSetAttribute(instrOUT,VI_ATTR_TRIG_ID,VI_TRIG_TTL4);

/* Enable input session for trigger events */
status = viEnableEvent(instrIN, VI_EVENT_TRIG, VI_QUEUE, VI_NULL);

/* Assert trigger to tell device to start sampling */
status = viAssertTrigger(instrOUT, VI_TRIG_PROT_DEFAULT);

/* Device will respond with a trigger when data is ready */
if ((status = viwaitOnEvent(instrIN, VI_EVENT_TRIG, 20000, &etype,
&event)) < VI_SUCCESS) {

viClose(defaultRM);
return -1;
}
/* Close the event */

status = viClose(event);

/* Read data from the device */
status = viRead(instrIN, buf, MAX_COUNT, &retCount);

/* Your code should process the data */
/* Unlock the sessions */

status = viUnlock(instrIN);
status = viUnlock(instrOUT);

/* Close down the system */

status = viClose(instrIN);
status = viClose(instrOUT);
status = viClose(defaultRM);
return O;

VISA Locks

© MNational Instruments Corporation 8-5 NI-VISA User Manual

NI-VISA Platform-Specific and
Portability Issues

This chapter discusses programming information for you to consider when
developing applications that use the NI-VISA driver.

After installing the driver software, you can begin to develop your VISA
application software. Remember that the NI-VISA driver relies on
NI-488.2 and NI-VXI for driver-level /O accesses.

¢ Windows 95/NT users—On VXI and MXI systems, use T&M Explorer to
run the VXI Resource Manager, configure your hardware, and assign VME
and GPIB-VXI addresses. For GPIB systems, use the system Device
Manager to configure your hardware. To control instruments through serial
ports, you can use T&M Explorer to change the default settings, or you can
perform all the necessary configuration at run time by setting VISA
attributes.

¢ All other platforms —On VXI and MXI systems, you must still run
vxiinit ~ andresman, and usexiedit orvxitedit for configuration
purposes. Similarly, for GPIB and GPIB-VXI systems, you still use the
GPIB Control Panel applet tnconf to configure your system. To control
instruments through serial ports, you can do all necessary configuration at
run-time by setting VISA attributes.

TheNI-VISA Programmer Reference Mangahtains detailed

descriptions of the VISA attributes, events, and operations. Windows,
Solaris, and HP-UX users can access this same information online through
Nl-visa.hlp , which you can find in thBlIvisa directory.

© National Instruments Corporation 9-1 NI-VISA User Manual

Chapter 9 NI-VISA Platform-Specific and Portability Issues

Programming Considerations

This section contains information for you to consider when developing
applications that use the NI-VISA 1/O interface software.

Debugging Tool for Windows 95/NT

NI Spy tracks the calls your application makes to National Instruments
test and measurement (T&M) drivers, including NI-VXI, NI-VISA,

and NI-488.2. NI-488.2 users may notice that NI Spy is similar to
GPIB Spy.

NI Spy highlights functions that return errors, so you can quickly determine
which functions failed during your development. NI Spy can also log your
program'’s calls to these drivers so you can check them for errors at your
convenience.

Multiple Applications Using the NI-VISA Driver

Multiple-application support is an important feature in all implementations
of the NI-VISA driver. You can have several applications that use NI-VISA
running simultaneously. You can even have multiple instances of the same
application that uses the NI-VISA driver running simultaneously, if your
application is designed for this. The NI-VISA operations perform in the
same manner whether you have only one application or several applications
(or several instances of an application) all trying to use the NI-VISA driver.

However, you need to be careful when you have multiple applications or
sessions using the low-level VXIbus access functions. The memory
windows used to access the VXIbus are a limited resource. Call the
viMapAddress() operation before attempting to perform low-level
VXlbus access withiPeek XX) orviPoke XX) . Immediately after the
accesses are completed, always calVilbemapAddress() operation so
that you free up the memory window for other applications.

Low-Level Access Functions

NI-VISA User Manual

TheviMapAddress() operation returns a pointer for use with low-level
access functions. On some systems, such as the VXlIpc embedded
computers, it is possible to directly dereference this pointer. However, on
other systems such as the GPIB-VXI, you must useitleek XX) and
viPoke XX) operations. To make your source code portable between
these and other platforms, and even other implementations of VISA, check
the attributevi_ATTR_WIN_ACCESSafter callingviMapAddress()

9-2 © National Instruments Corporation

Chapter 9 NI-VISA Platform-Specific and Portability Issues

If the value of that attribute \8_DEREF_ADDRYou can safely dereference
the address pointer directly. Otherwise, useviiheek xX) and
viPoke XX) operations to perform register I1/O accesses.

National Instruments also provides macrosvfBeek XX) and

viPoke XX) on certain platforms. The C language macros automatically
dereference the pointer whenever possible without calling the driver, which
can substantially improve performance. The macros also handle any retry
conditions on the new MXI-2 platforms. Although the macros can increase
performance only on NI-VISA, your application will be binary compatible
with other implementations of VISA (the macros will just call the

viPeek XX) andviPoke XX) operations). However, the macros are not
enabled by default. To use the macros, you must define the symbol
NIVISA_PEEKPOKE before includingrisa.h

Interrupt Callback Handlers

Application callbacks—available in C but not in LabVIEW or Visual
Basic—are registered with thinstallHandler() operation and must
be declared with the following signature:

ViStatus _VI_FUNCH appHandler (ViSession vi, ViEventType eventType,
ViEvent event, ViAddr userHandle)

Notice that the VI_FUNCH modifier expands tofar _pascal for
Windows 3x (16-bit) and stdcall ~ for Windows 95 and Windows NT
(32-bit). These are the standard Windows callback definitions. On other
systems, such as UNIX and Macintosh, VISA definéis FUNCHto be
nothing (null). Using VI_FUNCH for handlers makes your source code
portable to systems that need other modifiers (or none at all).

After you install an interrupt handler and enable the appropriate event(s),
an event occurrence causes VISA to invoke the callback. When VISA
invokes an application callback, it does so in the correct application
context. From within any handler, you can call back into the NI-VISA
driver. On all platforms other than Macintosh, you can also make system
calls. The way VISA invokes callbacks is platform dependent, as shown in
Table 9-1.

© National Instruments Corporation 9-3 NI-VISA User Manual

Chapter 9 NI-VISA Platform-Specific and Portability Issues

NI-VISA User Manual

Table 9-1. How VISA Invokes Callbacks

Platform Callback Invocation Method

Windows 3x The application’s stack and data segments are s¢t up
properly. The callback does not occur from within

the driver interrupt service routine.

Windows 95
Windows NT

The callback is performed in a separate thread
created by NI-VISA. The thread is signaled as sqon
as the event occurs.

Macintosh 68K | For VXI, the callback is performed from within the
Macintosh PPC | driver interrupt service routine. For all other
interfaces, the callback is performed only when the
driver is accessed.

Solaris 2x For VXI with the PCI-MXI-2, the callback is
performed in a separate thread. For all other
interfaces, the callback is performed via a UNIX
signal.

VxWorks The callback is performed via a UNIX signal.

Solaris 1x

HP-UX 9

HP-UX 10

What this means is that on Windows @ll interfaces) and Macintosh (all
interfaces other than VXI) you cannot wait in a tight loop for a callback to
occur. For example, the following code doeswork:

while (lintr_recv)
; [* do nothing */

For callbacks to be invoked on these platforms, you must call any VISA
operation or give up processor time. You can do this through any of the
following methods (listed in order of portability):

1. Any VISA-defined operation
2. The LabWindows/CVProcessSystemEvents() function
3. The WindowseekMessage() orYield() functions

For example, the following code in a LabWindows/CVI applicatioas
allow callbacks to occur correctly.

while (lintr_recv)
ProcessSystemEvents(); /* give up time */

9-4 © National Instruments Corporation

Chapter 9 NI-VISA Platform-Specific and Portability Issues

Notice that NI-VISA on Windows 95, Windows NT, and all UNIX

platforms does not require you to call VISA operations or give up processor
time to receive callbacks. However, because occasionally calling VISA
operations ensures that callbacks will be invoked correctly on any platform,
you should keep these issues in mind when writing code that you want to
be portable.

