
NIVISAUM.book Page 1 Tuesday, June 9, 1998 8:30 AM
VISA

NI-VISA™ User Manual

NI-VISA User Manual
June 1998 Edition
Part Number 321074D-01

725 11,
91,
4 00,
7 1200,

NIVISAUM.book Page 2 Tuesday, June 9, 1998 8:30 AM
Internet Support
E-mail: support@natinst.com
FTP Site: ftp.natinst.com
Web Address: www.natinst.com

Bulletin Board Support
BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 4130
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 8
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 37
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1996, 1998 National Instruments Corporation. All rights reserved.

NIVISAUM.book Page 3 Tuesday, June 9, 1998 8:30 AM
 Important Information

enced
do not
riod.

ide of
 costs

viewed
e right
 should
ages

 Any

arranty
follow

or othe

nical,
hout

ility
edical
 of the
inical
uards,
 always
ntended
n health
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evid
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that
execute programming instructions if National Instruments receives notice of such defects during the warranty pe
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outs
the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully re
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves th
to make changes to subsequent editions of this document without prior notice to holders of this edition. The reader
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any dam
arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE
CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS,
OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The w
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, r
events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mecha
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, wit
the prior written consent of National Instruments Corporation.

Trademarks
CVI™, LabVIEW™, NI-488.2™, NI-VISA™, NI-VXI™, and VXIpc™ are trademarks of National Instruments
Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reliab
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving m
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part
user or application designer. Any use or application of National Instruments products for or involving medical or cl
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeg
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should
continue to be used when National Instruments products are being used. National Instruments products are NOT i
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard huma
and safety in medical or clinical treatment.

NIVISAUM.book Page v Tuesday, June 9, 1998 8:30 AM
Contents
i
i
ii

-1
-1
2

-1
-2
-3
-4

-5
-6
-7
-7
-7
-8
-9
-10
-10
-11

-2
3
7
7

About This Manual
Organization of This Manual ... ix
Conventions Used in This Manual...x
How to Use This Document Set ..x
Related Documentation..x
Customer Communication ...x

Chapter 1
Introduction

How to Use This Manual ...1
What You Need to Get Started ..1
Introduction to VISA ...1-

Chapter 2
Introductory Programming Examples

Example of Message-Based Communication ..2
Example 2-1...2
Example 2-1 Discussion ..2

Example of Register-Based Communication...2
Example 2-2...2
Example 2-2 Discussion ..2

Example of Handling Events ...2
Callbacks ...2
Queuing ...2
Example 2-3...2
Example 2-3 Discussion ..2

Example of Locking...2
Example 2-4...2
Example 2-4 Discussion ..2

Chapter 3
VISA Overview

Introduction..3-1
Objectives of VISA..3
Interactive Control of VISA ..3-
Programming with VISA ...3-

Beginning Terminology...3-
© National Instruments Corporation v NI-VISA User Manual

Contents

-8
-10

-11
-12

4-1
-2
4-4
-4
6
8
-10
-11
11
11

-1
-2
-3
-4
-5
-6
-7

-7
8
8

10
1

-12
-12

NIVISAUM.book Page vi Tuesday, June 9, 1998 8:30 AM
Communication Channels ... 3
The Resource Manager ... 3
Register Communication... 3
Example of Interface Independence.. 3

Chapter 4
Initializing Your VISA Application

Introduction ...4-1
Opening a Session ...

Example 4-1 .. 4
Finding Resources ...

Example 4-2 .. 4
Finding VISA Resources Using Regular Expressions.................................... 4-
Attribute-Based Resource Matching... 4-
Example 4-3 .. 4

Configuring a Session.. 4
Accessing Attributes ... 4-
Common Considerations for Using Attributes.. 4-

Chapter 5
Message-Based Communication

Introduction ...5-1
Basic I/O Services ... 5

Synchronous Read/Write Services.. 5
Asynchronous Read/Write Services.. 5
Clear Service ... 5
Trigger Service.. 5
Status/Service Request Service... 5

Formatted I/O Services.. 5
Formatted I/O Operations ... 5
I/O Buffer Operations ... 5-
Variable List Operations ... 5-
Manually Flushing the Formatted I/O Buffers.. 5-9
Automatically Flushing the Formatted I/O Buffers .. 5-9
Resizing the Formatted I/O Buffers .. 5-
Controlling the Serial I/O Buffers... 5-1

Example VISA Message-Based Application... 5
Example 5-1 .. 5
NI-VISA User Manual vi © National Instruments Corporation

Contents

-2
-4
-5
5

-8
8
9

-10
10
-10
-10
-11
-11

-12
-12

7-2
-3

-6
-7
-8
-8

-9
-11
11
11
-12

NIVISAUM.book Page vii Tuesday, June 9, 1998 8:30 AM
Chapter 6
Register-Based Communication

Introduction..6-1
High-Level Access Operations ..6
High-Level Block Operations..6
Low-Level Access Operations...6

Overview of Register Accesses from Computers..6-
Using VISA to Perform Low-Level Register Accesses6-7
Operations versus Pointer Dereference ...6
Manipulating the Pointer ...6-
Example 6-1...6-
Bus Errors..6

Comparison of High-Level and Low-Level Access ..6-
Speed ...6
Ease of Use ..6
Accessing Multiple Address Spaces..6

Shared Memory Operations ...6
Shared Memory Sample Code...6
Example 6-2...6

Chapter 7
VISA Events

Introduction..7-1
Supported Events ...
Enabling and Disabling Events..7
Queuing..7-4
Callbacks..7-6

Callback Modes ...7
Independent Queues ..7
The userHandle Parameter ..7

Queuing and Callback Mechanism Sample Code..7
Example 7-1...7

The Life of the Event Context ...7
Event Context with the Queuing Mechanism..7-
Event Context with the Callback Mechanism ...7-

Exception Handling ...7

Chapter 8
VISA Locks

Introduction..8-1
Lock Types ..8-1
© National Instruments Corporation vii NI-VISA User Manual

Contents

2

-3
-3

-4

-2

2
3
-5

-5
6
-7

7
7
7

3

4
-6

NIVISAUM.book Page viii Tuesday, June 9, 1998 8:30 AM
Lock Sharing ... 8-
Acquiring an Exclusive Lock While Owning a Shared Lock......................... 8-3
Nested Locks... 8

Locking Sample Code ... 8
Example 8-1 .. 8

Chapter 9
NI-VISA Platform-Specific and Portability Issues

Programming Considerations .. 9
Debugging Tool for Windows 95/NT... 9-2
Multiple Applications Using the NI-VISA Driver.. 9-2
Low-Level Access Functions.. 9-
Interrupt Callback Handlers .. 9-

Multiple Interface Support Issues.. 9
VXI and GPIB Platforms .. 9-5
Multiple GPIB-VXI Support... 9-5
Serial Port Support .. 9
VME Support .. 9-

Windows 3.x Issues ... 9
Installation Overview.. 9-
Memory Model ... 9-
Application Stack Size .. 9-

Appendix A
Visual Basic Examples

Appendix B
Customer Communication

Glossary

Index

Tables
Table 1-1. NI-VISA Support ... 1-

Table 9-1. How VISA Invokes Callbacks ... 9-
Table 9-2. How Serial Ports Are Numbered .. 9
NI-VISA User Manual viii © National Instruments Corporation

NIVISAUM.book Page ix Tuesday, June 9, 1998 8:30 AM
About This Manual
t
A

.

se

cts

is
Organization of This Manual
The NI-VISA User Manual is organized as follows:

• Chapter 1, Introduction, discusses how to use this manual, lists wha
you need to get started, and contains a brief description of the VIS
Library.

• Chapter 2, Introductory Programming Examples, introduces some
examples of common communication with instruments.

• Chapter 3, VISA Overview, contains an overview of the VISA Library

• Chapter 4, Initializing Your VISA Application, describes the steps
required to prepare your application for communication with your
device.

• Chapter 5, Message-Based Communication, shows how to use the
VISA library in message-based communication.

• Chapter 6, Register-Based Communication, shows how to use the
VISA library in register-based communication.

• Chapter 7, VISA Events, describes the VISA event model and how to
use it.

• Chapter 8, VISA Locks, describes how to use locks in VISA.

• Chapter 9, NI-VISA Platform-Specific and Portability Issues,
discusses programming information for you to consider when
developing applications that use the NI-VISA driver.

• Appendix A, Visual Basic Examples, shows the Visual Basic syntax of
the ANSI C examples given earlier in this manual. The examples u
the same numbering sequence for easy reference.

• Appendix B, Customer Communication, contains forms you can use to
request help from National Instruments or to comment on our produ
and manuals.

• The Glossary contains an alphabetical list and description of terms
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

• The Index contains an alphabetical list of key terms and topics in th
manual, including the page where you can find each one.
© National Instruments Corporation ix NI-VISA User Manual

About This Manual

ic

ou

g
abs.

ction
e

er
tax
aths,
ions,
nd

puter
ode

s or

rive

NIVISAUM.book Page x Tuesday, June 9, 1998 8:30 AM
Conventions Used in This Manual
The following conventions are used in this manual:

» The » symbol leads you through nested menu items and dialog box
options to a final action. For example, the sequence File»Page
Setup»Options»Substitute Fonts directs you to pull down the File menu,
select the Page Setup item, select Options, and finally select the
Substitute Fonts options from the last dialog box.

♦ The ♦ symbol indicates that the text following it applies only to a specif
product or a specific operating system.

This icon to the left of bold italicized text denotes a note, which alerts y
to important information.

bold Bold text denotes the names of menus, menu items, parameters, dialo
boxes, dialog box buttons or options, icons, windows, or Windows 95 t

bold italic Bold italic text denotes a note, caution, or warning.

italic Italic text denotes variables, emphasis, a cross reference, or an introdu
to a key concept. This font also denotes text from which you supply th
appropriate word or value, as in Windows 3.x.

monospace Text in this font denotes text or characters that you should literally ent
from the keyboard, sections of code, programming examples, and syn
examples. This font is also used for the proper names of disk drives, p
directories, programs, subprograms, subroutines, device names, funct
operations, variables, filenames and extensions, and for statements a
comments taken from programs.

monospace bold Bold text in this font denotes the messages and responses that the com
automatically prints to the screen. This font also emphasizes lines of c
that are different from the other examples.

monospace italic Italic text in this font denotes that you must enter the appropriate word
values in the place of these items.

paths Paths in this manual are denoted using backslashes (\) to separate d
names, directories, folders, and files.
NI-VISA User Manual x © National Instruments Corporation

About This Manual

e

this

as

NIVISAUM.book Page xi Tuesday, June 9, 1998 8:30 AM
How to Use This Document Set
Use the documentation that came with your GPIB and/or VXI hardwar
and software for Windows to install and configure your system.

Refer to the Read Me First document for information on installing the
NI-VISA distribution media.

Use the NI-VISA User Manual for detailed information on how to program
using VISA.

Use the NI-VISA online help or the NI-VISA Programmer Reference
Manual for specific information about the attributes, events, and
operations, such as format, syntax, parameters, and possible errors.

♦ Windows 95/NT users—The NI-VISA Programmer Reference Manual is
not included in Windows 95/NT kits. Windows 95/NT users can access
information through the NI-visa.hlp file at
Start»Programs»VXIpnp»VISA Help .

Related Documentation
The following documents contain information that you may find helpful
you read this manual:

• ANSI/IEEE Standard 488.1-1987, IEEE Standard Digital Interface for
Programmable Instrumentation

• ANSI/IEEE Standard 488.2-1992, IEEE Standard Codes, Formats,
Protocols, and Common Commands

• ANSI/IEEE Standard 1014-1987, IEEE Standard for a Versatile
Backplane Bus: VMEbus

• ANSI/IEEE Standard 1155-1992, VMEbus Extensions for
Instrumentation: VXIbus

• ANSI/ISO Standard 9899-1990, Programming Language C

• NI-488.2 Function Reference Manual for DOS/Windows, National
Instruments Corporation

• NI-488.2 User Manual for Windows, National Instruments
Corporation

• NI-VXI Programmer Reference Manual, National Instruments
Corporation

• NI-VXI User Manual, National Instruments Corporation
© National Instruments Corporation xi NI-VISA User Manual

About This Manual

es

ur
e it
tion

NIVISAUM.book Page xii Tuesday, June 9, 1998 8:30 AM
• VPP-1, Charter Document

• VPP-2, System Frameworks Specification

• VPP-3.1, Instrument Drivers Architecture and Design Specification

• VPP-3.2, Instrument Driver Functional Body Specification

• VPP-3.3, Instrument Driver Interactive Developer Interface
Specification

• VPP-3.4, Instrument Driver Programmatic Developer Interface
Specification

• VPP-4.3, The VISA Library

• VPP-4.3.2, VISA Implementation Specification for Textual Languag

• VPP-4.3.3, VISA Implementation Specification for the G Language

• VPP-5, VXI Component Knowledge Base Specification

• VPP-6, Installation and Packaging Specification

• VPP-7, Soft Front Panel Specification

• VPP-8, VXI Module/Mainframe to Receiver Interconnection

• VPP-9, Instrument Vendor Abbreviations

Customer Communication
National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with o
products, and we want to help if you have problems with them. To mak
easy for you to contact us, this manual contains comment and configura
forms for you to complete. These forms are in Appendix B, Customer
Communication, at the end of this manual.
NI-VISA User Manual xii © National Instruments Corporation

© National Instruments Corporation 1-1 NI-V

NIVISAUM.book Page 1 Tuesday, June 9, 1998 8:30 AM
1

 to
e

 use
r all

w

rself

A

,

rt,

u
Introduction

This chapter discusses how to use this manual, lists what you need
get started, and contains a brief description of the VISA Library. Th
National Instruments implementation of VISA is known as NI-VISA.

How to Use This Manual
This manual provides a sequential introduction to setting up a system to
VISA and then using and programming the environment. Please gathe
the components described in the next section, What You Need to Get
Started. The Read Me First document included with your kit explains ho
to install and set up your system.

Once you have set up your system, you can use Chapter 2 to guide you
through some simple examples. Chapters 3 through 8 contain more
in-depth information about the different elements that make up the VIS
system.

What You Need to Get Started
❑ Appropriate hardware, in the form of a National Instruments GPIB

GPIB-VXI, MXI/VXI or serial interface board. For serial support, the
computer’s standard serial ports are sufficient.

❑ NI-488.2 and/or NI-VXI installed on your system. For serial suppo
the system’s serial drivers are sufficient.

❑ NI-VISA distribution media

❑ If you have a GPIB-VXI command module from another vendor, yo
need that vendor’s GPIB-VXI VISA component. It will be installed
into the <VXIPNPPATH>\< Framework >\bin directory. For example,
the Hewlett-Packard component for the HPE1406 would be:

C:\VXIpnp\Win95\bin\HPGPVX32.dll
ISA User Manual

Chapter 1 Introduction

r

to
cope

IB
he

to
me.
f
se

)

e
re.
ft

pt

are

n
ion

s are
r

NIVISAUM.book Page 2 Tuesday, June 9, 1998 8:30 AM
Introduction to VISA
The main objective of the VXIplug&play Systems Alliance is to increase
ease of use for end users of VXI technology through open, multivendo
VXI systems. The alliance members share a common vision for
multivendor systems architecture, encompassing both hardware and
software. This common vision enables the members to work together
define and implement standards for system-level issues beyond the s
of the VXIbus specifications.

As a step toward industry-wide software compatibility, the alliance
developed one specification for I/O software—the Virtual Instrument
System Architecture, or VISA. The VISA specification defines a
next-generation I/O software standard not only for VXI, but also for GP
and serial interfaces. With the VISA standard endorsed by over 35 of t
largest instrumentation companies in the industry including Tektronix,
Hewlett-Packard, and National Instruments, VISA unifies the industry
make software interoperable, reusable, and able to stand the test of ti
Before VISA, there were many different commercial implementations o
I/O software for VXI, GPIB, and serial interfaces; however, none of the
I/O software products were standardized or interoperable.

When the VISA standard was initially endorsed, commercial VISA
products were not yet available. To quickly realize the benefits of
VXI plug&play, the alliance developed the VISA Transition Library (VTL
specification. The VTL reflected the alliance’s strategy to deliver
multivendor software interoperability, while at the same time moving th
entire industry towards a common, robust VISA foundation for the futu
Software written to VTL, such as instrument drivers and executable so
front panels, will also run on present and future VISA implementations
without modification.