Multiple Interface Support Issues

This section contains information about how to use or configure your
NI-VISA software for certain types of interfaces.

VXI and GPIB Platforms

NI-VISA supports all existing National Instruments VXI, GPIB, and serial
hardware for the operating systems on which NI-VISA exists. For VXI,
this includes MXI-1 and MXI-2 platforms, the GPIB-VXI, and the line of
VXIpc embedded computers. For GPIB, this includes, but is not limited
to, the PCI-GPIB, NB-GPIB, GPIB-SPARC series, the full line of
AT-GPIB/TNT boards, and the GPIB-ENET box, which you can use to
remotely control GPIB devices. With the GPIB-ENET, you can even
remotely control VXI devices when using a GPIB-VXI controller.

Multiple GPIB-VXI Support

Windows 95/NT users can refer to the T&M Explorer utility to add
multiple National Instruments GPIB-VXI controllers, or any other
vendor’'s GPIB-VXI controller, to your system. WIN16 and UNIX users
must use the VISAconf utility to add the controllers.

Serial Port Support

The maximum number of serial ports that NI-VISA currently supports on
any platform is 32. The default numbering of serial ports is system
dependent, as shown in Table 9-2.

© National Instruments Corporation 9-5 NI-VISA User Manual

Chapter 9 NI-VISA Platform-Specific and Portability Issues

Table 9-2. How Serial Ports Are Numbered

Platform Method
Windows 3x ASRL1-ASRL4 acces€OM1iCOM4
Windows 95 ASRL10-ASRL13 acces$PT1-LPT4.
Windows NT

Macintosh 68K | ASRL1accesses the modem port.
Macintosh PPC | ASRL2accesses the printer port.

Solaris 2x ASRLI-ASRL6accessdev/cua/a —/dev/cualf
Solaris 1x ASRLI-ASRL6 accessdevittya —/devi/ttyf
HP-UX 9 ASRL1andASRL2access serial ports 1 and 2
HP-UX 10 through/dev/tty00 and/dev/tty01

respectively. Additional ports are numbered
consecutively starting @&SRL3, which uses
/dev/tty02

VxWorks NI-VISA for VxWorks does not currently support
the serial interface.

VME Support

To access VME devices in your system, you must configure NI-VXI to see
these devices. Windows 95/NT users can configure NI-VXI by using the
Add Device Wizardin T&M Explorer. Users on other platforms must use
theNon-VXI Device Editor in VXledit or VXItedit. For each address
space in which your device has memory, you must create a separate
pseudo-device entry with a logical address between 256 and 511. For
example, a VME device with memory in both A24 and A32 spaces requires
two entries. You can also specify which interrupt levels the device uses.
VXI and VME devices cannot share interrupt levels. You can then access
the device from NI-VISA just as you would a VXI device, by specifying
the address space and the offset from the base at which you have configured
it. NI-VISA support for VME devices includes the register access
operations (both high-level and low-level) and the block-move operations,
as well as the ability to receive interrupts.

NI-VISA User Manual 9-6 © National Instruments Corporation

Chapter 9 NI-VISA Platform-Specific and Portability Issues

Windows 3.x Issues

This section contains information specific to Windowsehout the
installation and use of NI-VISA.

Installation Overview

After the NI-VISA driver is installed, the Setup program normally makes
some moadifications to your initialization fil&@&JTOEXEC.BATand

WINL.INI . If you chooseotto let the installer make these changes
automatically, the NI-VISA driver may not perform properly.

The necessary changes include adding thep\igikplay binary directory
(C:\VXIPNP\WIN\BIN by default) to th& ATHenvironment variable in
AUTOEXEC.BATand setting thePNPPATHenvironment variable in both
files to the root of the VXllug&play directory tree€:\ by default).

Memory Model

The NI-VISA driver was compiled using the large memory model.
However, Windows application programs that link with the VISA library
can also use the medium, compact, or small memory models. Because of
this ability to use different memory models for your application, not only
can you take advantage of the efficiency inherent in small memory model
programs, but you can also run multiple instances of the application.

Application Stack Size

The default stack size in Borland C++ is 5 KB, and in Microsoft Visual
C++itis 2 KB. In VISA, where the invocation of an operation may make
other calls that in turn call a lower-level driver such as NI-VXI or NI-488.2,
such a small stack may easily be exhausted, resulting in a stack overflow.
For Windows 3 (16-bit) VISA applications, set the stack size to a
minimum of 8 KB using th& TACKSIZE statement in the application’s

.DEF file. In LabWindows/CVI for Windows 3, the stack size is not
normally a problem, as the default stack size is set to a more reasonable
16 KB.

© National Instruments Corporation 9-7 NI-VISA User Manual

Visual Basic Examples

This appendix shows the Visual Basic syntax of the ANSI C examples
given earlier in this manual. The examples use the same numbering
sequence for easy reference.

These examples use the VISA data types where applicable. This feature is
available only on Windows 95/NT. To use this feature, select the VISA
library (visa32.dll) as a reference from Visual Basic. This makes use of
the type library embedded into the DLL.

¢ Windows 3x users—Use the native Visual Basic types as described in the

NI-VISA online help oMNI-VISA Programmer Reference Manirathe
Data Typessection.

© National Instruments Corporation A-1 NI-VISA User Manual

Appendix A Visual Basic Examples

Example 2-1

Private Sub vbMain()
Const MAX_CNT = 200

Dim stat As ViStatus

Dim dfltRM As ViSession

Dim sesn As ViSession

Dim retCount As Long

Dim buffer As String * MAX_CNT

Rem Begin by initializing the system
stat = viOpenDefaultRM(dfltRM)
If (stat < VI_SUCCESS) Then
Rem Error initializing VISA...exiting
Exit Sub
End If

Rem Open communication with GPIB Device at Primary Addr 1
Rem NOTE: For simplicity, we will not show error checking
stat = viOpen(dfitRM, "GPIBO0::1::INSTR", VI_NULL, VI_NULL, sesn)

Rem Set the timeout for message-based communication
stat = viSetAttribute(sesn, VI_ATTR_TMO_VALUE, 5000)

Rem Ask the device for identification
stat = viwWrite(sesn, "*IDN?", 5, retCount)
stat = viRead(sesn, buffer, MAX_CNT, retCount)

Rem Your code should process the data

Rem Close down the system
stat = viClose (sesn)
stat = viClose (dfltRM)

End Sub

NI-VISA User Manual A-2 © National Instruments Corporation

Appendix A Visual Basic Examples

Example 2-2

Private Sub vbMain()
Dim stat As ViStatus
Dim dfltRM As ViSession
Dim sesn As ViSession
Dim devicelD As Integer

Rem Begin by initializing the system
stat = viOpenDefaultRM(dfltRM)
If (stat < VI_SUCCESS) Then
Rem Error initializing VISA...exiting
Exit Sub
End If

Rem Open communication with VXI Device at Logical Addr 16
Rem NOTE: For simplicity, we will not show error checking
stat = viOpen(dfltRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesn)

Rem Read the Device ID and write to memory in A24 space
stat = viln16(sesn, VI_A16_SPACE, 0, devicelD)
stat = viOutl6(sesn, VI_A24_SPACE, 0, &H1234)

Rem Close down the system
stat = viClose(sesn)
stat = viClose(dfltRM)

End Sub

© National Instruments Corporation A-3 NI-VISA User Manual

Appendix A Visual Basic Examples

Example 2-3

Private Sub vbMain()
Dim stat As ViStatus
Dim dfltRM As ViSession
Dim sesn As ViSession
Dim eType As ViEventType
Dim eData As ViEvent
Dim statID As Integer

Rem Begin by initializing the system
stat = viOpenDefaultRM(dfltRM)
If (stat < VI_SUCCESS) Then
Rem Error initializing VISA...exiting
Exit Sub
End If

Rem Open communication with VXI Device at Logical Address 16
Rem NOTE: For simplicity, we will not show error checking
stat = viOpen(dfitRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesn)

Rem Enable the driver to detect the interrupts
stat = viEnableEvent(sesn, VI_EVENT_VXI_SIGP, VI_QUEUE, VI_NULL)

Rem Send the commands to the oscilloscope to capture the
Rem waveform and interrupt when done

stat = viwaitOnEvent(sesn, VI_EVENT_VXI_SIGP, 5000, eType, eData)
If (stat < VI_SUCCESS) Then

Rem No interrupts received after 5000 ms timeout

stat = viClose (dfltRM)

Exit Sub
End If

Rem Obtain the information about the event and then destroy the
Rem event. In this case, we want the status ID from the interrupt.
stat = viGetAttribute(eData, VI_ATTR_SIGP_STATUS_ID, statID)
stat = viClose(eData)

Rem Your code should read data from the instrument and process it.

Rem Stop listening to events
stat = viDisableEvent(sesn, VI_EVENT_VXI_SIGP, VI_QUEUE)

Rem Close down the system
stat = viClose(sesn)
stat = viClose(dfltRM)

End Sub

NI-VISA User Manual A-4 © National Instruments Corporation

Appendix A Visual Basic Examples

Example 2-4

Private Sub vbMain()
Const MAX_CNT = 200

Dim stat As ViStatus

Dim dfltRM As ViSession

Dim sesn As ViSession

Dim retCount As Long

Dim buffer As String * MAX_CNT

Rem Begin by initializing the system
stat = viOpenDefaultRM(dfltRM)
If (stat < VI_SUCCESS) Then
Rem Error initializing VISA...exiting
Exit Sub
End If

Rem Open communication with Serial Port 1
Rem NOTE: For simplicity, we will not show error checking
stat = viOpen(dflitRM, "ASRL1::INSTR", VI_NULL, VI_NULL, sesn)

Rem Set the timeout for message-based communication
stat = viSetAttribute(sesn, VI_ATTR_TMO_VALUE, 5000)

Rem Lock the serial port so that nothing else can use it
stat = viLock(sesn, VI_EXCLUSIVE_LOCK, 5000, ", ")

Rem Set serial port settings as needed

Rem Defaults = 9600 Baud, no parity, 8 data bits, 1 stop bit
stat = viSetAttribute(sesn, VI_ATTR_ASRL_BAUD, 2400)
stat = viSetAttribute(sesn, VI_ATTR_ASRL_DATA_BITS, 7)

Rem Ask the device for identification
stat = viWrite(sesn, "*IDN?", 5, retCount)
stat = viRead(sesn, buffer, MAX_CNT, retCount)

Rem Unlock the serial port before ending the program
stat = viUnlock(sesn)

Rem Your code should process the data

Rem Close down the system
stat = viClose(sesn)
stat = viClose(dfltRM)

End Sub

© National Instruments Corporation A-5 NI-VISA User Manual

Appendix A Visual Basic Examples

Example 4-1

Private Sub vbMain()
Dim stat As ViStatus
Dim dfltRM As ViSession
Dim sesn As ViSession

Rem Open Default RM

stat = viOpenDefaultRM(dfltRM)

If (stat < VI_SUCCESS) Then
Rem Error initializing VISA...exiting
Exit Sub

End If

Rem Access other resources
stat = viOpen(dfitRM, "GPIB::1::INSTR", VI_NULL, VI_NULL, sesn)

Rem Use device and eventually close it.
stat = viClose (sesn)
stat = viClose (dfltRM)

End Sub

NI-VISA User Manual A-6 © National Instruments Corporation

Appendix A Visual Basic Examples

Example 4-2

Rem Find the first matching device and return a session to it

Private Function AutoConnect(instrSesn As ViSession) As ViStatus
Const MANF_ID = &HFF6 '12-bit VXI manufacturer ID of a device
Const MODEL_CODE = &HOFE '12-bit or 16-bit model code of a device

Dim stat As ViStatus

Dim dfltRM As ViSession

Dim sesn As ViSession

Dim fList As ViFindList

Dim desc As String * VI_FIND_BUFLEN
Dim nList As Long

Dim iManf As Integer

Dim iModel As Integer

stat = viOpenDefaultRM(dfltRM)

If (stat < VI_SUCCESS) Then
Rem Error initializing VISA ... exiting
AutoConnect = stat
Exit Function

End If

Rem Find all VXI instruments in the system
stat = viFindRsrc(dfltRM, "?*VXI[0-9]*::?*INSTR", fList, nList, desc)
If (stat < VI_SUCCESS) Then
Rem Error finding resources ... exiting
viClose (dfltRM)
AutoConnect = stat
Exit Function
End If

© National Instruments Corporation A-7 NI-VISA User Manual

Appendix A Visual Basic Examples

Rem Open a session to each and determine if it matches
While (nList)
stat = viOpen(dfltRM, desc, VI_NULL, VI_NULL, sesn)
If (stat >= VI_SUCCESS) Then
stat = viGetAttribute(sesn, VI_ATTR_MANF_ID, iManf)
If ((stat >= VI_SUCCESS) And (iManf = MANF_ID)) Then
stat = viGetAttribute(sesn, VI_ATTR_MODEL_CODE, iModel)
If ((stat >= VI_SUCCESS) And (iModel = MODEL_CODE)) Then
Rem We have a match, return session without closing
instrSesn = sesn
stat = viClose (fList)
Rem Do not close dfltRM; that would close sesn too
AutoConnect = VI_SUCCESS
Exit Function
End If
End If
stat = viClose (sesn)
End If
stat = viFindNext(fList, desc)
nList = nList - 1
Wend
Rem No match was found, return an error
stat = viClose (fList)
stat = viClose (dfltRM)
AutoConnect = VI_ERROR_RSRC_NFOUND
End Function

Example 4-3

Example 4-3 uses functionality not available in Visual Basic. Refer to
Example 4-2 for sample code usivigindRsrc()

NI-VISA User Manual A-8 © National Instruments Corporation

Appendix A Visual Basic Examples

Example 5-1

Private Sub vbMain()
Dim stat As ViStatus
Dim dfltRM As ViSession
Dim sesn As ViSession
Dim retCount As Long
Dim idnResult As String * 72
Dim resultBuffer As String * 256

Rem Open Default Resource Manager
stat = viOpenDefaultRM(dfltRM)
If (stat < VI_SUCCESS) Then
Rem Error initializing VISA...exiting
Exit Sub
End If

Rem Open communication with GPIB Device at Primary Addr 1
Rem NOTE: For simplicity, we will not show error checking
stat = viOpen(dfltRM, "GPIB::1::INSTR", VI_NULL, VI_NULL, sesn)

Rem Initialize the timeout attribute to 10 s
stat = viSetAttribute(sesn, VI_ATTR_TMO_VALUE, 10000)

Rem Set termination character to carriage return (\r=0x0D)
stat = viSetAttribute(sesn, VI_ATTR_TERMCHAR, &HOD)
stat = viSetAttribute(sesn, VI_ATTR_TERMCHAR_EN, VI_TRUE)

Rem Don't assert END on the last byte
stat = viSetAttribute(sesn, VI_ATTR_SEND_END_EN, VI_FALSE)

Rem Clear the device
stat = viClear(sesn)

Rem Request the IEEE 488.2 identification information
stat = viWrite(sesn, "*IDN?", 5, retCount)
stat = viRead(sesn, idnResult, 72, retCount)

Rem Your code should use idnResult and retCount to parse device info

Rem Trigger the device for an instrument reading
stat = viAssertTrigger(sesn, VI_TRIG_PROT_DEFAULT)

Rem Receive results
stat = viRead(sesn, resultBuffer, 256, retCount)