All VXI plug&play products are classified within a framework. The conce
of a framework was developed by the VXIplug&play Systems Alliance to
categorize operating systems, programming languages, and I/O softw
libraries to bring the most useful products to the most end-users. A
framework is a logical grouping of the choices that you face when
designing a test and measurement system. You must always choose a
operating system and a programming language along with an applicat
development environment (ADE) when building a system. There are
trade-offs associated with each of these decisions; many configuration
possible. The VXIplug&play Systems Alliance grouped the most popula
NI-VISA User Manual 1-2 © National Instruments Corporation

Chapter 1 Introduction

es

NIVISAUM.book Page 3 Tuesday, June 9, 1998 8:30 AM
operating systems, ADEs, and programming languages into distinct
frameworks and defined in-depth specifications to guarantee
interoperability of the components within each framework.

This manual describes how to use NI-VISA, the National Instruments
implementation of the VISA I/O standard, in any environment using
LabWindows/CVI, any ANSI C compiler, or Microsoft Visual Basic.
NI-VISA currently supports the frameworks and programming languag
shown in Table 1-1. For information on programming VISA from
LabVIEW, refer to the VISA documentation included with your LabVIEW
software.

Table 1-1. NI-VISA Support

Operating System
Programming Language/

Environment Framework

Windows 3.x LabWindows/CVI, ANSI C,
Visual Basic

WIN

LabVIEW GWIN

Windows 95 LabWindows/CVI, ANSI C,
Visual Basic

WIN95

LabVIEW GWIN95

Windows NT LabWindows/CVI, ANSI C,
Visual Basic

WINNT

LabVIEW GWINNT

Solaris 1.x

Solaris 2.x

LabWindows/CVI, ANSI C SUN

LabVIEW GSUN

HP-UX 9

HP-UX 10

ANSI C, LabWindows/CVI* HPUX

LabVIEW GHPUX

Mac 68K

Mac PPC

ANSI C **

LabVIEW **

VxWorks ANSI C **

* Although the LabWindows/CVI development environment is not available on HP-UX,
the run-time libraries are. Therefore, a LabWindows/CVI application developed on
another framework can be ported to HP-UX without modification.

** This framework is not defined by the VXIplug&play Systems Alliance, but is still
supported by NI-VISA.
© National Instruments Corporation 1-3 NI-VISA User Manual

Chapter 1 Introduction

t

that

NIVISAUM.book Page 4 Tuesday, June 9, 1998 8:30 AM
You may find that programming with NI-VISA is not significantly differen
from programming with the I/O software products that are currently
available. However, the programming concepts, model, and paradigm
NI-VISA uses create a solid foundation for taking advantage of VISA’s
more powerful features in the future.
NI-VISA User Manual 1-4 © National Instruments Corporation

© National Instruments Corporation 2-1 NI-V

NIVISAUM.book Page 1 Tuesday, June 9, 1998 8:30 AM
2

re

ples

sign
l

er
Introductory Programming
Examples

This chapter introduces some examples of common communication
with instruments. To help you become comfortable with VISA, the
examples avoid VISA terminology. Chapter 3, VISA Overview, looks at
these examples again but using VISA terminology and focusing mo
on how they explain the VISA model.

Note The examples in this chapter show C source code. You can find the same exam
in Visual Basic syntax in Appendix A, Visual Basic Examples.

Example of Message-Based Communication
Serial, GPIB, and VXI systems all have a definition of message-based
communication. In GPIB and serial, the messages are inherent in the de
of the bus itself. For VXI, the messages actually are sent via a protoco
known as word serial, which is based on register communication. In eith
case, the end result is sending or receiving strings.

Example 2-1 shows the basic steps in any VISA program.
ISA User Manual

Chapter 2 Introductory Programming Examples

NIVISAUM.book Page 2 Tuesday, June 9, 1998 8:30 AM
Example 2-1
#include "visa.h"

#define MAX_CNT 200

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, instr; /* Communication channels */

ViUInt32 retCount; /* Return count from string I/O */

ViChar buffer[MAX_CNT]; /* Buffer for string I/O */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with GPIB Device at Primary Addr 1 */

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, "GPIB0::1::INSTR", VI_NULL, VI_NULL,

&instr);

/* Set the timeout for message-based communication */

status = viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

/* Ask the device for identification */

status = viWrite(instr, "*IDN?\n", 6, &retCount);

status = viRead(instr, buffer, MAX_CNT, &retCount);

/* Your code should process the data */

/* Close down the system */

status = viClose(instr);

status = viClose(defaultRM);

return 0;

}

NI-VISA User Manual 2-2 © National Instruments Corporation

Chapter 2 Introductory Programming Examples

.
the
ver.
.

ing

ou.
s 1

ou

t

l

uch

nel.

NIVISAUM.book Page 3 Tuesday, June 9, 1998 8:30 AM
Example 2-1 Discussion
We can break down Example 2-1 into the following steps.

1. Begin by initializing the VISA system. For this task you use
viOpenDefaultRM() , which opens a communication channel with
VISA itself. This channel has a purpose similar to a telephone line
The function call is analogous to picking up the phone and dialing
operator. From this point on, the phone line connects you to the dri
Any communication on the line is between you and the driver only
Chapter 3, VISA Overview, has more details about
viOpenDefaultRM() , but for now it is sufficient for you to
understand that the function initializes VISA and must be the first
VISA function called in your program.

2. Now you must open a communication channel to the device itself us
viOpen() . Notice that this function uses the handle returned by
viOpenDefaultRM() to identify the VISA driver. You then specify
the address of the device you want to talk to. Continuing with the
phone analogy, this is like asking the operator to dial a number for y
In this case, you want to address a GPIB device at primary addres
on the GPIB0 bus. The value for x in the GPIBx token (GPIB0 in this
example) indicates which GPIB board you want. This means that y
can have multiple GPIB boards installed in the computer, each
controlling independent buses. For more information on address
strings, viOpen() , and viOpenDefaultRM() , see Chapter 4,
Initializing Your VISA Application.

The two VI_NULLs following the address string are not important a
this time. They specify that the session should be initialized using
VISA defaults. Finally, viOpen() returns the communication channe
to the device in the parameter instr . From now on, whenever you
want to talk to this device, you use the instr variable to identify it.
Notice that you do not use the defaultRM handle again. The main use
of defaultRM is to open channels to devices. You do not use this
handle again until you are ready to end the program.

3. At this point you need to set a timeout value for message-based
communication. A timeout value is important in message-based
communication to determine what should happen when the device
stops communicating. VISA has a common function to set values s
as these: viSetAttribute() . This function sets values such as
timeout and the termination character for the communication chan
In this example, notice that the function call to viSetAttribute()
sets the timeout to be 5 s (5000 ms) for both reading and writing
strings.
© National Instruments Corporation 2-3 NI-VISA User Manual

Chapter 2 Introductory Programming Examples

orm

ls, as
d in
ese

nse

.

SA

hod
y
etails

are

ns
 can
re
ow
 The
el

NIVISAUM.book Page 4 Tuesday, June 9, 1998 8:30 AM
4. Now that you have the communication channel set up, you can perf
string I/O using the viWrite() and viRead() functions. Notice that
this is the section of the programming code that is unique for
message-based communication. Opening communication channe
described in steps 1 and 2, and closing the channels, as describe
step 5, are the same for all VISA programs. The parameters that th
calls use are relatively straightforward.

a. First you identify which device you are talking to with instr .

b. Next you give the string to send, or what buffer to put the respo
in.

c. Finally, specify the number of characters you are interested in

For more information on these functions, see Chapter 5,
Message-Based Communication. Also refer to the NI-VISA online
help or the NI-VISA Programmer Reference Manual.

5. When you are finished with your device I/O, you can close the
communication channel to the device with the viClose() function.

Notice that the program shows a second call to viClose() . When you
are ready to shut down the program, or at least close down the VI
driver, you use viClose() to close the communication channel
returned by viOpenDefaultRM() .

Example of Register-Based Communication
Note You can skip over this section if you are exclusively using GPIB or serial

communication. Register-based programming applies only to VXI, GPIB-VXI,
or PXI.

VISA has two standard methods for accessing registers. The first met
uses High-Level Access functions. You can use these functions to specif
the address to access; the functions then take care of the necessary d
to perform the access, from mapping an I/O window to checking for
failures. The drawback to using these functions is the amount of softw
overhead associated with them.

To reduce the overhead, VISA also has Low-Level Access functions. These
functions break down the tasks done by the High-Level Access functio
and let the program perform each task itself. The advantage is that you
optimize the sequence of calls based on the style of register I/O you a
about to perform. However, you must be more knowledgeable about h
register accesses work. In addition, you cannot check for errors easily.
following example shows how to perform register I/O using the High-Lev
NI-VISA User Manual 2-4 © National Instruments Corporation

Chapter 2 Introductory Programming Examples

 you
se the

NIVISAUM.book Page 5 Tuesday, June 9, 1998 8:30 AM
Access functions, which is the method we recommend for new users. If
are an experienced user or understand register I/O concepts, you can u
Low-Level Access Operations section in Chapter 6, Register-Based
Communication.

Note Examples 2-2 through 2-4 use bold text to distinguish lines of code that are
different from the other examples in this chapter.

Example 2-2
#include "visa.h"

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, instr; /* Communication channels */

ViUInt16 deviceID; /* To store the value */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with VXI Device at Logical Addr 16 */

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, " VXI0::16::INSTR ", VI_NULL, VI_NULL,

&instr);

/* Read the Device ID, and write to memory in A24 space */

status = viIn16(instr, VI_A16_SPACE, 0, &deviceID);

status = viOut16(instr, VI_A24_SPACE, 0, 0x1234);

/* Close down the system */

status = viClose(instr);

status = viClose(defaultRM);

return 0;

}

© National Instruments Corporation 2-5 NI-VISA User Manual

Chapter 2 Introductory Programming Examples

-1.
in

e
ing,
r a
ble

s to

4,
by

s

o
ess
gical
ister is
vice

 that

e 0
vice

se
has
er,
ld

NIVISAUM.book Page 6 Tuesday, June 9, 1998 8:30 AM
Example 2-2 Discussion
The general structure of this example is very similar to that of Example 2
For this reason, we merely point out the basic differences as denoted
bold text:

• A different address string is used for the VXI device.

• The string functions from Example 2-1 are replaced with register
functions.

The address string is still the same format as the address string in
Example 2-1, but it has replaced the GPIB with VXI. Again, remember
that the difference in the address string name is the extent to which th
specific interface bus will be important. Indeed, since this is a simple str
it is possible to have the program read in the string from a user input o
configuration file. Thus, the program can be compiled and is still porta
to different platforms, such as from a GPIB-VXI to a MXIbus board.

As you can see from the programming code, you use different function
perform I/O with a register-based device. The functions viIn16() and
viOut16() read and write 16-bit values to registers in either the A16, A2
or A32 space of VXI. As with the message-based functions, you start
specifying which device you want to talk to by supplying the instr
variable. You then identify the address space you are targeting, such a
VI_A16_SPACE.

The next parameter warrants close examination. Notice that we want t
read in the value of the Device ID register for the device at logical addr
16. Logical addresses start at offset 0xC000 in A16 space, and each lo
address gets 0x40 bytes of address space. Because the Device ID reg
the first address within that 0x40 bytes, the absolute address of the De
ID register for logical address 16 is calculated as follows:

0xC000 + (0x40 * 16) = 0xC400

However, notice that the offset we supplied was 0. The reason for this is
the instr parameter identifies which device you are talking to, and
therefore the driver is able to perform the address calculation itself. Th
indicates the first register in the 0x40 bytes of address space, or the De
ID register. The same holds true for the viOut16() call. Even in A24 or
A32 space, although it is possible that you are talking to a device who
memory starts at 0x0, it is more likely that the VXI Resource Manager
provided some other offset, such as 0x200000 for the memory. Howev
because instr identifies the device, and the Resource Manager has to
NI-VISA User Manual 2-6 © National Instruments Corporation

Chapter 2 Introductory Programming Examples

to
 the

e
not

s. In
 or a

ly
n
cult
e
ou

nt but
tains

ll

.
upt,
a.

NIVISAUM.book Page 7 Tuesday, June 9, 1998 8:30 AM
the driver the offset address of the device’s memory, you do not need
know the details of the absolute address. Just provide the offset within
memory space, and VISA does the rest.

Again, when you are done with the register I/O, use viClose() to shut
down the system.

Example of Handling Events
When dealing with instrument communication, it is very common for th
instrument to require service from the controller when the controller is
actually looking at the device (an asynchronous event, or simply an event).
Examples of this are the service request (SRQ), interrupts, and signal
VISA, you can handle these and other events through either callbacks
software queue.

Callbacks
Using callbacks, you can have sections of code that are never explicit
called by the program, but instead are called by the driver whenever a
event occurs. Due to their asynchronous nature, callbacks can be diffi
to incorporate into a traditional, sequential flow program. Therefore, w
recommend the queuing method of handling events for new users. If y
are an experienced user or understand callback concepts, look at the
Callbacks section in Chapter 7, VISA Events.

Queuing
When using a software queue, the driver detects the asynchronous eve
does not alert the program to the occurrence. Instead, the driver main
a list of events that have occurred so that the program can retrieve the
information later. With this technique, the program can periodically po
the driver for event information or halt the program until the event has
occurred. Example 2-3 programs an oscilloscope to capture a waveform
When the waveform is complete, the instrument generates a VXI interr
so the program must wait for the interrupt before trying to read the dat
© National Instruments Corporation 2-7 NI-VISA User Manual

Chapter 2 Introductory Programming Examples

NIVISAUM.book Page 8 Tuesday, June 9, 1998 8:30 AM
Example 2-3
#include "visa.h"

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, instr; /* Communication channels */

ViEventType eventType; /* To identify event */

ViEvent eventData; /* To hold event info */

ViUInt16 statID; /* Interrupt Status ID */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with VXI Device at Logical Address 16 */

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL, VI_NULL,

&instr);

/* Enable the driver to detect the interrupts */

status = viEnableEvent(instr, VI_EVENT_VXI_SIGP, VI_QUEUE, VI_NULL);

/* Send the commands to the oscilloscope to capture the */

/* waveform and interrupt when done */

status = viWaitOnEvent(instr, VI_EVENT_VXI_SIGP, 5000, &eventType,

&eventData);

if (status < VI_SUCCESS) {

/* No interrupts received after 5000 ms timeout */

viClose(defaultRM);

return -1;

}

/* Obtain the information about the event and then destroy the */

/* event. In this case, we want the status ID from the interrupt. */

status = viGetAttribute(eventData, VI_ATTR_SIGP_STATUS_ID, &statID);

status = viClose(eventData);

/* Your code should read data from the instrument and process it.*/
NI-VISA User Manual 2-8 © National Instruments Corporation

Chapter 2 Introductory Programming Examples

 you

als.
en

on

hat
own

 the

til

d

has
e
A

a

NIVISAUM.book Page 9 Tuesday, June 9, 1998 8:30 AM
/* Stop listening to events */

status = viDisableEvent(instr, VI_EVENT_VXI_SIGP, VI_QUEUE);

/* Close down the system */

status = viClose(instr);

status = viClose(defaultRM);

return 0;

}

Example 2-3 Discussion
As you can see, this programming code presents some new functions
need to use. The first two functions you will notice are viEnableEvent()
and viDisableEvent() . These functions tell the VISA driver which
events to listen for—in this case the VI_EVENT_VXI_SIGP , or VXI Signal
Processor events. These events cover both VXI interrupts and VXI sign
In addition, these functions tell the driver how to handle the events wh
they occur. In this example, the driver is instructed to queue (VI_QUEUE)
the events until asked for them. Notice that instr is also supplied to the
functions. This shows that the VISA driver performs all event handling
a per-communication-channel basis.

When the driver is ready to handle events, you are free to write code t
will result in an event being generated. In the example above, this is sh
as a comment block because the exact code depends on the device.
However, after you have set the device up to interrupt when it is ready,
program must wait for the interrupt. This is accomplished by the
viWaitOnEvent() function. Here you specify what events you are
waiting for and how long you want to wait. The program then blocks un
the event occurs. Therefore, after the viWaitOnEvent() call is finished,
either it has timed out (5 s in the above example) or it has caught the
interrupt. After some error checking to determine which case is true an
whether it was successful, you can obtain information from the event
through viGetAttribute() . When you are finished with the event data
structure (eventData), destroy it by calling viClose() on it. You can
now continue with the program and retrieve the data. The rest of the
program is the same as the previous examples.

Notice the difference in the way you shut down the program if a timeout
occurred. You do not need to close the communication channel with th
device, but only with the VISA driver. You can do this because the VIS
specification requires that the driver close any channels opened off a
channel to the driver (defaultRM) when the driver channel is closed. As
© National Instruments Corporation 2-9 NI-VISA User Manual

Chapter 2 Introductory Programming Examples

case

up
d.

e

other

ess

,

NIVISAUM.book Page 10 Tuesday, June 9, 1998 8:30 AM
result, when you need to shut down a program quickly, such as in the
of an error, you can simply close the channel to the driver and VISA
handles the rest of the details for you. However, VISA does not clean
anything not associated with VISA, such as memory you have allocate
You are still responsible for those items.