Rem Close sessions

stat = viClose (sesn)

stat = viClose (dfltRM)
End Sub

© National Instruments Corporation A-9 NI-VISA User Manual

Appendix A Visual Basic Examples

Example 6-1

Private Sub vbMain()
Dim stat As ViStatus
Dim dfltRM As ViSession
Dim sesn As ViSession
Dim addr As ViAddr
Dim mSpace As Integer
Dim Value As Integer

Rem Open Default Resource Manager
stat = viOpenDefaultRM(dfltRM)
If (stat < VI_SUCCESS) Then
Rem Error initializing VISA...exiting
Exit Sub
End If

Rem Open communication with VXI Device at Logical Address 16
Rem NOTE: For simplicity, we will not show error checking
stat = viOpen(dfitRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesn)

mSpace = VI_A16_SPACE
stat = viMapAddress(sesn, mSpace, 0, &H40, VI_FALSE, VI_NULL, addr)

viPeek16 sesn, addr, Value
Rem Access a different register by manipulating the pointer.
viPeek16 sesn, addr + 2, Value

stat = viUnmapAddress(sesn)

Rem Close down the system
stat = viClose(sesn)
stat = viClose(dfltRM)

End Sub

NI-VISA User Manual A-10 © National Instruments Corporation

Appendix A Visual Basic Examples

Example 6-2

Private Sub vbMain()
Dim stat As ViStatus
Dim dfltRM As ViSession
Dim self As ViSession
Dim addr As ViAddr
Dim offs As Long
Dim mSpace As Integer
Dim Value As Integer

Rem Begin by initializing the system
stat = viOpenDefaultRM(dfltRM)
If (stat < VI_SUCCESS) Then
Rem Error initializing VISA...exiting
Exit Sub
End If

Rem Open communication with VXI Device at Logical Address 0
Rem NOTE: For simplicity, we will not show error checking
stat = viOpen(dfltRM, "VXIO0::0::INSTR", VI_NULL, VI_NULL, self)

Rem Allocate a portion of the device's memory
stat = viMemAlloc(self, &H100, offs)

Rem Determine where the shared memory resides

stat = viGetAttribute(self, VI_ATTR_MEM_SPACE, mSpace)

stat = viMapAddress(self, mSpace, offs, &H100, VI_FALSE, VI_NULL, addr)
viPeek16 self, addr, Value

Rem Access a different register by manipulating the pointer.

viPeek16 self, addr + 2, Value

stat = viUnmapAddress(self)
stat = viMemFree(self, offs)

Rem Close down the system
stat = viClose(self)
stat = viClose(dfltRM)

End Sub

© National Instruments Corporation A-11 NI-VISA User Manual

Appendix A

Visual Basic Examples

Example 7-1

Visual Basic does not support callback handlers, so currently the only way to handle events
is throughviwaitOnEvent() . Because Visual Basic does not support asynchronous
operations either, this example usesviRead() call instead of theiReadAsync() call.

Private Sub vbMain()

Const MAX_CNT = 1024
Dim stat As ViStatus
Dim dfltRM As ViSession
Dim sesn As ViSession

Dim bufferHandle As String
Dim retCount As Long

Dim etype As ViEventType
Dim event As ViEvent

Dim stb As Integer

Rem Begin by initializing the system
Rem NOTE: For simplicity, we will not show error checking

stat =

viOpenDefaultRM(dfltRM)

If (stat < VI_SUCCESS) Then
Rem Error initializing VISA...exiting
Exit Sub

End If

Rem Open communication with GPIB device at primary address 2

stat =

viOpen(dfitRM, "GPIBO::2::INSTR", VI_NULL, VI_NULL, sesn)

Rem Allocate memory for buffer

Rem |

n addition, allocate space for the ASCII NULL character

bufferHandler = Space$(MAX_CNT + 1)

Rem Enable the driver to detect events

stat =

viEnableEvent(sesn, VI_EVENT_SERVICE_REQ, VI_QUEUE, VI_NULL)

Rem Tell the device to begin acquiring a waveform

stat =

viWrite(sesn, "EOx51; W1", 9, retCount)

Rem The device asserts SRQ when the waveform is ready
stat = viwaitOnEvent(sesn, VI_EVENT_SERVICE_REQ, 20000, etype, event)
If (stat < VI_SUCCESS) Then

Rem Waveform not received...exiting

stat = viClose (dfltRM)

Exit Sub

End If
stat =

NI-VISA Us

viReadSTB (sesn, stb)

er Manual A-12 © National Instruments Corporation

Appendix A Visual Basic Examples

Rem Read the data
stat = viRead(sesn, bufferHandle, MAX_CNT, retCount)

Rem Your code should process the waveform data

Rem Close the event context
stat = viClose (event)

Rem Stop listening for events
stat = viDisableEvent(sesn, VI_ALL_ENABLED_EVENTS, VI_ALL_MECH)

Rem Close down the system
stat = viClose(sesn)
stat = viClose(dfltRM)

End Sub

© National Instruments Corporation A-13 NI-VISA User Manual

Appendix A Visual Basic Examples

Example 8-1

Private Sub vbMain()
Const MAX_COUNT =128

Dim stat As ViStatus 'For checking errors

Dim dfltRM As ViSession ‘Communication channels
Dim sesnIN As ViSession ‘Communication channels
Dim sesnOUT As ViSession ‘Communication channels

Dim aKey As String * VI_FIND_BUFLEN 'Access key for lock
Dim buf As String * MAX_COUNT 'To store device data

Dim etype As ViEventType ‘To identify event
Dim event As ViEvent ‘To hold event info
Dim retCount As Long 'To hold byte count

Rem Begin by initializing the system
stat = viOpenDefaultRM(dfltRM)
If (stat < VI_SUCCESS) Then
Rem Error initializing VISA...exiting
Exit Sub
End If

Rem Open communications with VXI Device at Logical Addr 16
stat = viOpen(dfitRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesnIN)
stat = viOpen(dfitRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesnOUT)

Rem We open two sessions to the same device
Rem One session is used to assert triggers on TTL channel 4
Rem The second is used to receive triggers on TTL channel 5

Rem Lock first session as shared, have VISA generate the key

Rem Then lock the second session with the same access key

stat = viLock(sesnIN, VI_SHARED_LOCK, 5000, ", aKey)

stat = viLock(sesnOUT, VI_SHARED_LOCK, VI_TMO_IMMEDIATE, aKey, aKey)

Rem Set trigger channel for sessions
stat = viSetAttribute(sesnIN, VI_ATTR_TRIG_ID, VI_TRIG_TTL5)
stat = viSetAttribute(sesnOUT, VI_ATTR_TRIG_ID, VI_TRIG_TTL4)

Rem Enable input session for trigger events
stat = viEnableEvent(sesnIN, VI_EVENT_TRIG, VI_QUEUE, VI_NULL)

Rem Assert trigger to tell device to start sampling
stat = viAssertTrigger(sesnOUT, VI_TRIG_PROT_DEFAULT)

Rem Device will respond with a trigger when data is ready
stat = viwaitOnEvent(sesnIN, VI_EVENT_TRIG, 20000, etype, event)
If (stat < VI_SUCCESS) Then

stat = viClose (dfltRM)

Exit Sub

NI-VISA User Manual A-14 © National Instruments Corporation

Appendix A Visual Basic Examples

End If

Rem Close the event
stat = viClose(event)

Rem Read data from the device
stat = viRead(sesnIN, buf, MAX_COUNT, retCount)

Rem Your code should process the data

Rem Unlock the sessions
stat = viUnlock(sesnIN)
stat = viUnlock(sesnOUT)

Rem Close down the system
stat = viClose(sesnIN)
stat = viClose(sesnOUT)
stat = viClose(dfltRM)

End Sub

© National Instruments Corporation A-15 NI-VISA User Manual

Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form and
the configuration form, if your manual contains one, about your system configuration to answer your
guestions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to quickly
provide the information you need. Our electronic services include a bulletin board service, an FTP site,
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first try the
electronic support systems. If the information available on these systems does not answer your
guestions, we offer fax and telephone support through our technical support centers, which are staffed
by applications engineers.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files
and documents to answer most common customer questions. From these sites, you can also downloac
the latest instrument drivers, updates, and example programs. For recorded instructions on how to use
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. You can
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support

To access our FTP site, log on to our Internet Hipstatinst.com , @asanonymous and use
your Internet address, suchjassmith@anywhere.com , as your password. The support files and
documents are located in thapport directories.

© National Instruments Corporation B-1 NI-VISA User Manual

Fax-on-Demand Support

Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access Fax-on-Demand from a touch-tone telephone at
512 418 1111.

E-Mail Support (Currently USA Only)

You can submit technical support questions to the applications engineering team through e-mail at the
Internet address listed below. Remember to include your name, address, and phone number so we can
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support

National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact

the source from which you purchased your software to obtain support.

Country Telephone Fax

Australia 03 9879 5166 039879 6277
Austria 0662 4579900 0662 45 7990 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
CanadaQuébeg 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 72572511 09 725 725 55
France 0148142424 0148142414
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 035472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5520 2635 5520 3282
Netherlands 0348 433466 0348 430673
Norway 32848400 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 0873049 70 08 73043 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644

United Kingdom
United States

NI-VISA User Manual

01635 523545
512 795 8248

B-2

01635 523154
512 794 5678

© National Instruments Corporation

Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware, and use
the completed copy of this form as a reference for your current configuration. Completing this form
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name

Company

Address

Fax(__) Phone (__)

Computer brand Model Processor
Operating system (include version humber)

Clock speed MHz RAM___ MB Display adapter

Mouse ___yes __ no Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model Revision
Configuration

National Instruments software product Version
Configuration

The problem is:

List any error messages:

The following steps reproduce the problem:

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us provide quality products to meet your needs.

Title: NI-VISA" User Manual
Edition Date: June 1998
Part Number: 321074D-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.
Name
Title
Company
Address

E-Mail Address

Phone (__) Fax(__)

Mail to: Technical Publications Faxto: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678

Austin, Texas 78730-5039

Glossary

Prefix Meanings Value
p- pico 1012
n- nano- 16°
- micro- 1066
m- milli- 10-3
k- kilo- 108
M- mega- 16
G- giga- 10
t- tera- 102

A

address location Refers to the location of a specific register.

address string A string (or other language construct) that uniquely locates and identifies a
resource. VISA defines an ASCII-based grammar that associates strings
with particular physical devices and VISA resources.

API Application Programming Interface. The direct interface that an end user
sees when creating an application. In VISA, the API consists of the sum of
all of the operations, attributes, and events of each of the VISA resource
classes.

attribute A value within an object or resource that reflects a characteristic of its
operational state.

B

b Bit

B Byte

© National Instruments Corporation G-1 NI-VISA User Manual

Glossary

bus error An error that signals failed access to an address. Bus errors occur with
low-level accesses to memory and usually involve hardware with bus
mapping capabilities. For example, nonexistent memory, a honexistent
register, or an incorrect device access can cause a bus error.

callback Same dsandler A software routine that is invoked when an asynchronous
event occurs. In VISA, callbacks can be installed on any session that
processes events.

commander A device that has the ability to control another device. This term can also

denote the unique device that has sole control over another device (as with
the VXI Commander/Servant hierarchy).

communication channel The samesassionA communication path between a software element
and a resource. Every communication channel in VISA is unique.

controller An entity that can control another device(s) or is in the process of
performing an operation on another device.

D

device An entity that receives commands from a controller. A device can be an
instrument, a computer (acting in a non-controller role), or a peripheral
(such as a plotter or printer).

DLL Dynamic Link Library. Same asshared libraryor shared objectA file
containing a collection of functions that can be used by multiple
applications. This term is usually used for libraries on Windows platforms.

E

event An asynchronous occurrence that is independent of the normal sequential
execution of the process running in a system.

F

FIFO First In-First Out; a method of data storage in which the first element stored

is the first one retrieved.

NI-VISA User Manual G-2 © National Instruments Corporation

handler

instrument

instrument driver

interface

interrupt

lock

mapping

0

operation

© MNational Instruments Corporation G-3

Glossary

Same a=mllback A software routine that is invoked when an asynchronous
event occurs. In VISA, callbacks can be installed on any session that
processes events.

A device that accepts some form of stimulus to perform a designated task,
test, or measurement function. Two common forms of stimuli are message
passing and register reads and writes. Other forms include triggering or
varying forms of asynchronous control.

A set of routines designed to control a specific instrument or family of
instruments, and any necessary related files for LabWindows/CVI or
LabVIEW.

A generic term that applies to the connection between devices and
controllers. It includes the communication media and the device/controller
hardware necessary for cross-communication.

A condition that requires attention out of the normal flow of control of a
program.

A state that prohibits sessions other than the session(s) owning the lock
from accessing a resource.

An operation that returns a reference to a specified section of an address
space and makes the specified range of addresses accessible to the
requester. This function is independent of memory allocation.

An action defined by a resource that can be performed on a resource. In
general, this term is synonymous with the connotation of the metdod
in object-oriented architectures.

NI-VISA User Manual

Glossary

P

process

R

register

resource class

resource or resource
instance

S

S

session
shared library or

shared object

shared memory

NI-VISA User Manual

An operating system element that shares a system's resources. A
multi-process system is a computer system that allows multiple programs
to execute simultaneously, each in a separate process environment. A
single-process system is a computer system that allows only a single
program to execute at a given point in time.

An address location that can be read from or written into or both. It may
contain a value that is a function of the state of hardware or can be written
into to cause hardware to perform a particular action. In other words, an
address location that controls and/or monitors hardware.

The definition for how to create a particular resource. In general, this is
synonymous with the connotation of the wetassin object-oriented
architectures. For VISA Instrument Control resource classes, this refers to
the definition for how to create a resource which controls a particular
capability or set of capabilities of a device.

In general, this term is synonymous with the connotation of the olxedt
in object-oriented architectures. For VISAsourcemore specifically
refers to a particular implementation {jostancein object-oriented terms)
of a Resource Class.

second

The same asmmunication channef communication path between a
software element and a resource. Every communication channel in VISA is
unique.

Same aLL. A file containing a collection of functions that can be used
by multiple applications. This term is usually used for libraries on UNIX
platforms.

A block of memory that is accessible to both a client and a server. The
memory block operates as a buffer for communication. This is unique to
register-based interfaces such as VXI.

G-4 © National Instruments Corporation

SRQ

status byte

T

thread

v

virtual instrument

VISA

VISA instrument
control resources

VISA memory
access resources

Glossary

IEEE 488 Service Request. This is an asynchronous request from a remote
device that requires service. A service request is essentially an interrupt
from a remote device. For GPIB, this amounts to asserting the SRQ line on
the GPIB. For VXI, this amounts to sending the Request for Service True
event (REQT).

A byte of information returned from a remote device that shows the current
state and status of the device. If the device follows IEEE 488 conventions,
bit 6 of the status byte indicates whether the device is currently requesting
service.

An operating system element that consists of a flow of control within a
process. In some operating systems, a single process can have multiple
threads, each of which can access the same data space within the process.
However, each thread has its own stack and all threads can execute
concurrently with one another (either on multiple processors, or by
time-sharing a single processor).

A name given to the grouping of software modules (in this case, VISA
resources with any associated or required hardware) to give the
functionality of a traditional stand-alone instrument. Within VISA, a virtual
instrument is the logical grouping of any of the VISA resources.

Virtual Instrument Software Architecture. This is the general name given to
this product and its associated architecture. The architecture consists of two
main VISA components: the VISA resource manager and the VISA
resources.

This is the name given to the part of VISA that defines all of the
device-specific resource classes. VISA Instrument Control resources
encompass all defined device capabilities for direct, low-level instrument
control.

This is the name given to the part of VISA that defines all of the register-
or memory-specific resource classes. The VISA MEMACC resources
encompass all high- and low-level services for interface-level accesses to
all memory defined in the system.