Example of Locking
Occasionally you may need to prevent other applications from using th
same resource that you are using. VISA has a service called locking that
you can use to gain exclusive access to a resource. VISA also has an
locking option in which you can have multiple sessions share a lock.
Because lock sharing is an advanced topic that may involve inter-proc
communication, see the Lock Sharing section in Chapter 8, VISA Locks, for
more information. Example 2-4 uses the simpler form, the exclusive lock
to prevent other VISA applications from modifying the state of the
specified serial port.

Example 2-4
#include "visa.h"

#define MAX_CNT 200

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, instr; /* Communication channels */

ViUInt32 retCount; /* Return count from string I/O */

ViChar buffer[MAX_CNT]; /* Buffer for string I/O */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with Serial Port 1 */

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, "ASRL1::INSTR" , VI_NULL, VI_NULL, &instr);
NI-VISA User Manual 2-10 © National Instruments Corporation

Chapter 2 Introductory Programming Examples

 the

t
.

 that

 this

es

NIVISAUM.book Page 11 Tuesday, June 9, 1998 8:30 AM
/* Set the timeout for message-based communication */

status = viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

/* Lock the serial port so that nothing else can use it */

status = viLock(instr, VI_EXCLUSIVE_LOCK, 5000, VI_NULL, VI_NULL);

/* Set serial port settings as needed */

/* Defaults = 9600 Baud, no parity, 8 data bits, 1 stop bit */

status = viSetAttribute(instr, VI_ATTR_ASRL_BAUD, 2400);

status = viSetAttribute(instr, VI_ATTR_ASRL_DATA_BITS, 7);

/* Ask the device for identification */

status = viWrite(instr, "*IDN?\n", 6, &retCount);

status = viRead(instr, buffer, MAX_CNT, &retCount);

/* Unlock the serial port before ending the program */

status = viUnlock(instr);

/* Your code should process the data */

/* Close down the system */

status = viClose(instr);

status = viClose(defaultRM);

return 0;

}

Example 2-4 Discussion
As you can see, the program does not differ with respect to controlling
instrument. The ability to lock and unlock the resource simply involves
inserting the viLock() and viUnlock() operations around the code tha
you want to ensure is protected, as far as the instrument is concerned

To lock a resource, you use the viLock() operation on the session to the
resource. Notice that the second parameter is VI_EXCLUSIVE_LOCK. This
parameter tells VISA that you want this session to be the only session
can access the device. The next parameter, 5000 , is the time in
milliseconds you are willing to wait for the lock. For example, another
program may have locked its session to the resource before you. Using
timeout feature, you can tell your program to wait until either the other
program has unlocked the session, or 5 s have passed, whichever com
first.
© National Instruments Corporation 2-11 NI-VISA User Manual

Chapter 2 Introductory Programming Examples

rams
ock

NIVISAUM.book Page 12 Tuesday, June 9, 1998 8:30 AM
The final two parameters are used in the lock sharing feature of viLock()
and are discussed further in Chapter 8, VISA Locks. For most applications,
however, these parameters are set to VI_NULL . Notice that if the viLock()
call succeeds, you then have exclusive access to the device. Other prog
do not have access to the device at all. Therefore, you should hold a l
only for the time you need to program the device, especially if you are
designing a VXIplug&play instrument driver. Failure to do so may cause
other applications to block or terminate with a failure.

To end the example, the application calls viUnlock() when it has
acquired the data from the instrument. At this point, the resource is
accessible from any other session in any application.
NI-VISA User Manual 2-12 © National Instruments Corporation

© National Instruments Corporation 3-1 NI-V

NIVISAUM.book Page 1 Tuesday, June 9, 1998 8:30 AM
3

me,

ed
ask

th

on
se

use
e.

ce
ters
e

y
VISA Overview

This chapter contains an overview of the VISA Library.

Introduction
The history of instrumentation reached a milestone with the ability to
communicate with an instrument from a remote computer. Before this ti
you had to perform data collection and analysis manually through the
controls on the instrument’s front panel. Controlling instruments
programmably brought a great deal of power and flexibility with the
capability to control devices faster and more accurately without the ne
for human supervision. As time went on, the substantial programming t
was alleviated by application development environments such as
LabVIEW and LabWindows/CVI. These applications increased
productivity, but instrumentation system developers were still faced wi
the details of programming the instrument or the device interface bus.

The VISA Library significantly reduces the time and effort involved in
programming different interfaces. Instead of using a different Applicati
Programmer’s Interface (API) devoted to each interface bus, you can u
the VISA API whether your system uses a GPIB, VXI, GPIB-VXI, PXI,
or serial controller.

As an example, consider the case of the GPIB-VXI controller. You can
this device to communicate with VXI devices, but through a GPIB cabl
In other words, you use a GPIB interface with GPIB software to send
commands to VXI devices. There is no way for you to ignore the interfa
through which you must communicate. If you want to access the regis
on the VXI device, you must use GPIB string communication to ask th
GPIB-VXI to perform this action. Indeed, the specification of the
GPIB-VXI (VXI-5) does not even standardize the commands necessar
to do this task.
ISA User Manual

Chapter 3 VISA Overview

r
at

lizing
mber

se

t the
 be
r,

heir
s and
ith
d

fore,
any
ur

s are
to
s a
ing

t

NIVISAUM.book Page 2 Tuesday, June 9, 1998 8:30 AM
Objectives of VISA
The main objective of the VXIplug&play Systems Alliance is to increase
ease of use for end users of VXI technology through open, multivendo
VXI systems. Instrument programmers need a software architecture th
exports the capabilities of the devices, not the interface bus. In addition,
they need to be consistent across the devices and interface buses. Rea
these goals results in a simpler model to understand and reduces the nu
of functions the user needs to learn.

Using the example of the GPIB-VXI, a software driver that satisfies the
goals should be capable of sending and receiving messages (string
communication) to and from message-based devices. In addition,
the communication functions should be the same, regardless of the
interface through which these messages are sent. Any functionality tha
device exports—such as message or register communication—should
accessible regardless of the capabilities of the interface bus. Moreove
you should be able to access this functionality through the same functions
regardless of the interface bus you are using.

With the vast number of choices in instrumentation and software now
available, most users do not want to be limited to a specific vendor for t
systems. Instead, they prefer the freedom to select the best instrument
software available from multiple vendors and have it all work together w
minimal effort. The IEEE 488.1 and IEEE 488.2 standards for GPIB an
the IEEE 1155 standard for VXI ensured that the hardware would be
interoperable, but such standards did not apply to the software. There
the ideal new driver architecture should be a standard adopted by as m
of the major vendors as possible to ensure that any code written for yo
instrument is portable across vendors as well as operating systems.

Finally, most instruments export a set of commands to which they will
respond. Because the instrument needs to be flexible, these command
often primitive functions of the device and require several commands
group them together so that the device can perform common tasks. A
result, programmers are faced with a lot of overhead. Rather than mak
a simple request to get the data, one must issue a series of commands to
do task A, do task B, and so on, prior to making the actual request to ge
the data.
NI-VISA User Manual 3-2 © National Instruments Corporation

Chapter 3 VISA Overview

 of

uch
the

 for

 cover

d

d

nt

 in
rces

the

NIVISAUM.book Page 3 Tuesday, June 9, 1998 8:30 AM
National Instruments began to ease this burden with the development
instrument drivers, which encapsulate these primitive commands inside
functions to perform the common tasks so users get up and running m
faster. The major drawback has been that it is difficult to keep up with
number of new devices that appear in the marketplace. So, another
objective for this ideal driver would be for it to be an accepted standard
creating instrument drivers. Then the vendors of the instruments could
create the instrument drivers themselves and be assured that they can
most of the systems on the market.

The VXIplug&play Systems Alliance formed to create this software
architecture. The name of the driver is VISA, for Virtual Instrument
Software Architecture. With VISA, you can benefit from the
interface-independence features and the newly defined standard for
instrument drivers. Future versions of VISA will support more advance
features, such as finer control of instruments and distribution across
networks.

Interactive Control of VISA
NI-VISA comes with a utility called VISA Interactive Control (VISAIC)
on all platforms that support VISA, with the exception of Macintosh an
VxWorks. This utility gives you access to all of VISA’s functionality
interactively, in an easy-to-use graphical environment. It is a convenie
starting point for program development and learning about VISA.

When VISAIC runs, it automatically finds all of the available resources
the system and lists the instrument descriptors for each of these resou
under the appropriate resource type. This information is displayed on
VISA I/O tab.
© National Instruments Corporation 3-3 NI-VISA User Manual

Chapter 3 VISA Overview

y

y

IC

ds on
e

NIVISAUM.book Page 4 Tuesday, June 9, 1998 8:30 AM
The following figure shows the VISAIC opening window.

The Soft Front Panels tab of the main VISAIC panel gives you the option
to launch the soft front panels of any VXIplug&play instrument drivers that
have been installed on the system.

The NI I/O tab gives you the option to launch the NI-VXI interactive utilit
or the NI-488 interactive utility. This gives you convenient links into the
interactive utilities for the drivers VISA calls in case you would like to tr
debugging at this level.

Double-clicking on any of the instrument descriptors shown in the VISA
window opens a session to that instrument. Opening a session to the
instrument produces a window with a series of tabs for interactively
running VISA commands. The exact appearance of these tabs depen
which compatibility mode VISAIC is in. To access the compatibility mod
and other VISAIC preferences select Edit»Preferences… to bring up the
following window.
NI-VISA User Manual 3-4 © National Instruments Corporation

Chapter 3 VISA Overview

s

NIVISAUM.book Page 5 Tuesday, June 9, 1998 8:30 AM
The VISA implementations are slightly different in LabVIEW and
LabWindows/CVI. These differences are reflected in the operation tab
that are shown when you open a session to a resource.

♦ Windows 95/NT users—VISAIC detects whether you have LabVIEW
and/or LabWindows/CVI installed on your system and sets the
compatibility mode accordingly.

If you change the preferences, the new preferences take effect for any
subsequent session you open.
© National Instruments Corporation 3-5 NI-VISA User Manual

Chapter 3 VISA Overview

r to

d
nder

hile
nts.
ts.

NIVISAUM.book Page 6 Tuesday, June 9, 1998 8:30 AM
When a session to a resource is opened interactively, a window simila
the following appears. This window uses the LabVIEW compatibility
mode.

Three main tabs appear in the window. The initial tab is the Template tab,
which contains all of the operations dealing with events, properties, an
locks. Notice that there is a separate tab for each of these operations u
the main tab. The other main tabs are Basic I/O and Register I/O. The
Basic I/O tab contains the operations for message-based instruments, w
the Register I/O tab contains the operations for register-based instrume
The Register I/O tab does not appear for either GPIB or Serial instrumen
NI-VISA User Manual 3-6 © National Instruments Corporation

Chapter 3 VISA Overview

ter

are
s
.

ses,
ises
 of
,

ties

ou

ation
te

e

s and

d by

NIVISAUM.book Page 7 Tuesday, June 9, 1998 8:30 AM
Programming with VISA
Chapter 2, Introductory Programming Examples, introduced some
examples of how to write code for the VISA driver. However, the chap
deliberately avoided using VISA terminology to show that writing
programs under VISA can be very straightforward and similar to softw
drivers you have used in the past. This section looks at these example
again, but this time from the perspective of the underlying architecture

Beginning Terminology
Let us begin by defining some terminology. Typical device capabilities
include sending and receiving messages, responding to register acces
requesting service, being reset, and so on. One of the underlying prem
of VISA, as defined in the previous section, is to export the capabilities
the devices—independent of the interface bus—to the user. Therefore
when creating the building blocks for VISA, it is important to focus on
these basic device capabilities. VISA encapsulates each of these abili
into a resource.

A resource is simply a complete description of a particular set of
capabilities of a device. For example, to be able to write to a device, y
need a function you can use to send messages—viWrite() . In addition,
there are certain details you need to consider, such as what the termin
character is, if any, and how long the function should try to communica
before timing out. Those of you familiar with this methodology might
recognize this approach as object-oriented (OO) design. Indeed, VISA is
based on OO design. In keeping with the terminology of OO, we call th
functions of these resources operations and the details, such as the
termination character, attributes.

An important resource under VISA is the INSTR Resource. This resource
encapsulates all of the basic device functions together so that you can
communicate with the device through a single resource. The INSTR
Resource exports the most commonly used features of these resource
is sufficient for most instrument drivers.

Another resource type is the Memory Access, or MEMACC Resource. The
MEMACC Resource allows interface-level accesses, such as that use
NI-VXI, but is still independent of the actual interface type.
© National Instruments Corporation 3-7 NI-VISA User Manual

Chapter 3 VISA Overview

t
ice is

you
ever
 out

ou
 that
r to

ed.

ve

NIVISAUM.book Page 8 Tuesday, June 9, 1998 8:30 AM
Returning to Example 2-1 in Chapter 2, Introductory Programming
Examples, look at the point where the program has opened a
communication channel with a message-based device. Remember tha
because of interface independence, it does not matter whether the dev
GPIB or VXI. You want to send the identification query, *IDN?\n , to the
device. Because of the possibility that the device or interface could fail,
want to ensure that the computer will not hang in the event that no one
receives the string. Therefore, the first step is to tell the resource to time
after 5 s (5000 ms):

status = viSetAttribute(instr, VI_ATTR_TMO_VALUE, 5000);

You have just set an attribute (VI_ATTR_TMO_VALUE) of the resource.
From now on, your communication to this resource through this
communication channel (instr) will have a timeout of 5 s.

The fact that you are dealing with an OO-based driver is somewhat
irrelevant at this point. As you become more experienced with VISA, y
will see more of the benefits of this approach. But for now, you can see
you can set the timeout with an operation (function) in a manner simila
that used with other drivers. In addition, the operation you need to
remember—viSetAttribute() —is the same operation you use to set
any feature of any resource.

Now you send the string to the device:

status = viWrite(instr, "*IDN?\n", 6, &retCount);

Again, this is a familiar approach to programming. You use a write
operation to send a string to a device. For now, it is sufficient for you to
understand that you can use a single operation—viWrite() —to send a
message to a device, regardless of the interface to which it is connect

Continuing, you read back the string with a read operation:

status = viRead(instr, buffer, 200, &retCount);

See Chapter 5, Message-Based Communication, for more information.

Communication Channels
The examples from Chapter 2, Introductory Programming Examples, used
an operation called viOpen() to open communication channels with the
instruments. In VISA terminology, this channel is known as a session. A
session connects you to the resource you addressed in the viOpen()
operation and keeps your communication and attribute settings unique
from other sessions to the same resource. In VISA, a resource can ha
NI-VISA User Manual 3-8 © National Instruments Corporation

Chapter 3 VISA Overview

bout
 be

e

 is

and

,

tant,
ve
he

for

el to

t,

NIVISAUM.book Page 9 Tuesday, June 9, 1998 8:30 AM
multiple sessions to it from the same program and even from other
programs simultaneously. Therefore you must consider some things a
the resource to be local, that is, unique to the session, and other things to
global, that is, common for all sessions to the resource.

If you look at the descriptions of the various attributes supported by th
VISA resources, you will see that some are marked global (such as
VI_ATTR_INTF_TYPE) and others are marked local (such as
VI_ATTR_TMO_VALUE). For example, the interface bus that the resource
using to communicate with the device (VI_ATTR_INTF_TYPE) is the same
for everyone talking to the resource and is therefore a global attribute.
However, different programs may have different timeout requirements
so the timeout value (VI_ATTR_TMO_VALUE) for communication is a local
attribute.

Again, look at Example 2-1. To open communication with the instrument
that is, to create a session to the INSTR Resource, you use the viOpen()
operation as shown below:

status = viOpen(defaultRM, "GPIB0::1::INSTR", VI_NULL,

VI_NULL ,&instr);

In this case, the interface to which the instrument is connected is impor
but only as a means to uniquely identify the instrument. The code abo
references a GPIB device on bus number 0 with primary address 1. T
access mode and timeout values for viOpen() are both VI_NULL . Other
values are defined, but VI_NULL is recommended for both new users and
all instrument drivers.

However, notice the statement has two sessions in the parameter list
viOpen() —defaultRM and instr . Why do you need two sessions? As
you will see in a moment, viOpen() is an operation on a resource known
as the Resource Manager, so you must have a communication chann
this resource. However, what you want is a session to the instrument; this
is what is returned in instr .