© MNational Instruments Corporation G-5 NI-VISA User Manual

Glossary

VISA resource manager This is the name given to the part of VISA that manages resources. This
management includes support for finding resources and opening sessions to
them.

VISA resource template This is the name given to the part of VISA that defines the basic constraints
and interface definition for the creation and use of a VISA resource. All
VISA resources must derive their interface from the definition of the VISA
Resource Template. This includes services for setting and retrieving
attributes, receiving events, locking resources, and closing objects.

NI-VISA User Manual G-6 © National Instruments Corporation

Index

A

address mapping
accessing multiple address spaces, 5-11
operation versus pointer dereference, 5-8
overview of register accesses from
computers, 5-5to 5-7
performing low-level register accesses,
5-6 to 5-7
pointer manipulation, 5-8 to 5-9
programming example, 5-9 to 5-10
application stack size, under Windowsg, -7
asynchronous read/write services, 4-3 to 4-4
attributes
definition, 3-4
global, 3-5
local, 3-5

basic I/O services, 4-1 to 4-7

C

callbacks, 7-5to 7-8
callback modes, 7-6 to 7-7
definition, 7-1
direct, 7-6
event context, 7-11
independent queues, 7-7
interrupt callback handlers, 9-3 to 9-4
programming considerations, 2-7
sample code, 7-8 to 7-10
suspended, 7-6
userHandle parameter, 7-7 to 7-8
clear services, 4-4 to 4-5
communication channelSeealso
message-based communication;
register-based communication.
closing, 3-6
opening, 3-5to 3-6
programming considerations, 3-5 to 3-6
customer communicatiomjii, B-1 to B-2

asynchronous read/write services, 4-3 to 4-4

clear services, 4-4 to 4-5
status/service request service, 4-6 to 4-7

D

synchronous read/write services, 4-2 to 4-3 device triggering, 4-5

trigger services, 4-5 to 4-6
buffers

automatically flushing formatted 1/0
buffers, 4-9 to 4-10

controlling serial 1/0 buffers, 4-11

manually flushing formatted 1/0O
buffers, 4-9

resizing formatted 1/O buffers, 4-10

bulletin board support, B-1

© National Instruments Corporation

documentation
conventions used in manual,
how to use documentation sgt,
organization of manuaix-x
related documentatiori-xii

E

electronic support services, B-1to B-2

e-mail support, B-2

event handling programming examples
example 7-1, 7-9 to 7-11

NI-VISA User Manual

Index

Visual Basic examples, A-4,
A-12 to A-13
events
callbacks, 7-5to 7-8
callback modes, 7-6 to 7-7
definition, 7-1
event context, 7-11
independent queues, 7-7
interrupt callback handlers,
9-3t0 9-4
programming considerations, 2-7
sample code, 7-8 to 7-10
userHandle parameter, 7-7 to 7-8
definition, 7-1
enabling and disabling, 7-3 to 7-4
I/0 completion event, 4-3 to 4-4
life of event context, 7-11
queuing, 7-4 to 7-5
definition, 7-1
event context, 7-11
programming considerations, 2-7
sample code, 7-8 to 7-10
supported events, 7-2 to 7-3
VISA event model, 7-1
examplesSeeprogramming examples.
exclusive locks, 8-1, 8-Feealsolocks.

F

fax and telephone support, B-2
FaxBack support, B-2
flushing buffers Seebuffers.
formatted I/O services, 4-7 to 4-11
automatically flushing formatted I/O
buffers, 4-9 to 4-10
controlling serial 1/0 buffers, 4-11
formatted I/O operations, 4-7 to 4-8
manually flushing formatted 1/0O
buffers, 4-9
resizing formatted I/O buffers, 4-10
Variable List operations, 4-8

NI-VISA User Manual -2

framework
definition, 1-2
framework and programming language
support (table), 1-3 to 1-4
FTP support, B-1

G

global attributes, 3-5
GPIB platforms, NI-VISA support for, 9-5
multiple GPIB-VXI support, 9-5

H

High-Level Access operations, 5-2 to 5-3
comparison of high- and low-level
access, 5-10to 5-11
accessing multiple address
spaces, 5-11
ease of use, 5-10
speed, 5-10
read and write operations (table), 5-2
register-based communication, 3-7 to 3-8
high-level block operations
read and write operations (table), 5-2
register-based communication, 5-4 to 5-5

INSTR Resource, definition, 3-4
instrument drivers, 3-3
interface independence, GPIB
example, 3-8 to 3-9
interface support with NI-VISASeemultiple
interface support with NI-VISA.
interface-level triggering, 4-6
interrupt callback handlers, 9-3 to 9-4
I/0 completion event, 4-3 to 4-4
asynchronous read/write services,
4-3t0 4-4
enabling (note), 4-3

© National Instruments Corporation

I/0O services
basic I/O services, 4-1 to 4-7
asynchronous read/write
services, 4-3 to 4-4
clear services, 4-4 to 4-5
status/service request
service, 4-6 to 4-7
synchronous read/write
services, 4-2 to 4-3
trigger services, 4-5 to 4-6
formatted I/O services, 4-7 to 4-11

automatically flushing formatted 1/0
buffers, 4-9 to 4-10

controlling serial I/0O buffers, 4-11

formatted 1/O operations, 4-7 to 4-8

manually flushing formatted 1/0
buffers, 4-9

resizing formatted I/O buffers, 4-10
Variable List operations, 4-8

L

local attributes, 3-5
locks, 8-1to 8-6
acquiring exclusive lock, 8-3
lock sharing, 8-2 to 8-3
nested locks, 8-3
overview, 8-1
programming examples
example 2-4, 2-10 to 2-12
example 8-1, 8-4 to 8-6
Visual Basic examples, A-5,
A-14to A-15
types of locks, 8-1 to 8-2
Low-Level Access operations, 5-5 to 5-10
bus errors, 5-10
comparison of high- and low-level access,
5-10to 5-11

accessing multiple address
spaces, 5-11

© National Instruments Corporation -3

Index

ease of use, 5-10

speed, 5-10
computer access overview, 5-5to 5-7
example 5-1, 5-9 to 5-10
operations versus pointer deference, 5-8
overview, 3-8
pointer manipulation, 5-8 to 5-9
programming considerations for

NI-VISA, 9-1t0 9-4

read and write operations (table), 5-2
using VISA for performing, 5-7 to 5-8

manual.Seedocumentation.
mapping.Seeaddress mapping.
memory, sharedseeshared
memory operations.
Memory 1/O services, 5-1
memory model for NI-VISA under
Windows 3x, 9-6
message-based communication, 4-1 to 4-13
basic I/0O services, 4-1to 4-7
asynchronous read/write
services, 4-3to 4-4
clear services, 4-4 to 4-5
status/service request
service, 4-6 to 4-7
synchronous read/write services,
4-2 1o 4-3
trigger services, 4-5 to 4-6
examples
example 2-1, 2-2 to 2-4
example 4-1, 4-12 to 4-13
Visual Basic examples, A-2, A-6
formatted I/O services, 4-7 to 4-11

automatically flushing formatted 1/0O
buffers, 4-9 to 4-10

controlling serial 1/0 buffers, 4-11
formatted I/O operations, 4-7 to 4-8

NI-VISA User Manual

Index

manually flushing formatted 1/0
buffers, 4-9
resizing formatted I/O buffers, 4-10
variable list operations, 4-8
overview, 4-1
multiple applications support under
NI-VISA, 9-2
multiple interface support with
NI-VISA, 9-5 to 9-6
multiple GPIB-VXI support, 9-5
serial port support, 9-5
VME support, 9-6
VXI and GPIB platforms, 9-5

nested locks, 8-3
NI-VISA. Seeprogramming considerations
for NI-VISA; VISA.

0
object-oriented (OO) design, 3-4
operations, definition, 3-4

P

platform-specific issues for NI-VIS/ASee

programming considerations for NI-VISA.

pointer
dereferencing vs. operations, 5-8
manipulating, 5-8 to 5-9
portability issuesSeeprogramming
considerations for NI-VISA.
programming considerations for NI-VISA,
9-1 to 9-4.Seealso programming with
VISA.

interrupt callback handlers, 9-3 to 9-4

low-level access functions, 9-2

multiple applications using NI-VISA
driver, 9-2

NI-VISA User Manual

-4

multiple interface support
issues, 9-4 to 9-6
multiple GPIB-VXI support, 9-4
serial port support, 9-5
VME support, 9-6
VXI and GPIB platforms, 9-5
Windows 3x issues, 9-6 to 9-7
application stack size, 9-7
installation overview, 9-6
memory model, 9-6

programming examples

event handling, 2-7 to 2-10
callbacks, 2-7
discussion of example 2-3,
2-9to 2-10
example 2-3, 2-8 to 2-9
queuing, 2-7
queuing and callback (example 7-1),
7-9to 7-11
Visual Basic examples, A-4,
A-12 to A-13
locking, 2-10 to 2-12
discussion of example 2-4, 2-12
example 2-4, 2-10 to 2-11
example 8-1, 8-4 to 8-6
Visual Basic examples, A-5,
A-14to A-15
Low-Level Access operations, 5-9 to 5-10
message-based communication,
2-1to2-4
discussion of example 2-1, 2-3 to 2-4
example 2-1, 2-2
example 4-1, 4-12 to 4-13
overview, 2-1
Visual Basic examples, A-2, A-6
register-based communication, 2-4 to 2-7
discussion of example 2-2, 2-6 to 2-7
example 2-2, 2-5t0 2-6
example 5-1, 5-9 to 5-10
overview, 2-4 to 2-5
Visual Basic examples, A-3, A-7

© National Instruments Corporation

Resource Manager
accessing resources
example 6-1, 6-2 to 6-3
Visual Basic example, A-9
searching for resources
example 6-2, 6-4 to 6-6
Visual Basic example,
A-10to A-11
shared memory operations
example 5-2, 5-12 to 5-13
Visual Basic example, A-8
programming language support for NI-VISA
(table), 1-3to 1-4
programming with VISASeealso
programming considerations for NI-VISA.
communication channels, 3-5 to 3-6
interface independence (example),
3-8t0 3-9
register communication, 3-7 to 3-8
Resource Manager, 3-6 to 3-7
terminology, 3-3 to 3-5

Q

gueuing, 7-4 to 7-5
definition, 7-1
event context, 7-11
programming considerations, 2-7
sample code, 7-8 to 7-10

R

read/write services
asynchronous, 4-3 to 4-4
synchronous, 4-2 to 4-3
register-based communication, 5-1 to 5-13
comparison of high- and low-level
access, 5-10to 5-11
accessing multiple address
spaces, 5-11

© National Instruments Corporation -5

Index

ease of use, 5-10
speed, 5-10
examples
example 2-2, 2-5to 2-7
example 5-1, 5-9 to 5-10
Visual Basic examples, A-3, A-7
High-Level Access operations
overview, 3-7 to 3-8
purpose and use, 5-2 to 5-3
high-level block operations, 5-4 to 5-5
Low-Level Access operations, 5-5 to 5-10
bus errors, 5-10
computer access overview, 5-5to 5-7
example, 5-9to 5-10
operations versus pointer
deference, 5-8
overview, 3-8
pointer manipulation, 5-8 to 5-9
using VISA for performing,
5-7 to 5-8
overview, 5-1 to 5-2
shared memory operations, 5-11 to 5-13
overview, 5-11 to 5-12
sample code, 5-12 to 5-13
when to use (note), 5-11
Register-based devices (RBDs), 5-1
resizing formatted 1/O buffers, 4-10
resource, definition, 3-3 to 3-4
Resource ManagefeeVISA
Resource Manager.

S

serial I/O buffers, controlling, 4-11
serial port support, 9-5
service request servicBeestatus/service
request service.
sessionsSeealsocommunication channels.
definition, 3-5
shared locks, 8-1Seealsolocks.

NI-VISA User Manual

Index

shared memory operations, 5-11 to 5-13

examples

sample code (example 5-2),

5-12 to 5-13

Visual Basic example, A-8
overview, 5-11 to 5-12
when to use (note), 5-11
stack size, under Windowsx39-7
status/service request service, 4-6 to 4-7
synchronous read/write services,

4-2 to 4-3

T

technical support, B-1 to B-2
telephone and fax support, B-2
termination mechanisms, setting attributes
for, 4-2 to 4-3
timeout, setting (example), 3-4
trigger services, 4-5to 4-6
description, 4-5 to 4-6
device triggering, 4-5
interface-level, 4-6

U

userHandle parameter, 7-7 to 7-8

v

Variable List operations, 4-8
ViAssertTrigger operation, 4-5
VI_ATTR_DEST_INCREMENT, 5-4
VI_ATTR_MAX_QUEUE_
LENGTH, 7-5, 7-7
VI_ATTR_RD_BUF_OPER_MODE, 4-10
VI_ATTR_SEND_END_EN, 4-3
VI_ATTR_SRC_INCREMENT, 5-4
VI_ATTR_TERMCHAR, 4-3
VI_ATTR_TERMCHAR_EN, 4-3
VI_ATTR_TMO_VALUE, 3-4, 4-3

NI-VISA User Manual

-6

VI_ATTR_TRIG_ID, 4-5
VI_ATTR_WR_BUF_OPER_MODE, 4-10
viClear operation, 4-4, 4-10
viClose operation
closing communication channels
(example), 3-6
closing resource manager session, 6-4
event context, 7-11
viDisableEvent operation
disabling events, 7-3to 7-4, 7-5
programming example 2-3, 2-9
viDiscardEvents operation, 7-5, 7-6
viEnableEvent operation
asynchronous read/write services
(example), 4-4
callback modes (example), 7-6 to 7-7
enabling events, 7-3to 7-4
programming example 2-3, 2-8, 2-9
VI_EVENT_IO_COMPLETION event, 7-2
VI_EVENT_SERVICE_REQ event, 4-6, 7-2
VI_EVENT_TRIG event, 7-2
VI_EVENT_VXI_SIGP event, 7-2
viFindNext operation (example), 6-5, 6-6
viFindRsrc operation
searching for resources
(example), 6-4 to 6-5, 6-6
specifying regular expression for
Resource Manager, 3-7
viFlush operation
automatically flushing formatted I/O
buffers, 4-9
controlling serial I/O buffers, 4-11
manually flushing formatted 1/O
buffers, 4-9
viGetAttribute operation
event context with callback
mechanism, 7-11
programming example 2-3, 2-9
service request (example), 4-6
viln8 / viln16 / viln32 operations
High-Level Access operations, 5-2 to 5-3

© National Instruments Corporation

opening Resource Manager
communications (example), 3-7
programming example 2-2, 2-5, 2-6
requirements for accessing registers, 5-3
vilnstallHandler operation, 7-6, 7-7, 9-3
viLock operation
acquiring exclusive lock, 8-3
lock sharing, 8-2
nested locks, 8-3
programming example 2-4, 2-11, 2-12
sample code, 8-5
viMapAddress operation
calling before using viPe&®X or
viPokexXX; 9-2
performing low-level register
accesses, 5-7, 9-2
pointer dereferencing vs. operations, 5-8
pointer manipulation, 5-8 to 5-9
viMemAlloc operation
programming example, 5-13
shared memory operation, 5-11
viMemFree operation
programming example, 5-13
shared memory operation, 5-11
viMoveln8 / viMoveln16 / viMoveln32
operations, 5-4 to 5-5
viMoveOut8 / viMoveOut16 / viMoveOut32
operations, 5-4 to 5-5
viOpen operation
creating session for resource example, 6-2
opening communication channels
(example), 3-5to0 3-6
programming example, 2-2, 2-3, 6-2
viOpenDefaultRM operation
programming example, 2-2, 2-3, 6-2
starting sessions, 3-6 to 3-7, 6-2
viOut8 / viOut16 / viOut32 operations
High-Level Access operations, 5-2 to 5-3
interface independence (example), 3-9
programming example 2-2, 2-5, 2-6