For the entire duration that you communicate with this GPIB instrumen
you use the session returned in instr as the communication channel.
When you are finished with the communication, you need to close the
channel. This is accomplished through the viClose() operation as shown
below:

status = viClose(instr);
© National Instruments Corporation 3-9 NI-VISA User Manual

Chapter 3 VISA Overview

 to

ny

rce.
u
I

 the

ace

 them
y

ion.
lt

te.

e

ery
 use

ee

NIVISAUM.book Page 10 Tuesday, June 9, 1998 8:30 AM
At this point, the communication channel is closed but you are still free
open it again or open a session to another device. Notice that you donot
need to close a session to open another session. You can have as ma
sessions to different devices as you want.

The Resource Manager
The previous section briefly mentioned the Resource Manager Resou
What exactly is a Resource Manager? If you have worked with VXI, yo
are familiar with the VXI Resource Manager. Its job is to search the VX
chassis for instruments, configure them, and then return its findings to
user. The VISA Resource Manager has a similar function. It scans the
system to find all the devices connected to it through the various interf
buses and then controls the access to them. Notice that the Resource
Manager simply keeps track of the resources and creates sessions to
as requested. You do not go through the Resource Manager with ever
operation defined on a resource.

Again referring to Example 2-1, notice that the first line of code is a
function call to get a session to the Default Resource Manager:

status = viOpenDefaultRM(&defaultRM);

Note viOpenDefaultRM() is a function call, not an operation call.

An operation is a property of a resource that you call by way of a sess
The viOpenDefaultRM() function returns a unique session to the Defau
Resource Manager, but does not require some other session to opera
Therefore this function is not a property of any resource—not even the
Resource Manager Resource. It is provided by the VISA driver itself.

Now that you have a communication channel (session) to the Resourc
Manager, you can ask it to create sessions to instruments for you. In
addition to this, VISA also defines operations that can be invoked to qu
the Resource Manager about other resources it knows about. You can
the viFindRsrc() operation to give the Resource Manager a search
string, known as a regular expression, for instruments in the system. S
Chapter 4, Initializing Your VISA Application, for more information about
viFindRsrc() .
NI-VISA User Manual 3-10 © National Instruments Corporation

Chapter 3 VISA Overview

of
PXI
le to

n the

 for
ace.

A24

C

ite of
dling
s do
 for

NIVISAUM.book Page 11 Tuesday, June 9, 1998 8:30 AM
Register Communication
Now that you know more about communicating with message-based
devices, you can move on to register communication. The only types
devices VISA supports that can export register accesses are VXI and
devices. However, VISA has defined these resources to be expandab
other types of devices in the future.

Refer to Example 2-2 in Chapter 2, Introductory Programming Examples.
You open communication to the Resource Manager and the resource i
same manner as in Example 2-1, but this time you specify a VXI device.
This example uses what are known as the High-Level Access methods to
read and write registers. For example, if you want to read a 16-bit
register—say the ID register of the device—use the following call:

status = viIn16(instr, VI_A16_SPACE, 0x0, &deviceID);

Notice that the offset requested is 0. This is the offset of the ID register
a VXI device, but it is not the absolute address of the register in A16 sp
This is because instr is a session to the instrument, not to the VXI
memory space; therefore, all offsets are from the base address of the
instrument. For example, if this same device also shared its memory in
space at 0x200000, you could write to the first memory location of this
shared memory as follows:

status = viOut16(instr, VI_A24_SPACE, 0x0, 0x1234);

Thus, the offset when using an INSTR resource is 0x0, not 0x200000.
VISA also supports sessions to the interface bus itself via the MEMAC
Resource. Refer to Chapter 6, Register-Based Communication, for more
information about this resource.

These methods are known as the High-Level Access methods to distinguish
them from the Low-Level Access methods. The High-Level Access
methods encapsulate all the necessary code to perform a read or a wr
a register, including mapping any necessary access windows and han
errors, such as a bus error. In contrast, the Low-Level Access method
not. Instead, you map the windows yourself and VISA does not monitor
errors. Refer to Chapter 6, Register-Based Communication, for more
information about accessing register-based devices with both the
High-Level Access and the Low-Level Access methods.
© National Instruments Corporation 3-11 NI-VISA User Manual

Chapter 3 VISA Overview

r,

dd
e,

his
 ask

 in

I
r
.
 If

ded

 is

u can
d on

NIVISAUM.book Page 12 Tuesday, June 9, 1998 8:30 AM
Example of Interface Independence
Now that you are more familiar with the architecture of the VISA drive
look at the GPIB-VXI interface board to see if VISA gives you
independence from the interface connecting the instruments.

The GPIB-VXI device translates GPIB bus communication to VXIbus
communication and vice versa. Its main purpose is to let GPIB users a
VXI devices to their systems inexpensively. Using GPIB driver softwar
you can communicate with VXI devices using messages, the same way you
program stand-alone GPIB instruments.

But how do you perform register accesses to the VXI devices? Up to t
point, you were required to send messages to the GPIB-VXI itself and
it to perform the register access. It would then return the result of the I/O
another string. For example, when talking to the National Instruments
GPIB-VXI/C with NI-488.2, the register access looks like the following
when using NI-488 function calls:

dev = ibdev(boardID, PrimAddr, SecAddr, TMO, EOT, EOS);

status = ibwrt(dev, "A24 #h200000, #h1234", cnt);

If you are using NI-488.2 routines, the same call is:

Send(boardID, Address, "A24 #h200000, #h1234", DABend);

If you had ever planned to move your code to a MXI or embedded VX
controller solution, you would spend a great deal of time changing you
GPIB calls to VXI calls, especially when considering register accesses
VISA has been designed to eliminate problems such as this limitation.
you are talking to a VXI instrument, you can perform register I/O
regardless of whether you are connected via GPIB, MXI, or an embed
VXI computer. In addition, the code is the same for all three cases.
Therefore the code for writing to the A24 register through a GPIB-VXI
now precisely the same as given previously in the Register Communication
section:

status = viOut16(instr, VI_A24_SPACE, 0x0, 0x1234);

The fact that GPIB messages are necessary is no longer important; yo
let the driver take care of those details. Program your instrument base
its capabilities.
NI-VISA User Manual 3-12 © National Instruments Corporation

© National Instruments Corporation 4-1 NI-V

NIVISAUM.book Page 1 Tuesday, June 9, 1998 8:30 AM
4

for

g
ager
s.
ce

re
to

t

ples
Initializing Your VISA
Application

This chapter describes the steps required to prepare your application
communication with your device.

Introduction
A powerful feature of VISA is the concept of a single interface for findin
and accessing devices on various platforms. The VISA Resource Man
does this by exporting services for controlling and managing resource
These services include, but are not limited to, assigning unique resour
addresses and unique resource IDs, locating resources, and creating
sessions.

Each session contains all the information necessary to configure the
communication channel with a device, as well as information about the
device itself. This information is encapsulated inside a generic structu
called an attribute. You can use the attributes to configure a session or
find a particular resource.

Opening a Session
When trying to access any of the VISA resources, the first step is
to get a reference to the default Resource Manager by calling
viOpenDefaultRM() . Your application can then use the session
returned from this call to open sessions to resources controlled by tha
Resource Manager, as shown in the following example.

Note The examples in this chapter show C source code. You can find the same exam
in Visual Basic syntax in Appendix A, Visual Basic Examples.
ISA User Manual

Chapter 4 Initializing Your VISA Application

tring
his

NIVISAUM.book Page 2 Tuesday, June 9, 1998 8:30 AM
Example 4-1
#include "visa.h"

int main(void)

{

ViStatus status;

ViSession defaultRM, instr;

/* Open Default RM */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Access other resources */

status = viOpen(defaultRM, "GPIB::1::INSTR", VI_NULL, VI_NULL,

&instr);

/* Use device and eventually close it. */

viClose(instr);

viClose(defaultRM);

return 0;

}

As shown in this example, you use the viOpen() call to open new
sessions. In this call, you specify which resource to access by using a s
that describes the resource. The following table shows the format for t
string. Square brackets indicate optional string segments.

Interface Syntax

VXI VXI[board]:: VXI logical address [::INSTR]

GPIB-VXI GPIB-VXI[board]:: VXI logical address [::INSTR]

GPIB GPIB[board]:: primary address [:: secondary address][::INSTR]

ASRL ASRL[board][::INSTR]

VXI VXI[board]::MEMACC

GPIB-VXI GPIB-VXI[board]::MEMACC
NI-VISA User Manual 4-2 © National Instruments Corporation

Chapter 4 Initializing Your VISA Application

s

 the
al

ome
other
,

NIVISAUM.book Page 3 Tuesday, June 9, 1998 8:30 AM
Use the VXI keyword for VXI instruments via either embedded or MXIbu
controllers. Use the GPIB-VXI keyword for a GPIB-VXI controller. Use
the GPIB keyword to establish communication with a GPIB device. Use
ASRL keyword to establish communication with an asynchronous seri
(such as RS-232) device.

Refer to Chapter 9, NI-VISA Platform-Specific and Portability Issues, for
help in determining exactly which resource you may be accessing. In s
cases, such as serial (ASRL) resources, the naming conventions with
serial naming conventions may be confusing. In the Windows platform
COM1 corresponds to ASRL1, unlike in LabVIEW where COM1 is
accessible using port number 0.

The default values for optional string segments are as follows.

The following table shows examples of address strings.

Optional String Segment Default Value

board 0

secondary address none

Address String Description

VXI0::1::INSTR A VXI device at logical address 1 in VXI
interface VXI0

GPIB-VXI::9::INSTR A VXI device at logical address 9 in a
GPIB-VXI controlled VXI system

GPIB::1::0::INSTR A GPIB device at primary address 1 and
secondary address 0 in GPIB interface 0

ASRL1::INSTR A serial device attached to interface
ASRL1

VXI::MEMACC Board-level register access to the VXI
interface

GPIB-VXI1::MEMACC Board-level register access to GPIB-VXI
interface number 1
© National Instruments Corporation 4-3 NI-VISA User Manual

Chapter 4 Initializing Your VISA Application

rce

 find
 can

turn
e

ute

NIVISAUM.book Page 4 Tuesday, June 9, 1998 8:30 AM
Finding Resources
As shown in the previous section, you can create a session to a resou
using the viOpen() call. However, before you use this call you need to
know the exact location (address) of the resource you want to open. To
out what resources are currently available at a given point in time, you
use the search services provided by the viFindRsrc() operation, as
shown in the following example.

Notice that while this sample function returns a session, it does not re
the reference to the resource manager session opened within the sam
function. If you use this style of initialization routine, you can get the
reference to the resource manager session later by querying the attrib
VI_ATTR_RM_SESSION before closing the INSTR session. You can then
close the resource manager session with viClose() .

Example 4-2
#include "visa.h"

#define MANF_ID 0xFF6 /* 12-bit VXI manufacturer ID of device */

#define MODEL_CODE 0x0FE /* 12-bit or 16-bit model code of device */

/* Find the first matching device and return a session to it */

ViStatus autoConnect(ViPSession instrSesn)

{

ViStatus status;

ViSession defaultRM, instr;

ViFindList fList;

ViChar desc[VI_FIND_BUFLEN];

ViUInt32 numInstrs;

ViUInt16 iManf, iModel;

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error initializing VISA ... exiting */

return status;

}

/* Find all VXI instruments in the system */

status = viFindRsrc(defaultRM, "?*VXI[0-9]*::?*INSTR", &fList,

&numInstrs, desc);
NI-VISA User Manual 4-4 © National Instruments Corporation

Chapter 4 Initializing Your VISA Application

 time
em

NIVISAUM.book Page 5 Tuesday, June 9, 1998 8:30 AM
if (status < VI_SUCCESS) {

/* Error finding resources ... exiting */

viClose(defaultRM);

return status;

}

/* Open a session to each and determine if it matches */

while (numInstrs--) {

status = viOpen(defaultRM, desc, VI_NULL, VI_NULL, &instr);

if (status < VI_SUCCESS) {

viFindNext(fList, desc);

continue;

}

status = viGetAttribute(instr, VI_ATTR_MANF_ID, &iManf);

if ((status < VI_SUCCESS) || (iManf != MANF_ID)) {

viClose(instr);

viFindNext(fList, desc);

continue;

}

status = viGetAttribute(instr, VI_ATTR_MODEL_CODE, &iModel);

if ((status < VI_SUCCESS) || (iModel != MODEL_CODE)) {

viClose(instr);

viFindNext(fList, desc);

continue;

}

/* We have a match, return the session without closing it */

*instrSesn = instr;

viClose(fList);

/* Do not close defaultRM, as that would close instr too */

return VI_SUCCESS;

}

/* No match was found, return an error */

viClose(fList);

viClose(defaultRM);

return VI_ERROR_RSRC_NFOUND;

}

As this example shows, you can use viFindRsrc() to get a list of
matching resource names, which you can then further examine one at a
using viFindNext() . Remember to free the space allocated by the syst
by invoking viClose() on the list reference fList .
© National Instruments Corporation 4-5 NI-VISA User Manual

Chapter 4 Initializing Your VISA Application

A

.
ell as
r
 idea

rn a

d in

NIVISAUM.book Page 6 Tuesday, June 9, 1998 8:30 AM
Finding VISA Resources Using Regular Expressions
Using viFindRsrc() to locate a resource in a VISA system requires a
way for you to identify which resources you are interested in. The VIS
Resource Manager accomplishes this through the use of regular
expressions, which specify a match for certain resources in the system
Regular expressions are strings consisting of ordinary characters as w
certain characters with special meanings that you can use to search fo
patterns instead of specific text. Regular expressions are based on the
of matching, where a given string is tested to see if it matches the regular
expression; that is, to determine if it fits the pattern of the regular
expression. You can apply this same concept to a list of strings to retu
subset of the list that matches the expression.

The following table defines the special characters and syntax rules use
VISA regular expressions.

Special Characters
and Operators Meaning

? Matches any one character.

\ Makes the character that follows it an
ordinary character instead of special
character. For example, when a
question mark follows a backslash
(\?), it matches the ? character instead
of any one character.

[list] Matches any one character from the
enclosed list . You can use a hyphen
to match a range of characters.

[^list] Matches any character not in the
enclosed list . You can use a hyphen
to match a range of characters.

* Matches 0 or more occurrences of the
preceding character or expression.

+ Matches 1 or more occurrences of the
preceding character or expression.
NI-VISA User Manual 4-6 © National Instruments Corporation

Chapter 4 Initializing Your VISA Application

at

NIVISAUM.book Page 7 Tuesday, June 9, 1998 8:30 AM
The priority, or precedence of the operators in regular expressions is as
follows:

• The grouping operator () in a regular expression has the highest
precedence.

• The + and * operators have the next highest precedence.

• The or operator | has the lowest precedence.

Notice that in VISA, the string "GPIB?*INSTR" applies to both GPIB and
GPIB-VXI instruments.

The following table lists some examples of valid regular expressions th
you can use with viFindRsrc() .

exp|exp Matches either the preceding or
following expression. The or operator |
matches the entire expression that
precedes or follows it and not just the
character that precedes or follows it.
For example, VXI|GPIB means
(VXI)|(GPIB) , not VX(I|G)PIB .

(exp) Grouping characters or expressions.

Regular Expression Sample Matches

GPIB?*INSTR Matches GPIB0::2::INSTR ,
GPIB1::1::1::INSTR , and
GPIB-VXI1::8::INSTR .

GPIB[0-9]*::?*INSTR Matches GPIB0::2::INSTR and
GPIB1::1::1::INSTR but not
GPIB-VXI1::8::INSTR .

GPIB[^0]::?*INSTR Matches GPIB1::1::1::INSTR but
not GPIB0::2::INSTR or
GPIB12::8::INSTR .

VXI?*INSTR Matches VXI0::1::INSTR but not
GPIB-VXI0::1::INSTR .

GPIB-VXI?*INSTR Matches GPIB-VXI0::1::INSTR but
not VXI0::1::INSTR .

Special Characters
and Operators Meaning
© National Instruments Corporation 4-7 NI-VISA User Manual

Chapter 4 Initializing Your VISA Application

 are

rce’s
s:
l
 the
tch.

ns

ical

NIVISAUM.book Page 8 Tuesday, June 9, 1998 8:30 AM
Notice that in VISA, the regular expressions used for resource matching
not case sensitive. For example, calling viFindRsrc() with
"VXI?*INSTR" would return the same resources as invoking it with
"vxi?*instr" .

Attribute-Based Resource Matching
VISA can also search for a resource based on the values of the resou
attributes. The viFindRsrc() search expression is handled in two part
the regular expression for the resource string and the (optional) logica
expression for the attributes. Assuming that a given resource matches
given regular expression, VISA checks the attribute expression for a ma
The resource matches the overall string if it matches both parts.