© National Instruments Corporation -7

Index

writing to memory location
(example), 3-7 to 3-8
viPeek8 / viPeek16 / viPeek32
operations, 5-8, 9-2
viPoke8 / viPokel6 / viPoke32
operations, 5-8, 9-2
viPrintf operation
automatically flushing formatted I/O
buffers, 4-9
formatted I/O operations, 4-7
manually flushing formatted 1/O
buffers, 4-9
viQueryf operation, 4-8
viRead operation
reading string from device (example), 3-5
synchronous read/write services
(example), 4-2
viReadSTB operation, 4-6
Virtual Instrument Software Architecture.
SeeVISA.
VISA
background and history, 1-2 to 1-4, 3-1
framework and programming language
support (table), 1-3to 1-4
objectives, 3-2 to 3-3
requirements for getting started, 1-1
standards for VXlug&play
software, 1-2
VISA API, 3-1
VISA Resource Manager, 6-1 to 6-6
accessing resources, 6-1 to 6-3
address string examples (table), 6-3
default value for optional string
segments (table), 6-3
example 6-1, 6-2 to 6-3
strings for describing resources
(table), 6-2 to 6-3
Visual Basic example, A-9
function of, 3-6 to 3-7
purpose, 6-1
searching for resources, 6-4 to 6-6

NI-VISA User Manual

Index

example 6-2, 6-4 to 6-5
range of expressions passed to
viFindRsrc (table), 6-6
Visual Basic example, A-10 to A-11
starting session with Default Resource
Manager, 3-7 to 3-7
Visa Transition Library (VTL)
specification, 1-2
viScanf operation
automatically flushing formatted I/O
buffers, 4-9
formatted I/O operations, 4-7
manually flushing formatted 1/0
buffers, 4-9
viSetAttribute operation
programming example 2-1, 2-3
setting timeout attribute (example), 3-4
synchronous read/write services
(example), 4-3
trigger service (example), 4-5
viSetBuf operation
automatically flushing formatted 1/0O
buffers, 4-10
controlling serial 1/O buffers, 4-11
resizing formatted I/O buffers, 4-10
Visual Basic examples
accessing resources, A-9
event handling, A-4, A-12 to A-13
locking, A-14 to A-15
locks, A-5
message-based communication, A-2, A-6
register-based communication, A-3, A-7
searching for resources, A-10 to A-11
shared memory operations, A-8
viTerminate operation, 4-3, 4-4
viUninstall[Handler operation, 7-8
viUnlock operation
exclusive locks, 8-3
nested locks, 8-3
programming example 2-4, 2-11, 2-12
sample code, 8-5

NI-VISA User Manual -8

viuUnmapAddress operation, 5-8
ViVPrintf operation, 4-8
viVQueryf operation, 4-8
viVScanf operation, 4-8
viwaitOnEvent operation
asynchronous read/write services
(example), 4-4
event context, 7-11
event queuing process, 7-5
programming example 2-3, 2-8, 2-9
viWrite operation
formatted 1/O operations (example), 4-8
programming example 2-1, 2-4
sending string to device
(example), 3-4 to 3-5
synchronous read/write services
(example), 4-2
viWriteAsync operation (example), 4-4
VME devices, NI-VISA support for, 9-6
VTL specification, 1-2
VXI platforms, NI-VISA support for, 9-5
multiple GPIB-VXI support, 9-5
VXI plug&play standards, 1-2

W

Windows 3x programming issues, 9-6 to 9-7
application stack size, 9-7
installation overview, 9-6
memory model, 9-6

word serial protocol, 2-1

write servicesSeeread/write services.

© National Instruments Corporation

	NI-VISA™ User Manual
	Support
	Internet
	Bulletin Board
	Fax-on-Demand
	Telephone
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Copyright
	Trademarks
	WARNING

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	How to Use This Document Set
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	How to Use This Manual
	What You Need to Get Started
	Introduction to VISA

	Chapter 2 Introductory Programming Examples
	Example of Message-Based Communication
	Example 2-1
	Example 2-1 Discussion

	Example of Register-Based Communication
	Example 2-2
	Example 2-2 Discussion

	Example of Handling Events
	Callbacks
	Queuing
	Example 2-3
	Example 2-3 Discussion

	Example of Locking
	Example 2-4
	Example 2-4 Discussion

	Chapter 3 VISA Overview
	Introduction
	Objectives of VISA
	Interactive Control of VISA
	Programming with VISA
	Beginning Terminology
	Communication Channels
	The Resource Manager
	Register Communication
	Example of Interface Independence

	Chapter 4 Initializing Your VISA Application
	Introduction
	Opening a Session
	Example 4-1

	Finding Resources
	Example 4-2
	Finding VISA Resources Using Regular Expressions
	Attribute-Based Resource Matching
	Example 4-3

	Configuring a Session
	Accessing Attributes
	Common Considerations for Using Attributes

	Chapter 5 Message-Based Communication
	Introduction
	Basic I/O Services
	Synchronous Read/Write Services
	Asynchronous Read/Write Services
	Clear Service
	Trigger Service
	Status/Service Request Service

	Formatted I/O Services
	Formatted I/O Operations
	I/O Buffer Operations
	Variable List Operations
	Manually Flushing the Formatted I/O Buffers
	Automatically Flushing the Formatted I/O Buffers
	Resizing the Formatted I/O Buffers
	Controlling the Serial I/O Buffers

	Example VISA Message-Based Application
	Example 5-1

	Chapter 6 Register-Based Communication
	Introduction
	High-Level Access Operations
	High-Level Block Operations
	Low-Level Access Operations
	Overview of Register Accesses from Computers
	Using VISA to Perform Low-Level Register Accesses
	Operations versus Pointer Dereference
	Manipulating the Pointer
	Example 6-1
	Bus Errors

	Comparison of High-Level and Low-Level Access
	Speed
	Ease of Use
	Accessing Multiple Address Spaces

	Shared Memory Operations
	Shared Memory Sample Code
	Example 6-2

	Chapter 7 VISA Events
	Introduction
	Supported Events
	Enabling and Disabling Events
	Queuing
	Callbacks
	Callback Modes
	Independent Queues
	The userHandle Parameter

	Queuing and Callback Mechanism Sample Code
	Example 7-1

	The Life of the Event Context
	Event Context with the Queuing Mechanism
	Event Context with the Callback Mechanism

	Exception Handling

	Chapter 8 VISA Locks
	Introduction
	Lock Types
	Lock Sharing
	Acquiring an Exclusive Lock While Owning a Shared Lock
	Nested Locks

	Locking Sample Code
	Example 8-1

	Chapter 9 NI-VISA Platform-Specific and Portability Issues
	Programming Considerations
	Debugging Tool for Windows 95/NT
	Multiple Applications Using the NI-VISA Driver
	Low-Level Access Functions
	Interrupt Callback Handlers

	Multiple Interface Support Issues
	VXI and GPIB Platforms
	Multiple GPIB-VXI Support
	Serial Port Support
	VME Support

	Windows 3.x Issues
	Installation Overview
	Memory Model
	Application Stack Size

	Appendix A Visual Basic Examples
	Example 2-1
	Example 2-2
	Example 2-3
	Example 2-4
	Example 4-1
	Example 4-2
	Example 4-3
	Example 5-1
	Example 6-1
	Example 6-2
	Example 7-1
	Example 8-1

	Appendix B Customer Communication
	Electronic Services
	Bulletin Board Support
	FTP Support
	Fax-on-Demand Support
	E-Mail Support (Currently USA Only)

	Telephone and Fax Support
	Technical Support Form
	Documentation Comment Form

	Glossary
	Index
	Tables
	Table 1-1. NI-VISA Support
	Table 9-1. How VISA Invokes Callbacks
	Table 9-2. How Serial Ports Are Numbered