Attribute matching works by using familiar constructs of logical operatio
such as AND (&&), OR (||), and NOT (!). Equal (==) and unequal (!=)
apply to all types of attributes, and you can additionally compare numer
attributes using other common comparators (>, <, >=, and <=).

?*VXI[0-9]*::?*INSTR Matches VXI0::1::INSTR and
GPIB-VXI0::1::INSTR .

ASRL[0-9]*::?*INSTR Matches ASRL1::INSTR but not
VXI0::5::INSTR .

ASRL1+::INSTR Matches ASRL1::INSTR and
ASRL11::INSTR but not
ASRL2::INSTR .

(GPIB|VXI)?*INSTR Matches GPIB1::5::INSTR and
VXI0::3::INSTR but not
ASRL2::INSTR .

(GPIB0|VXI0)::1::INSTR Matches GPIB0::1::INSTR and
VXI0::1::INSTR .

?*INSTR Matches all INSTR (device) resources.

?*VXI[0-9]*::?*MEMACC Matches VXI0::MEMACC and
GPIB-VXI1::MEMACC .

VXI0::?* Matches VXI0::1::INSTR ,
VXI0::2::INSTR , and
VXI0::MEMACC.

?* Matches all resources.

Regular Expression Sample Matches
NI-VISA User Manual 4-8 © National Instruments Corporation

Chapter 4 Initializing Your VISA Application

 like,
:

e

utes.

e

NIVISAUM.book Page 9 Tuesday, June 9, 1998 8:30 AM
You are free to make attribute matching expressions as complex as you
using multiple ANDs, ORs, and NOTs. Precedence applies as follows

• The grouping operator () in an attribute matching expression has th
highest precedence.

• The NOT ! operator has the next highest precedence.

• The AND && operator has the next highest precedence.

• The OR operator || has the lowest precedence.

The following table shows three examples of matching based on attrib

Notice that only global VISA attributes are permitted in the attribute
matching expression.

The following example is similar to Example 4-2, except that it uses a
regular expression with attribute matching. Notice that because only th
first match is needed, VI_NULL is passed for both the retCount and
findList parameters. This tells VISA to automatically close the find list
rather than return it to the application.

Expression Meaning

GPIB[0-9]*::?*::?*::INSTR
{VI_ATTR_GPIB_SECONDARY_ADDR > 0 &&
VI_ATTR_GPIB_SECONDARY_ADDR < 10}

Find all GPIB devices that have secondary
addresses from 1 to 9.

ASRL?*INSTR{VI_ATTR_ASRL_BAUD == 9600} Find all serial ports configured at 9600 baud.

?*VXI?INSTR{VI_ATTR_MANF_ID ==
0xFF6 && !(VI_ATTR_VXI_LA ==0 ||
VI_ATTR_SLOT <= 0)}

Find all VXI instrument resources with
manufacturer ID of FF6 and which are not
logical address 0, slot 0, or external controllers.
© National Instruments Corporation 4-9 NI-VISA User Manual

Chapter 4 Initializing Your VISA Application

NIVISAUM.book Page 10 Tuesday, June 9, 1998 8:30 AM
Example 4-3
#include <stdio.h>

#include "visa.h"

#define MANF_ID 0xFF6 /* 12-bit VXI manufacturer ID of device */

#define MODEL_CODE 0x0FE /* 12-bit or 16-bit model code of device */

/* Find the first matching device and return a session to it */

ViStatus autoConnect2(ViPSession instrSesn)

{

ViStatus status;

ViSession defaultRM, instr;

ViChar desc[VI_FIND_BUFLEN], regExToUse[VI_FIND_BUFLEN];

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error initializing VISA ... exiting */

return status;

}

/* Find the first matching VXI instrument */

sprintf(regExToUse,

"?*VXI[0-9]*::?*INSTR{VI_ATTR_MANF_ID == 0x%x && VI_ATTR_MODEL_CODE == 0x%x}",

MANF_ID, MODEL_CODE);

status = viFindRsrc(defaultRM, regExToUse, VI_NULL, VI_NULL, desc);

if (status < VI_SUCCESS) {

/* Error finding resources ... exiting */

viClose(defaultRM);

return status;

}

status = viOpen(defaultRM, desc, VI_NULL, VI_NULL, &instr);

if (status < VI_SUCCESS) {

viClose(defaultRM);

return status;

}

*instrSesn = instr;

/* Do not close defaultRM, as that would close instr too */

return VI_SUCCESS;

}

NI-VISA User Manual 4-10 © National Instruments Corporation

Chapter 4 Initializing Your VISA Application

 in
ther

r
sion

ress

o
 use:

ile
butes

uld

l
ace.

n use
ly

NIVISAUM.book Page 11 Tuesday, June 9, 1998 8:30 AM
Configuring a Session
After the Resource Manager opens a session, communication with the
device can usually begin using the default session settings. However,
some cases such as ASRL (serial) resources, you need to set some o
parameters such as baud rate, parity, and flow control before proper
communication can begin. GPIB and VXI sessions may have still othe
configuration parameters to set, such as timeouts and end-of-transmis
modes, although in general the default settings should suffice.

Accessing Attributes
VISA uses two operations for obtaining and setting
parameters—viGetAttribute() and viSetAttribute() . Attributes
not only describe the state of the device, but also the method of
communication with the device.

For example, you could use the following code to obtain the logical add
of a VXI address:

status = viGetAttribute(instr, VI_ATTR_VXI_LA, &Laddr);

and the variable Laddr would contain the device’s address. If you want t
set an attribute, such as the baud rate of an ASRL session, you could

status = viSetAttribute(instr, VI_ATTR_ASRL_BAUD,

baudrate);

Notice that some attributes are read-only, such as logical address, wh
others are read/write attributes, such as the baud rate. Also, some attri
apply only to certain types of sessions; VI_ATTR_VXI_LA would not exist
for an ASRL device. If you attempted to use it, the status parameter wo
return with the code VI_ERROR_NSUP_ATTR.

Refer to the online help or to the NI-VISA Programmer Reference Manua
for a list of all available attributes you can use for each supported interf

Common Considerations for Using Attributes
As you set up your sessions, there are some common attributes you ca
that will affect how the sessions handle various situations. For current
supported session types, all support the setting of timeout values and
termination methods:

• VI_ATTR_TMO_VALUE denotes how long (in milliseconds) to wait for
accesses to the device. Defaults to two seconds (2000 ms).
© National Instruments Corporation 4-11 NI-VISA User Manual

Chapter 4 Initializing Your VISA Application

el

on

o

NIVISAUM.book Page 12 Tuesday, June 9, 1998 8:30 AM
• VI_ATTR_TERMCHAR_EN sets whether a termination character
specified by VI_ATTR_TERMCHAR will be used on read operations.

• VI_ATTR_SEND_END_EN determines whether to use an END bit on
your write operations. Defaults to VI_TRUE.

Various interfaces have other types of attributes that may affect chann
communication. The following two VXI attributes are important for
high-level accesses:

• VI_ATTR_DEST_BYTE_ORDER specifies whether to write words in big
endian or little endian byte order. Defaults to VI_BIG_ENDIAN .

• VI_ATTR_SRC_BYTE_ORDER specifies whether to read words in big
endian or little endian byte order. Defaults to VI_BIG_ENDIAN .

Because ASRL devices have much more variation in the communicati
channel, be sure to set the following parameters correctly:

• VI_ATTR_ASRL_BAUD sets the baud rate. Defaults to 9600.

• VI_ATTR_ASRL_DATA_BITS sets the number of data bits.
Defaults to 8.

• VI_ATTR_ASRL_PARITY sets the parity. Defaults to
VI_ASRL_PAR_NONE.

• VI_ATTR_ASRL_STOP_BITS sets the number of stop bits. Defaults t
VI_ASRL_STOP_ONE (10).

• VI_ATTR_ASRL_FLOW_CNTRL sets the method for limiting overflow
on transfers between the devices. Defaults to VI_ASRL_FLOW_NONE
(no method of flow control).

Check the Serial Port Support section in Chapter 9, NI-VISA
Platform-Specific and Portability Issues, to verify you are establishing
connection to the correct port. Refer to the online help or to the NI-VISA
Programmer Reference Manual for a complete range of values for the
attributes. Some other useful ASRL attributes are as follows:

• VI_ATTR_ASRL_END_IN defines the method of terminating reads.
Defaults to VI_ASRL_END_TERMCHAR. This means that the read
operation will stop whenever the character specified by
VI_ATTR_TERMCHAR is encountered, regardless of the state of
VI_ATTR_TERMCHAR_EN.

• VI_ATTR_ASRL_END_OUT defines the method of terminating writes.
Defaults to VI_ASRL_END_NONE. This means that the setting of
VI_ATTR_SEND_EN is irrelevant.
NI-VISA User Manual 4-12 © National Instruments Corporation

© National Instruments Corporation 5-1 NI-V

NIVISAUM.book Page 1 Tuesday, June 9, 1998 8:30 AM
5

a
r

ss

 and

e
n

f the
TR

e
 to
Message-Based Communication

This chapter shows how to use the VISA library in message-based
communication.

Introduction
Whether you are using RS-232, GPIB, or VXI, message-based
communication is a standard protocol for controlling and receiving dat
from instruments. Because most message-based devices have simila
capabilities, it is natural that the driver interface should be consistent.
Under VISA, controlling message-based devices is the same regardle
of whether those devices are serial, GPIB, or VXI instruments.

VISA message-based communication includes the Basic I/O Services
the Formatted I/O Services from within the VISA Instrument Control
Resource (INSTR). All sessions to a VISA Instrument Control Resourc
(INSTR) opened using viOpen() have full message-based communicatio
capabilities. Of course, if the device is a register-based VXI device, the
message-based operations return an error code (VI_ERROR_NSUP_OPER)
to indicate that this device does not support the operations, although the
session still provides access to them. This chapter discusses the uses o
Basic I/O Services and the Formatted I/O Services provided by the INS
Resource in a VISA application.

Basic I/O Services
The VISA Instrument Control Resource lets a controller interact with th
device that it is associated with by providing the controller with services
do the following:

• Send blocks of data to the device

• Request blocks of data from the device

• Send the device clear command to the device

• Trigger the device

• Find information about the status of the device
ISA User Manual

Chapter 5 Message-Based Communication

ese
ents.
coded
e, the

ch
he

t the

ta
r,

lue

r
.

r in
for

cter,
wn

d an
his
that
 VXI
yte.

NIVISAUM.book Page 2 Tuesday, June 9, 1998 8:30 AM
Note For serial instruments, the I/O protocol must be set to VI_ASRL_488 for the clear,
trigger, and status services to be enabled.

The following sections describe the operations provided by the VISA
Instrument Control Resource for the Basic I/O Services.

Synchronous Read/Write Services
The most straightforward of the operations are viRead() and viWrite() ,
which perform the actual receiving and sending of strings. Notice that th
operations look upon the data as a string and do not interpret the cont
For this reason, the data could be messages, commands, or binary en
data, depending on how the device has been programmed. For exampl
IEEE 488.2 command *IDN? is a message that is sent in ASCII format.
However, an oscilloscope returning a digitized waveform may take ea
16-bit data point and put it end to end as a series of 8-bit characters. T
following code segment shows a program requesting the waveform tha
device has captured.

status = viWrite(instr, "READ:WAVFM:CH1", 14, &retCount);

status = viRead(instr, buffer, 1024, &retCount);

Now the character array buffer contains the data for the waveform, but
you still do not know how the data is formatted. For example, if the da
points were 1, 2, 3, ...the buffer might be formatted as “1,2,3,...”. Howeve
if the data were binary encoded 8-bit values, the first byte of buffer would
be 1—not the ASCII character 1, but the actual value 1. The next byte
would be neither a comma nor the ASCII character 2, but the actual va
2, and so on. Refer to the documentation that came with the device fo
information on how to program the device and interpret the responses

The various ways that a string can be sent is the next issue to conside
message-based communication. For example, the actual mechanism
sending a byte differs drastically between GPIB and VXI; however,
both have similar mechanisms to indicate when the last byte has been
transferred. Under both systems, a device can specify an actual chara
such as linefeed, to indicate that no more data will be sent. This is kno
as the End Of String (EOS) character and is common in older GPIB
devices. The obvious drawback to this mechanism is that you must sen
extra character to terminate the communication, and you cannot use t
character in your messages. However, both GPIB and VXI can specify
the current byte is the last byte. GPIB uses the EOI line on the bus, and
uses the END bit in the Word Serial command that encapsulates the b
NI-VISA User Manual 5-2 © National Instruments Corporation

Chapter 5 Message-Based Communication

se.

r

de.

 is
 in

 as
ous
 wait

g on
ns

ven
rt

NIVISAUM.book Page 3 Tuesday, June 9, 1998 8:30 AM
You need to determine how to inform the driver which mechanism to u
As was discussed in Chapter 3, VISA Overview, VISA uses a technique
known as attributes to hold this information. For example, to tell the drive
to use the EOI line or END bit, you set the VI_ATTR_SEND_END_EN
attribute to true.

status = viSetAttribute(instr, VI_ATTR_SEND_END_EN, VI_TRUE);

You can terminate reads on a carriage return by using the following co

status = viSetAttribute(instr, VI_ATTR_TERMCHAR, 0x0D);

status = viSetAttribute(instr, VI_ATTR_TERMCHAR_EN, VI_TRUE);

Refer to the NI-VISA online help or the NI-VISA Programmer Reference
Manual for a complete list and description of the available attributes.

Asynchronous Read/Write Services
In addition to the synchronous read and write services, VISA has
operations for asynchronous I/O. The functionality of these operations
identical to that of the synchronous ones; therefore, the topics covered
the previous section apply to asynchronous read and write operations
well. The main difference is that a job ID is returned from the asynchron
I/O operations instead of the transfer status and return count. You then
for an I/O completion event, from which you can get that information.

Note You must enable the session for the I/O completion event before beginning an
asynchronous transfer.

One other difference is the timeout attribute, VI_ATTR_TMO_VALUE. This
attribute may or may not apply to asynchronous operations, dependin
the implementation. If you want to ensure that asynchronous operatio
never time out, even on implementations that do use the timeout attribute,
set the attribute value to VI_TMO_INFINITE . If you want to ensure that
asynchronous operations do not last beyond a certain period of time, e
on implementations that do not use the timeout attribute, you should abo
the I/O using the viTerminate() operation if it does not complete within
the expected time, as shown in the following code.

status = viEnableEvent(instr, VI_EVENT_IO_COMPLETION, VI_QUEUE,

VI_NULL);

status = viWriteAsync(instr, "READ:WAVFM:CH1" ,14, &jobID);

status = viWaitOnEvent(instr, VI_EVENT_IO_COMPLETION, 10000,

&etype, &event);

if (status < VI_SUCCESS) {

status = viTerminate(instr, VI_NULL, jobID);

/* now the I/O completion event should exist in the queue */
© National Instruments Corporation 5-3 NI-VISA User Manual

Chapter 5 Message-Based Communication

turn

t

he
n of

al

 you
lear
ore
ing

lear
ce

)

r

NIVISAUM.book Page 4 Tuesday, June 9, 1998 8:30 AM
status = viWaitOnEvent(instr, VI_EVENT_IO_COMPLETION, 0,

&etype, &event);

}

As long as an asynchronous operation is successfully posted (if the re
value from the asynchronous operation is greater than or equal to
VI_SUCCESS), there will always be exactly one I/O completion event
resulting from the transfer. However, if the asynchronous operation
(viReadAsync() or viWriteAsync()) returns an error code, there will
not be an I/O completion event. In the above example, if the I/O has no
completed in 10 seconds, the call to viTerminate() aborts the I/O and
results in the I/O completion event being generated.

The I/O completion event has attributes containing information about t
transfer status, return count, and more. For a more complete descriptio
the I/O completion event and its attributes, refer to the NI-VISA
Programmer Reference Manual or to the NI-VISA online help. For a more
detailed example using asynchronous I/O, see Example 7-1 in Chapter 7,
VISA Events.

Note The asynchronous I/O services are not available when programming with Visu
Basic.

Clear Service
When communicating with a message-based device, particularly when
are first developing your program, you may need to tell the device to c
its I/O buffers so that you can start again. In addition, if a device has m
information than you need, you may want to read until you have everyth
you need and then tell the device to throw the rest away. The viClear()
operation performs these tasks.

More specifically, the clear operation lets a controller send the device c
command to the device it is associated with, as specified by the interfa
specification and the type of device. The action that the device takes
depends on the interface to which it is connected.

• For a GPIB device, the controller sends the IEEE 488.1 SDC (04h
command.

• For a VXI or MXI device, the controller sends the Word Serial Clea
(FFFFh) command.

• For a serial device, the controller sends the string "*CLS\n" . The I/O
protocol must be set to VI_ASRL_488 for this service to be available
to serial devices.
NI-VISA User Manual 5-4 © National Instruments Corporation

Chapter 5 Message-Based Communication

,

e
es

dent

r

he
XI

de.

e
ss

ng
re,
n

NIVISAUM.book Page 5 Tuesday, June 9, 1998 8:30 AM
For more details on these clear commands, refer to your device
documentation, the IEEE 488.1 standard, or the VXIbus specification.

Trigger Service
Most instruments can be instructed to wait until they receive a trigger
before they start performing operations such as generating a waveform
reading a voltage, and so on. Under GPIB, this trigger is a software
command sent to the device. Under VXI, this could either be a softwar
trigger or a hardware trigger on one of the multiple TTL/ECL trigger lin
on the VXIbus backplane.

VISA uses the same operation—viAssertTrigger() —to perform these
actions. Which trigger method (software or hardware) you use is depen
on a combination of an attribute (VI_ATTR_TRIG_ID) and a parameter to
the operation. For example, to send a software trigger by default unde
either interface, you use the following code.

status = viSetAttribute(instr, VI_ATTR_TRIG_ID, VI_TRIG_SW);

status = viAssertTrigger(instr, VI_TRIG_PROT_DEFAULT);

Of course, you need to set the attribute only once at the beginning of t
program, not every time you assert the trigger. If you want to assert a V
hardware trigger, such as a SYNC pulse, you can use the following co

status = viSetAttribute(instr, VI_ATTR_TRIG_ID, VI_TRIG_TTL3);

status = viAssertTrigger(instr, VI_TRIG_PROT_SYNC);

Keep in mind that VISA currently uses device triggering. That is, each call
to viAssertTrigger() is associated with a specific device through th
session used in the call. Future versions of VISA will give you full acce
to interface triggering, but at this time all functionality is defined on a
per-device basis.

However, the VXI hardware triggers by definition have interface-level
triggering. In other words, you cannot prevent two devices from receivi
a SYNC pulse of TTL3 if both devices are listening to the line. Therefo
if you need to trigger multiple devices off a single VXI trigger line, you ca
do this by sending the trigger to any one of the devices on the line.
© National Instruments Corporation 5-5 NI-VISA User Manual

Chapter 5 Message-Based Communication

ler
r
ition
IB

ugh
r

e data

t.

me
ice

d
 that
vice

cks
.

NIVISAUM.book Page 6 Tuesday, June 9, 1998 8:30 AM
Status/Service Request Service
It is fairly common for a device to need to communicate with a control
at a time when the controller is not planning to talk with the device. Fo
example, if the device detects a failure or has completed a data acquis
sequence, it may need to get the attention of the controller. In both GP
and VXI, this is accomplished through a Service Request (SRQ). Altho
the actual technique for delivering this service request to the controlle
differs between the two interfaces, the end result is that an event
(VI_EVENT_SERVICE_REQ) is received by the VISA driver. You can find
more details on event notification and handling in Chapter 2, Introductory
Programming Examples, and Chapter 7, VISA Events. At this time, just
assume that the program has received the event and has a handle to th
through the eventContext parameter.

Under VISA, the VI_EVENT_SERVICE_REQ event contains no additional
information other than the type of event. Therefore, by using
viGetAttribute() on the eventContext parameter, as shown in the
following code, the program can identify the event as a service reques

status = viGetAttribute(eventContext,VI_ATTR_EVENT_TYPE, &eventType);

You can retrieve the status byte of the device by issuing a
viReadSTB() operation. This is especially important because on so
interfaces, such as GPIB, it is not always possible to know which dev
has asserted the service request until a viReadSTB() is performed.
This means that all sessions to devices on the bus with the service
request may receive a service request event. Therefore, you shoul
always check the status byte to ensure that your device was the one
requested service. Even if you have only one device asserting a ser
request, you should still call viReadSTB() to guarantee delivery of
future service request events. For example, the following code che
the type of event, performs a viReadSTB() , and then checks the result

status = viGetAttribute(eventContext, VI_ATTR_EVENT_TYPE,

&eventType);

if (eventType == VI_EVENT_SERVICE_REQ) {

status = viReadSTB(instr, &statusByte);

if ((status >= VI_SUCCESS) && (statusByte & 0x40)) {

/* Perform action based on Service Request */

}

/* Otherwise ignore the Service Request */

} /* End IF SRQ */
NI-VISA User Manual 5-6 © National Instruments Corporation

Chapter 5 Message-Based Communication

r,

the
ll.
e at

er

te or
 the

lect
tring.

y a

NIVISAUM.book Page 7 Tuesday, June 9, 1998 8:30 AM
Formatted I/O Services
The Formatted I/O Services perform formatted and buffered I/O for
devices. A formatted write operation writes to a buffer inside the drive
while a formatted read operation reads from a buffer inside the driver.
Buffering improves system performance by having the driver perform
I/O with the device only at certain times, such as when the buffer is fu
The driver is then able to send larger blocks of information to the devic
a time, improving overall throughput.

The buffer operations also provide control over the low-level serial driv
buffers. See the section Controlling the Serial I/O Buffers later in this
chapter for more information on that topic.

Formatted I/O Operations
The main two operations under the formatted I/O services are viPrintf()
and viScanf() . Although this section discusses these two operations
only, this material also applies to other formatted I/O routines such as
viVPrintf() and viVScanf() . These operations derive their names
from the standard C string I/O functions. Like printf() and scanf() ,
these operations let you use special format strings to dynamically crea
parse the string. For example, a common command for instruments is
"F x" command for function X. This could be "F1" for volt measurement,
"F2" for ohm measurement, and so on. With formatted I/O, you can se
the type of measurement and use only a single operation to send the s
Consider the following code segment.

/* Retrieve user's selections. Assume the variable */

/* X holds the choice from the following menu: */

/* 1) VDC, (2) Ohms, (3) Amps */

status = viPrintf(instr, "F%d", X);

Here, the variable X corresponds to the type of measurement denoted b
number matching the function number for the instrument. Without
formatted I/O, the result would have been either:

sprintf(buffer, "F%d", X);

viWrite(instr, buffer, strlen(buffer), &retCount);

or
© National Instruments Corporation 5-7 NI-VISA User Manual

Chapter 5 Message-Based Communication

ed

fer

use

 the
t
s.

s

NIVISAUM.book Page 8 Tuesday, June 9, 1998 8:30 AM
switch(X) {

case 1:

viWrite(instr, "F1", 2, &retCount);

break;

case 2:

viWrite(instr, "F2", 2, &retCount);

break;

.

.

}

In addition, there is an operation viQueryf() that combines the
functionality of a viPrintf() followed by a viScanf() operation.
viQueryf() is used to query the device for information:

status = viQueryf(instr,"*IDN?\n","%s",buf);

I/O Buffer Operations
Another method for communicating with your instruments using formatt
I/O functions is using the formatted I/O buffer functions: viSPrintf() .
viSScanf() , viBufRead() , and viBufWrite() . You can use these
functions to manipulate a buffer that you will send or receive from an
instrument.

For example, you may want to bring information from a device into a buf
and then manipulate it yourself. To do this, first call viBufRead() , which
reads the string from the instrument into a user-specified buffer. Then
viSScanf() to extract information from the buffer. Similarly, you can
format a buffer with viSPrintf() and then use viBufWrite() to send it
to an instrument.

As you can see, the formatted I/O approach is the simplest way to get
job done. Because of the variety of modifiers you can use in the forma
string, this section does not go into any more detail on these operation
Please refer either to the NI-VISA online help or to Chapter 5, Operations,
in the NI-VISA Programmer Reference Manual for more information.

Variable List Operations
You can also use another form of the standard formatted I/O operation
known as Variable List operations: viVPrintf() , viVSPrintf() ,
viVScanf() , viVSScanf() , and viVQueryf() . These functions are
identical in their operation to the ANSI C versions of variable list
operations. Please see your C reference guide for more information.
NI-VISA User Manual 5-8 © National Instruments Corporation

Chapter 5 Message-Based Communication

ice.
ead

ay
f the

t of
e
that
iver
ts

iver
 the
eps

NIVISAUM.book Page 9 Tuesday, June 9, 1998 8:30 AM
Manually Flushing the Formatted I/O Buffers
This section describes flushing issues that are related to formatted I/O
buffers. The descriptions apply to all buffered read and buffered write
operations. For example, the viPrintf() description applies equally to
other buffered write operations (viVPrintf() and viBufWrite()).
Similarly, the viScanf() description applies to other buffered read
operations (viVScanf() and viBufRead()).

Flushing a write buffer immediately sends any queued data to the dev
Flushing a read buffer discards the data in the read buffer. An empty r
buffer guarantees that the next call to viScanf() , viBufRead() , or a
related operation reads data directly from the device rather than from
queued data residing in the read buffer.

The easiest way to flush the buffers is with an explicit call to viFlush() .
This operation can actually flush the buffers in two ways. The simpler w
uses discard flags. These flags tell the driver to discard the contents o
buffers without performing any I/O to the device. For example,

status = viFlush(instr, VI_READ_BUF_DISCARD);

However, the flush operation can also complete the current I/O before
flushing the buffer. For a write buffer, this simply means to send the res
the buffer to the device. However, for a read buffer, the process is mor
involved. Because you could be in the middle of a read from the device (
is, the device still has information to send), it is possible to have the dr
check the buffer for an EOS or END bit/EOI signal. If such a value exis
in the buffer, the contents of the buffer are discarded. However, if the dr
can find no such value, it begins reading from the device until it detects
end of the communication and then discards the data. This process ke
the program and device in synchronization with each other. See the
description of the viFlush() operation in the NI-VISA online help or in
the NI-VISA Programmer Reference Manual for more information.

Automatically Flushing the Formatted I/O Buffers
Although you can explicitly flush the buffers by making a call to
viFlush() , the buffers are flushed implicitly under some conditions.
These conditions vary for the viPrintf() and viScanf() operations.
In addition, you can modify the conditions through attributes.

The write buffer is maintained by the viPrintf() , viVPrintf() ,
viBufWrite() , and viVQueryf() (write side) operations. To explicitly
flush the write buffer, you can make a call to the viFlush() operation with
a write flag set.
© National Instruments Corporation 5-9 NI-VISA User Manual

Chapter 5 Message-Based Communication

the
tate

ly.

 in
,

ers
d
er
t

lly

fers
nt

g a

NIVISAUM.book Page 10 Tuesday, June 9, 1998 8:30 AM
The standard conditions for automatically flushing the buffer are as
follows.

• Whenever the END indicator is sent. The indicator could be either
EOS character or the END bit/EOI line, depending on the current s
of the attributes which select these modes.

• When the write buffer is full.

• In response to a call to viSetBuf() with the VI_WRITE_BUF flag set.

In addition to these rules, the VI_ATTR_WR_BUF_OPER_MODE attribute can
modify the flushing of the buffer. The default setting for this attribute is
VI_FLUSH_WHEN_FULL, which means that the preceding three rules app
However, if the attribute is set to VI_FLUSH_ON_ACCESS, the buffer is
flushed with every call to viPrintf() and viVPrintf() , essentially
disabling the buffering mode.

The read buffer is maintained by the viScanf() , viVScanf() ,
viBufRead() , and viVQueryf() (read side) operations. To explicitly
flush the read buffer, you can make a call to the viFlush() operation with
a read flag set. The only rule for automatically flushing the read buffer is
response to theviSetBuf() operation. However, as with the write buffer
you can use an attribute to control how to flush the buffer:
VI_ATTR_RD_BUF_OPER_MODE. If the attribute is set to
VI_FLUSH_DISABLE, the buffer is flushed only when an explicit call to
viFlush() is made. If this attribute is set to VI_FLUSH_ON_ACCESS, the
buffer is flushed at the end of every call to viScanf() .

In addition to the preceding rules and attributes, the formatted I/O buff
of a session to a given device are reset whenever that device is cleare
through the viClear() operation. At such a time, the read and write buff
must be flushed and any ongoing operation through the read/write por
must be aborted.

Resizing the Formatted I/O Buffers
The read and write buffers, as mentioned previously, can be dynamica
resized using the viSetBuf() operation. Remember that this operation
automatically flushes the buffers, so it is best to set the size of the buf
before beginning the actual I/O calls. You specify which buffer you wa
to modify and then the size of the buffer you require. It is important to
check the return code of this operation because you may be requestin
buffer beyond the size that the system can allocate at the time. If this
occurs, the buffer size is not changed.
NI-VISA User Manual 5-10 © National Instruments Corporation

Chapter 5 Message-Based Communication

ess.

d.

n

st

e

put

NIVISAUM.book Page 11 Tuesday, June 9, 1998 8:30 AM
For example, to set both the read and write buffers to 8 KB, use the
following code.

status = viSetBuf(instr, VI_READ_BUF | VI_WRITE_BUF, 8192);

Controlling the Serial I/O Buffers
The viFlush() and viSetBuf() operations also provide a control
mechanism for the low-level serial driver buffers. The default size of
these buffers is 0, which guarantees that all I/O is flushed on every acc
To improve performance, you can alter the size of the output or input
serial buffers by invoking the viSetBuf() operation with the
VI_ASRL_OUT_BUF or VI_ASRL_IN_BUF flag, respectively. When the
buffer size is non-zero, I/O to serial devices is not automatically flushe
You can force the output serial buffer to be flushed by invoking the
viFlush() operation with VI_ASRL_OUT_BUF. Alternatively, you can
call viFlush() with VI_ASRL_OUT_BUF_DISCARD to empty the output
serial buffer without sending any remaining data to the device. You ca
also call viFlush() with either VI_ASRL_IN_BUF or
VI_ASRL_IN_BUF_DISCARD to empty the input serial buffer (both flags
have the same effect and are provided only for API consistency).

Note Not all VISA implementations may support setting the size of either the serial
input or output buffers. In such an implementation, the viSetBuf() operation
will return a warning. While this should not affect most programs, you can at lea
detect this lack of support if a specific buffer size is required for performance
reasons. If serial buffer control is not supported in a given implementation, we
recommend that you use some form of handshaking (controlled via the
VI_ATTR_ASRL_FLOW_CNTRL attribute), if possible, to avoid loss of data.

When using formatted I/O in conjunction with serial devices, calling
viFlush() on a formatted I/O buffer has the same effect on the
corresponding serial buffer. For example, invoking viFlush() with
VI_WRITE_BUF flushes the formatted I/O output buffer first, and then th
low-level serial output buffer. Similarly, VI_WRITE_BUF_DISCARD
empties the contents of both the formatted I/O and low-level serial out
buffers.
© National Instruments Corporation 5-11 NI-VISA User Manual

Chapter 5 Message-Based Communication

asic

NIVISAUM.book Page 12 Tuesday, June 9, 1998 8:30 AM
Example VISA Message-Based Application
The following is an example VISA application using message-based
communication.

Note This example shows C source code. You can find the same example in Visual B
syntax in Appendix A, Visual Basic Examples.

Example 5-1
#include "visa.h"

int main(void)

{

ViSession defaultRM, instr;

ViUInt32 retCount;

ViChar idnResult[72];

ViChar resultBuffer[256];

ViStatus status;

/* Open Default Resource Manager */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with GPIB Device at Primary Addr 1 */

/* NOTE: For simplicity, we will not show error checking */

viOpen(defaultRM, "GPIB::1::INSTR", VI_NULL, VI_NULL, &instr);

/* Initialize the timeout attribute to 10 s */

viSetAttribute(instr, VI_ATTR_TMO_VALUE, 10000);

/* Set termination character to carriage return (\r=0x0D) */

viSetAttribute(instr, VI_ATTR_TERMCHAR, 0x0D);

viSetAttribute(instr, VI_ATTR_TERMCHAR_EN, VI_TRUE);

/* Don't assert END on the last byte */

viSetAttribute(instr, VI_ATTR_SEND_END_EN, VI_FALSE);

/* Clear the device */

viClear(instr);

/* Request the IEEE 488.2 identification information */

viWrite(instr, "*IDN?\n", 6, &retCount);

viRead(instr, idnResult, 72, &retCount);
NI-VISA User Manual 5-12 © National Instruments Corporation

Chapter 5 Message-Based Communication

NIVISAUM.book Page 13 Tuesday, June 9, 1998 8:30 AM
/* Use idnResult and retCount to parse device info */

/* Trigger the device for an instrument reading */

viAssertTrigger(instr, VI_TRIG_PROT_DEFAULT);

/* Receive results */

viRead(instr, resultBuffer, 256, &retCount);

/* Close sessions */

viClose(instr);

viClose(defaultRM);

return 0;

}

© National Instruments Corporation 5-13 NI-VISA User Manual

© National Instruments Corporation 6-1 NI-V

NIVISAUM.book Page 1 Tuesday, June 9, 1998 8:30 AM
6

.

 and
es
e

y
ocal

ote
 local

n the
a
 on
s. The
on a
s true

o a
y
s the
Register-Based Communication

This chapter shows how to use the VISA library in register-based
communication.

Note You can skip this chapter if you are using GPIB or serial controllers exclusively
Register-based programming applies only to VXI or GPIB-VXI.

Introduction
Register-based devices (RBDs) are a class of devices that are simple
relatively inexpensive to manufacture. Communication with such devic
is usually accomplished via reads and writes to registers. VISA has th
ability to read from and write to individual device registers, as well as a
block of registers, through the Memory I/O Services.

In addition to accessing RBDs, VISA also provides support for memor
management of the memory exported by a device. For example, both l
controllers and remote devices can have general-purpose memory in
A24/A32 space. With VISA, although the user must know how each rem
device accesses its own memory, the memory management aspects of
controllers are handled through the Shared Memory operations—
viMemAlloc() and viMemFree() . For more information on this topic,
refer to the Shared Memory Operations section later in this chapter.

With the Memory I/O Services, you access the device registers based o
session to the device. In other words, if a session communicates with
device at VXI logical address 16, you cannot use Memory I/O Services
that session to access registers on a device at any other logical addres
range of address locations you can access with Memory I/O Services
session is the range of address locations assigned to that device. This i
for both High-Level and Low-Level Access operations.

To facilitate access to the device registers for multiple devices, VISA
allows you to open a MEMACC (memory access) session. A session t
MEMACC Resource allows an application to access the entire memor
range for a specified address space. The MEMACC Resource support
ISA User Manual

Chapter 6 Register-Based Communication

only
bus

el

e an

,

ned
l the
There
e
 are

NIVISAUM.book Page 2 Tuesday, June 9, 1998 8:30 AM
same high-level and low-level operations as the INSTR Resource. The
difference is that all register addresses are absolute addresses in VXI
address space.

Note A session to a MEMACC Resource supports only the high-level, low-level, and
resource template operations. A MEMACC session does not support the other
INSTR operations.

In VISA, you can choose between two styles for accessing
registers—High-Level Access or Low-Level Access. Both styles have
operations to read the value of a device register and write to a device
register, as shown in the following table. In addition, there are high-lev
operations designed to read or write a block of data. The block-move
operations do not have a low-level counterpart.

Note The remainder of this chapter uses XX in the names of some operations to denote
that the information applies to 8-bit, 16-bit, and 32-bit reads and writes. For
example, viIn XX() refers to viIn8() , viIn16() , and viIn32() .

The following sections show the benefits of each style so you can mak
informed choice of which is more appropriate for your programming
requirements.

High-Level Access Operations
The High-Level Access (HLA) operations viIn XX() and viOut XX()
have a simple and easy-to-use interface for performing register-based
communication. The HLA operations in VISA are wholly self-contained
in that all the information necessary to carry out the operation is contai
in the parameters of the operation. The HLA operations also perform al
necessary hardware setup as well as the error detection and handling.
is no need to call other operations to do any other activity related to th
register access. For this reason, you should use HLA operations if you
just becoming familiar with the system.

High-Level
Access

High-Level
Block

Low-Level
Access

Read viIn8()
viIn16()
viIn32()

viMoveIn8()
viMoveIn16()
viMoveIn32()

viPeek8()
viPeek16()
viPeek32()

Write viOut8()
viOut16()
viOut32()

viMoveOut8()
viMoveOut16()
viMoveOut32()

viPoke8()
viPoke16()
viPoke32()
NI-VISA User Manual 6-2 © National Instruments Corporation

Chapter 6 Register-Based Communication

 bus,

ess
vice,

ice
alue
cial

are

ally,

rors.

of

NIVISAUM.book Page 3 Tuesday, June 9, 1998 8:30 AM
To use viIn XX() or viOut XX() operations to access a register on a
device, you need to have the following information about the register:

• The address space where the register is located. In a VXI interface
for example, the address space can be A16, A24, or A32.

• The offset of the register relative to the device for the specified addr
space. You do not need to know the actual base address of the de
just the offset.

Note When using the MEMACC Resource, you need to provide the absolute VXI
address (base + offset) for the register.

The following sample code reads the Device Type register of a VXI dev
located at offset 0 from the base address in A16 space, and writes a v
to the A24 shared memory space at offset 0x20 (this offset has no spe
significance).

status = viIn16(instr, VI_A16_SPACE, 0, &retValue);

status = viOut16(instr, VI_A24_SPACE, 0x20, 0x1234);

With this information, the HLA operations perform the necessary hardw
setup, perform the actual register I/O, check for error conditions, and
restore the hardware state. To learn how to perform these steps individu
see the Low-Level Access operations.

The HLA operations can detect and handle a wide range of possible er
HLA operations perform boundary checks and return an error code
(VI_ERROR_INV_OFFSET) to disallow accesses outside the valid range
addresses that the device supports. The HLA operations also trap and
handle any bus errors appropriately and then report the bus error as
VI_ERROR_BERR.

That is all that is really necessary to perform register I/O. For more
examples of HLA register I/O, please see Example 2-2 in Chapter 2,
Introductory Programming Examples.
© National Instruments Corporation 6-3 NI-VISA User Manual

Chapter 6 Register-Based Communication

 of
r

to the
 the
 To
ust

ace,

to 0

gister

go
.

NIVISAUM.book Page 4 Tuesday, June 9, 1998 8:30 AM
High-Level Block Operations
The high-level block operations viMoveIn XX () and viMoveOut XX()
have a simple and easy-to-use interface for reading and writing blocks
data residing at either the same or consecutive (incrementing) registe
addresses. Like the high-level access operations, the high-level block
operations can detect and handle many errors and do not require calls
low-level mapping operations. Unlike the high-level access operations,
high-level block operations do not have a direct low-level counterpart.
perform block operations using the low-level access operations, you m
map the desired region of memory and then perform multiple viPeek XX()
or viPoke XX() operation invocations, instead of a single call to
viMoveIn XX() or viMoveOut XX() .

To use the block operations to access a device, you need to have the
following information about the registers:

• The address space where the registers are located. In a VXI interf
for example, the address space can be A16, A24, or A32.

• The beginning offset of the registers relative to the device for the
specified address space.

Note You do not need to know the actual base address of the device, just the offset.

• The number of registers or register values to access.

The default behavior of the block operations is to access consecutive
register addresses. However, you can change this behavior using the
attributes VI_ATTR_SRC_INCREMENT (for viMoveIn XX()) and
VI_ATTR_DEST_INCREMENT (for viMoveOut XX()). If the value is
changed from 1 (the default value, indicating consecutive addresses)
(indicating that registers are to be treated as FIFOs), then the block
operations performs the specified number of accesses to the same re
address.

Note The range value of 0 for the VI_ATTR_SRC_INCREMENT and
VI_ATTR_DEST_INCREMENT attributes may not be supported on all VISA
implementations. In this case, you may need to perform a manual FIFO block
move using individual calls to the high-level or low-level access operations.

If you are using the block operations in the default mode (consecutive
addresses), the number of elements that you want to access may not
beyond the end of the device’s memory in the specified address space
NI-VISA User Manual 6-4 © National Instruments Corporation

Chapter 6 Register-Based Communication

ister

ce,
es
es

r of
 the
gion.
ter

ss

t that

ter
sible

es

ith

NIVISAUM.book Page 5 Tuesday, June 9, 1998 8:30 AM
In other words, the following code sample reads the device's entire reg
set in A16 space:

status = viMoveIn16(instr, VI_A16_SPACE, 0, 0x20, regBuffer16);

Notice that although the device has 0x40 bytes of registers in A16 spa
the fourth parameter is 0x20. Why is this? Since the operation access
16-bit registers, the actual range of registers read is 0x20 accesses tim
2 B, or all 0x40 bytes.

When using the block operations to access FIFO registers, the numbe
elements to read or write is not restricted, because all accesses are to
same register and never go beyond the end of the device’s memory re
The following sample code writes 4 KB of data to a device’s FIFO regis
in A16 space at offset 0x10 (this offset has no special significance):

status = viSetAttribute(instr, VI_ATTR_DEST_INCREMENT, 0);

status = viMoveOut32(instr, VI_A16_SPACE, 0x10, 1024, regBuffer32);

Low-Level Access Operations
Low-Level Access (LLA) operations provide a very efficient way to
perform register-based communication. LLA operations incur much le
overhead than HLA operations for certain types of accesses. LLA
operations perform the same steps that the HLA operations do, excep
each individual task performed by an HLA operation is an individual
operation under LLA.

Overview of Register Accesses from Computers
Before learning about the LLA operations, first consider how a compu
can perform a register access to an external device. There are two pos
ways to perform this access. The first and more obvious, although
primitive, is to have some hardware on the computer that communicat
with the external device.

You would have to follow these steps:

1. Write the address you want.

2. Specify the data to send.

3. Send the command to perform the access.

As you can see, this method involves a great deal of communication w
the local hardware.
© National Instruments Corporation 6-5 NI-VISA User Manual

Chapter 6 Register-Based Communication

ory
PUs

l
ses,

pace,
.

 a
puter

s.
ot
 for
s it
g
ple,
e
d for
ss
ff

 and

nd

ive

n

ou
thods,

NIVISAUM.book Page 6 Tuesday, June 9, 1998 8:30 AM
The National Instruments MXI plug-in cards and embedded VXI
computers use a second, much more efficient method. This method
involves taking a section of the computer’s address space and mapping this
space to another space, such as the VXI A16 space.

To understand how mapping works, you must first remember that mem
and address space are two different things. For example, most 32-bit C
have 4 GB of address space, but have memory measured in megabytes. This
means that the CPU can put out over 232 possible addresses onto the loca
bus, but only a small portion of that corresponds to memory. In most ca
the memory chips in the computer will respond to these addresses.
However, because there is less memory in the computer than address s
National Instruments can add hardware that responds to other addresses
This hardware can then modify the address, according to the mapping
that it has, to a VXI address and perform the access on the VXIbus
automatically. The result is that the computer acts as if it is performing
local access, but in reality the access has been mapped out of the com
and to the VXIbus.

For example, consider an Intel 80x86-based computer running Window
The addresses from 0xD0000 to 0xDFFFF (64 KB of addresses) do n
correspond to any memory. You could add an AT-MXI board that listens
0xD0000 to 0xDFFFF on the bus, and instruct it to map any addresse
finds in this range to the 64 KB of VXI A16 space. It does this by takin
the 0xD off the address so that it has a pure 64 KB address. For exam
0xDC000 would be mapped to 0xC000 in A16 space, which is the bas
address for a device at Logical Address 0. The same technique is use
other VXI address spaces as well. For example, if you wanted to acce
registers at 0x200000 in A24 space, you would tell the AT-MXI to strip o
the 0xD as before, but this time add 0x200000 to the resulting address
send it out to the VXIbus.

You may wonder what the difference is between the efficient method a
the primitive method. They seem to be telling the hardware the same
information. However, there are two important differences. In the primit
method, the communication described must take place for each access.
However, the efficient method requires only occasional communication
with the hardware. Only when you want a different address space or a
address outside of the window (which was 64 KB long in the previous
example) do you need to reprogram the hardware. In addition, when y
have set up your hardware, you can use standard memory access me
such as pointer dereferences in C, to access the VXIbus.
NI-VISA User Manual 6-6 © National Instruments Corporation

Chapter 6 Register-Based Communication

the

. In

ess

offset

e are
lf.
the

for

de
vice

ond
ap

se
 keep
um

ws

g to
sing

NIVISAUM.book Page 7 Tuesday, June 9, 1998 8:30 AM
Using VISA to Perform Low-Level Register Accesses
The first LLA operation you need to call to access a device register is
viMapAddress() operation, which sets up the hardware window and
obtains the appropriate pointer to access the VXI address space. The
viMapAddress() operation first programs the hardware to map local
CPU addresses to VXI addresses as described in the previous section
addition, it returns a pointer that you can use to access the registers.

The following code is an example of programming the hardware to acc
A16 space.

status = viMapAddress(instr, VI_A16_SPACE, 0, 0x40, VI_FALSE,

VI_NULL, &address);

This sample code sets up the hardware to map A16 space, starting at
0 for 0x40 bytes, and returns the pointer to the window in address .
Remember that the offset is relative to the base address of the device w
talking to through the instr session, not from the base of A16 space itse
Therefore, offset 0 does not mean address 0 in A16 space, but rather
starting point of the device’s A16 memory. You can ignore the VI_FALSE
and VI_NULL parameters for the most part because they are reserved
definition by a future version of VISA.

Note To access the device registers through a MEMACC session, you need to provi
the absolute VXIbus addresses (base address for device + register offset in de
address space).

If you need more than a single map for a device, you must open a sec
session to the device, because VISA currently supports only a single m
per session. There is very low overhead in having two sessions becau
sessions themselves do not take much memory. However, you need to
track of two session handles. Notice that this is different from the maxim
number of windows you can have on a system. The hardware for the
controller you are using may have a limit on the number of unique windo
it can support.

When you are finished with the window or need to change the mappin
another address or address space, you must first unmap the window u
the viUnmapAddress() operation. All you need to specify is which
session you used to perform the map.

status = viUnmapAddress(instr);
© National Instruments Corporation 6-7 NI-VISA User Manual

Chapter 6 Register-Based Communication

tion
 can
pped

d

,
ve
ms

ting

You
rs in

ver,

.

ples

NIVISAUM.book Page 8 Tuesday, June 9, 1998 8:30 AM
Operations versus Pointer Dereference
After the viMapAddress() operation returns the pointer, you can
use it to read or write registers. VISA provides the viPeek XX() and
viPoke XX() operations to perform the accesses. On many systems,
theviMapAddress() operation returns a pointer that you can also
dereference directly, rather than calling the LLA operations. The
performance gain achievable by using pointer dereferences over opera
invocations is extremely system dependent. To determine whether you
use a pointer dereference to perform register accesses on a given ma
session, examine the value of the VI_ATTR_WIN_ACCESS attribute. If the
value is VI_DEREF_ADDR, it is safe to perform a pointer dereference.

To make your code portable across different platforms, we recommen
that you always use the accessor operations—viPeek XX() and
viPoke XX() —as a backup method to perform register I/O. In this way
not only is your source code portable, but your executable can also ha
binary compatibility across different hardware platforms, even on syste
that do not support direct pointer dereferences:

viGetAttribute(instr, VI_ATTR_WIN_ACCESS, &access);

if (access == VI_DEREF_ADDR)

*address = 0x1234;

else

viPoke16(instr, address, 0x1234);

Manipulating the Pointer
Every time you call viMapAddress() , the pointer you get back is valid for
accessing a region of addresses. Therefore, if you call viMapAddress()
with mapBase set to address 0 and mapSize to 0x40 (the configuration
register space for a VXI device), you can access not only the register
located at address 0, but also registers in the same vicinity by manipula
the pointer returned by viMapAddress() . For example, if you want to
access another register at address 0x2, you can add 2 to the pointer.
can add up to and including 0x3F to the pointer to access these registe
this example because we have specified 0x40 as the map size. Howe
notice that you cannot subtract any value from the address variable
because the mapping starts at that location and cannot go backwards
Example 6-1 shows how you can access other registers from address .

Note The examples in this chapter show C source code. You can find the same exam
in Visual Basic syntax in Appendix A, Visual Basic Examples.
NI-VISA User Manual 6-8 © National Instruments Corporation

Chapter 6 Register-Based Communication

NIVISAUM.book Page 9 Tuesday, June 9, 1998 8:30 AM
Example 6-1
#include "visa.h"

#define ADD_OFFSET(addr, offs) (((ViPByte)addr) + (offs))

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, instr; /* Communication channels */

ViAddr address; /* User pointer */

ViUInt16 value; /* To store register value */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with VXI Device at Logical Address 16 */

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL, VI_NULL,

&instr);

status = viMapAddress(instr, VI_A16_SPACE, 0, 0x40, VI_FALSE, VI_NULL,

&address);

viPeek16(instr, address, &value);

/* Access a different register by manipulating the pointer. */

viPeek16(instr, ADD_OFFSET(address, 2), &value);

status = viUnmapAddress(instr);

/* Close down the system */

status = viClose(instr);

status = viClose(defaultRM);

return 0;

}

© National Instruments Corporation 6-9 NI-VISA User Manual

Chapter 6 Register-Based Communication

ust

ns
ace
LA

ows,

 for

 the
ad.

ome
LA
 in

ese

tus
e

ns.
are

NIVISAUM.book Page 10 Tuesday, June 9, 1998 8:30 AM
Bus Errors
The LLA operations do not report bus errors. In fact, viPeek XX() and
viPoke XX() do not report any error conditions. However, the HLA
operations do report bus errors. When using the LLA operations, you m
ensure that the addresses you are accessing are valid.

Comparison of High-Level and Low-Level Access

Speed
In terms of the speed of developing your application, the HLA operatio
are much faster to implement and debug because of the simpler interf
and the status information received after each access. For example, H
operations encapsulate the mapping and unmapping of hardware wind
which means that you do not need to call viMapAddress() and
viUnmapAddress() separately.

For speed of execution, the LLA operations perform faster when used
several random register I/O accesses in a single window. If you know that
the next several accesses are within a single window, you can perform
mapping just once and then each of the accesses has minimal overhe

The HLA operations will be slower because they must perform a map,
access, and unmap within each call. Even if the window is correctly
mapped for the access, the HLA call at the very least needs to perform s
sort of check to determine if it needs to remap. Furthermore, because H
operations encapsulate many status-checking capabilities not included
LLA operations, HLA operations have higher software overhead. For th
reasons, HLA is slower than LLA in many cases.

Note For block transfers, the high-level viMove XX() operations perform the fastest.

Ease of Use
HLA operations are easier to use because they encapsulate many sta
checking capabilities not included in LLA operations, which explains th
higher software overhead and lower execution speed of HLA operatio
HLA operations also encapsulate the mapping and unmapping of hardw
windows, which means that you do not need to call viMapAddress() and
viUnmapAddress() separately.
NI-VISA User Manual 6-10 © National Instruments Corporation

Chapter 6 Register-Based Communication

tly

ral

s all

if all

, and
r of

se,
he
irst
 the

he
ry.

ory

,
TR
use

th),
 can

ing

NIVISAUM.book Page 11 Tuesday, June 9, 1998 8:30 AM
Accessing Multiple Address Spaces
You can use LLA operations to access only the address space curren
mapped. To access a different address space, you need to perform a
remapping, which involves calling viUnmapAddress() and
viMapAddress() . Therefore, LLA programming becomes more
complex, without much of a performance increase, for accessing seve
address spaces concurrently. In these cases, the HLA operations are
superior.

In addition, if you have several sessions to the same or different device
performing register I/O, they must compete for the finite number of
windows available. When using LLA operations, you must allocate the
windows and always ensure that the program does not ask for more
windows than are available. The HLA operations avoid this problem by
restoring the window to the previous setting when they are done. Even
windows are currently in use by LLA operations, you can still use HLA
functions because they will save the state of the window, remap, access
then restore the window. As a result, you can have an unlimited numbe
HLA windows.

Shared Memory Operations
Note There are two distinct cases for using shared memory operations. In the first ca

the local controller exports general-purpose memory to the A24/A32 space. In t
second case, remote devices export memory into A24/A32 space. Unlike the f
case, the memory exported to A24/A32 space may not be general purpose, so
VISA Shared Memory services do not control memory on remote devices.

A common configuration in a VXI system is to export memory to either t
A24 or A32 space. The local controller usually can export such memo
This memory can then be used to buffer the data going to or from the
instruments in the system. However, a common problem is preventing
multiple devices from using the same memory. In other words, a mem
manager is needed on this memory to prevent corruption of the data.

The VISA Shared Memory operations—viMemAlloc() and
viMemFree() —provide the memory management for a specific device
namely, the local controller. Since these operations are part of the INS
resource, they are associated with a single VXI device. In addition, beca
a VXI device can export memory in either A24 or A32 space (but not bo
the memory pool available to these operations is defined at startup. You
determine whether the memory resides in A24 or A32 space by query
the attribute VI_ATTR_MEM_SPACE.
© National Instruments Corporation 6-11 NI-VISA User Manual

Chapter 6 Register-Based Communication

ork

e
e
g

NIVISAUM.book Page 12 Tuesday, June 9, 1998 8:30 AM
Shared Memory Sample Code
The following example shows how these shared memory operations w
by incorporating them into Example 6-1. Their main purpose is to allocate
a block of memory from the pool that can then be accessed through th
standard register-based access operations (high level or low level). Th
INSTR resource for this device ensures that no two sessions requestin
memory receive overlapping blocks.

Note Example 6-2 uses bold text to distinguish lines of code that are different from
those in Example 6-1.

Example 6-2
#include "visa.h"

#define ADD_OFFSET(addr, offs) (((ViPByte)addr) + (offs))

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM, self ; /* Communication channels */

ViAddr address; /* User pointer */

ViBusAddress offset; /* Shared memory offset */

ViUInt16 addrSpace; /* Shared memory space */

ViUInt16 value; /* To store register value */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communication with VXI Device at Logical Address 0 */

/* NOTE: For simplicity, we will not show error checking */

status = viOpen(defaultRM, " VXI0::0::INSTR ", VI_NULL, VI_NULL,

&self);

/* Allocate a portion of the device's memory */

status = viMemAlloc(self, 0x100, &offset);

/* Determine where the shared memory resides */

status = viGetAttribute(self, VI_ATTR_MEM_SPACE, &addrSpace);
NI-VISA User Manual 6-12 © National Instruments Corporation

Chapter 6 Register-Based Communication

NIVISAUM.book Page 13 Tuesday, June 9, 1998 8:30 AM
status = viMapAddress(self, addrSpace, offset , 0x100 , VI_FALSE,

VI_NULL, &address);

viPeek16(self , address, &value);

/* Access a different register by manipulating the pointer. */

viPeek16(self , ADD_OFFSET(address, 2), &value);

status = viUnmapAddress(self);

status = viMemFree(self, offset);

/* Close down the system */

status = viClose(self);

status = viClose(defaultRM);

return 0;

}

© National Instruments Corporation 6-13 NI-VISA User Manual

© National Instruments Corporation 7-1 NI-V

NIVISAUM.book Page 1 Tuesday, June 9, 1998 8:30 AM
7

vent

ain

 its
the

thod

do

m

an
VISA Events

This chapter describes the VISA event model and how to use it. The
following sections discuss the various events VISA supports and the e
handling paradigm.

Introduction
VISA defines a common mechanism to notify an application when cert
conditions occur. These conditions or occurrences are referred to as events.
An event is a means of communication between a VISA resource and
applications. Typically, events occur because of a condition requiring
attention of applications.

The VISA event model provides the following two different ways for an
application to receive event notification:

• The first method uses a queuing mechanism. You can use this me
to place all of the occurrences of a specified event in a queue. The
queuing mechanism is generally useful for noncritical events that
not need immediate servicing. The Queuing section in this chapter
describes this mechanism in detail.

• The other method is to have VISA invoke a function that the progra
specifies prior to enabling the event. This is known as a callback
handler and is invoked on every occurrence of the specified event.
The callback mechanism is useful when your application requires
immediate response. The Callbacks section in this chapter describes
this mechanism in detail.

The queuing and callback mechanisms are suitable for different
programming styles. However, because these mechanisms work
independently of each other, you can have them both enabled at the
same time.
ISA User Manual

Chapter 7 VISA Events

rol

t.

e

NIVISAUM.book Page 2 Tuesday, June 9, 1998 8:30 AM
Supported Events
The following four events are currently defined for the Instrument Cont
Resource. These events do not apply to the Memory Access Resource.

• VI_EVENT_SERVICE_REQ (Service Request) is a notification of a
service request from the device on a specific session.

• VI_EVENT_VXI_SIGP (VXI Signal Processor) is a notification of a
VXIbus signal or VXIbus interrupt from the device. Notice that VISA
supports the VI_EVENT_VXI_SIGP event only for VXI interfaces, so
you can enable sessions only to VXI devices for this event.

• VI_EVENT_VXI_VME_INTR (VXI/VME Interrupt) is a notification of
a VXIbus interrupt from the device. Notice that VISA supports the
VI_EVENT_VXI_VME_INTR event only for VXI or VME interfaces, so
you can enable sessions only to VXI or VME devices for this even

• VI_EVENT_TRIG (VXI Trigger) is a notification of a VXIbus trigger.
VXIbus interfaces support this event. Therefore, you can enable
sessions only to VXI devices for this event.

VISA defines following two events for both the Instrument Control
Resource and the Memory Access Resource.

• VI_EVENT_IO_COMPLETION (I/O Completion) is a notification that
an asynchronous I/O operation has completed.

The I/O Completion event applies to all asynchronous operations,
which currently includes viReadAsync(), viWriteAsync() , and
viMoveAsync() . You can use all three operations with the INSTR
Resource but only viMoveAsync() with the MEMACC Resource.

• VI_EVENT_EXCEPTION (Exception) is a notification that an error
condition has occurred during an operation invocation.

The exception event supports only the callback model. Refer to th
Exception Handling section at the end of this chapter for more
information about this event type.

VISA events use a list of attributes to maintain information associated
with the event. You can access the event attributes using the
viGetAttribute() operation, just as for the session and resource
attributes.

All VISA events support the generic event attribute
VI_ATTR_EVENT_TYPE. This attribute provides the type of the
event—whether Service Request, VXI Signal Processor, VXI/VME
Interrupt, VXIbus Trigger, or I/O Completion, or Exception.
NI-VISA User Manual 7-2 © National Instruments Corporation

Chapter 7 VISA Events

r

.

lp

ism,

ange

NIVISAUM.book Page 3 Tuesday, June 9, 1998 8:30 AM
In addition to this attribute, individual events may define attributes
to hold additional event information. Currently, only the
VI_EVENT_SERVICE_REQ event does not define additional attributes.

• VI_EVENT_VXI_SIGP defines VI_ATTR_SIGP_STATUS_ID, which
contains the 16-bit Status/ID value retrieved during the interrupt o
from the Signal register.

• VI_EVENT_TRIG defines VI_ATTR_RECV_TRIG_ID, which provides
the trigger line on which the trigger was received.

• VI_EVENT_IO_COMPLETION defines, among other attributes,
VI_ATTR_STATUS and VI_ATTR_RET_COUNT, which provide
information about how the asynchronous I/O operation completed

• VI_EVENT_VXI_VME_INTR defines VI_ATTR_INTR_STATUS_ID
and VI_ATTR_RECV_INTR_LEVEL, which provide the interrupt status
and interrupt level, respectively.

• VI_EVENT_EXCEPTION defines VI_ATTR_STATUS and
VI_ATTR_OPER_NAME, which provide information about what error
was generated and which operation generated it, respectively.

All the attributes VISA events support are read-only attributes; a user
application cannot modify their values. Refer to the NI-VISA online he
or to the NI-VISA Programmer Reference Manual for detailed information
on the specific events.

Enabling and Disabling Events
Before a session can use either the VISA callback or queuing mechan
you need to enable the session to sense events. You can use the
viEnableEvent() operation to enable an event using either of the
mechanisms. You can also enable events using a combination of both
queuing and callback mechanisms by (bit-wise) ORing together the
different mechanisms.

For example, to enable the VI_EVENT_VXI_SIGP event for queuing, use
the following code:

status = viEnableEvent(instr, VI_EVENT_VXI_SIGP, VI_QUEUE,

VI_NULL);

However, to enable the same event for both queuing and callbacks, ch
the code as follows:

status = viEnableEvent(instr, VI_EVENT_VXI_SIGP,

VI_QUEUE | VI_HNDLR, VI_NULL);
© National Instruments Corporation 7-3 NI-VISA User Manual

Chapter 7 VISA Events

s
ion

r
 must

ss
d

he

d

r,

ction.

sense
y
ueue

NIVISAUM.book Page 4 Tuesday, June 9, 1998 8:30 AM
Notice also that viEnableEvent() can add to the number of mechanism
in use during a session. For example, if you have enabled the applicat
for queuing, it can make a subsequent call to viEnableEvent()
specifying the callback mechanism. The end result is that both the queuing
and callback mechanisms are enabled.

You cannot use the viEnableEvent() operation to decrease the numbe
of mechanisms on which a session is enabled for sensing. Instead, you
use viDisableEvent() for that purpose. For example, if you have
enabled a session for both VI_QUEUE and VI_HNDLR, a subsequent call to
viEnableEvent() with the mechanism parameter set to VI_QUEUE does
not change the mechanism to queuing only, but returns with the succe
code VI_SUCCESS_EVENT_EN, meaning that the specified event is enable
for at least one of the specified mechanisms. To disable the callback
mechanism, call viDisableEvent() with its mechanism parameter set
to VI_HNDLR. This action disables the callback mechanism but keeps t
queuing method of notification enabled, as in the following example:

status = viDisableEvent(instr, VI_EVENT_VXI_SIGP, VI_HNDLR);

The viEnableEvent() operation also automatically enables the
hardware, if necessary for detecting the event. The hardware is enable
when the first call to viEnableEvent() for the event is made from any of
the sessions currently active. Similarly, viDisableEvent() disables the
hardware when the last enabled session disables itself for the event.

Queuing
The queuing mechanism in VISA gives an application the flexibility to
receive events only when it requests them. An application uses the
viWaitOnEvent() operation to retrieve the event information. Howeve
in addition to retrieving events from the queue, you can also use
viWaitOnEvent() in your application to halt the current execution and
wait for the event to arrive. Both of these cases are discussed in this se

The event queuing process requires that you first enable the session to
the particular event type. When enabled, the session can automaticall
queue the event occurrences as they happen. A session can later deq
these events using the viWaitOnEvent() operation. You can set the
timeout to VI_TMO_IMMEDIATE if you want your application to check if
any event of the specified event type exists in the queue.

Note Each session has a queue for each of the possible events that can occur. This
means that each queue is per session and per event.
NI-VISA User Manual 7-4 © National Instruments Corporation

Chapter 7 VISA Events

e

ise,
t

t

as
vent

he

ribed.
ever,

ize

ced

hat
he
.

NIVISAUM.book Page 5 Tuesday, June 9, 1998 8:30 AM
An application can also use viWaitOnEvent() to wait for events if none
currently exists in the queue. When you select a non-zero timeout valu
(something other than VI_TMO_IMMEDIATE), the operation retrieves the
specified event if it exists in the queue and returns immediately. Otherw
the application waits until the specified event occurs or until the timeou
expires, whichever occurs first. When an event arrives and causes
viWaitOnEvent() to return, the event is not queued for the session on
which the wait operation was invoked. However, if any other session is
currently enabled for queuing, the event is placed on the queue for tha
session.

You can use viDisableEvent() to disable event queuing on a session,
discussed in the previous section. If you disable the queue, no further e
occurrences are queued, but event occurrences that were already in t
event queue are retained. Your application can use viWaitOnEvent() to
dequeue these retained events in the same manner as previously desc
The wait operation does not need to have events enabled to work; how
the session must be enabled to detect new events. An application can
explicitly clear (flush) the event queue with the viDiscardEvents()
operation.

The event queues in VISA are of fixed length, but you can specify the s
of a queue by using the VI_ATTR_MAX_QUEUE_LENGTH template attribute.
This attribute specifies the maximum number of events that can be pla
on queue.

Note If the event queue is full and a new event arrives, the new event is discarded.

VISA does not currently let you dynamically configure queue lengths. T
is, you can only modify the queue length before the first invocation of t
viEnableEvent() operation, as shown in the following code segment

status = viSetAttribute(instr, VI_ATTR_MAX_QUEUE_LENGTH, 10);

status = viEnableEvent(instr, VI_EVENT_SERVICE_REQ, VI_QUEUE,

VI_NULL);

See Example 2-3 in Chapter 2, Introductory Programming Examples, for
an example of handling events via the queue mechanism.
© National Instruments Corporation 7-5 NI-VISA User Manual

Chapter 7 VISA Events

an
stall
ack

d

fer

 of
n
event
in
lers

k
ks.
me.

 the

k
 on a
 the

NIVISAUM.book Page 6 Tuesday, June 9, 1998 8:30 AM
Callbacks
The VISA event model also allows applications to install functions that c
be called back when a particular event type is received. You need to in
a handler before enabling a session to sense events through the callb
mechanism. Refer to the section The userHandle Parameter later in this
chapter for more information. The procedure works as follows:

1. Use the viInstallHandler() operation to install handlers to
receive events.

2. Use the viEnableEvent() operation to enable the session for the
callback mechanism as described earlier in the Enabling and Disabling
Events section.

3. The driver invokes the handler on every occurrence of the specifie
event.

4. VISA provides the event context in the context parameter of
viEventHandler() . The event context is like a data structure, and
contains information about the specific occurrence of the event. Re
to the section The Life of the Event Context later in this chapter for
more information on event context.

You can now have multiple handlers per session in the current revision
VISA. If you have multiple handlers installed for the same event type o
the same session, each handler is invoked on every occurrence of that
type. The handlers are invoked in reverse order of installation; that is,
Last In First Out (LIFO) order. For a given handler to prevent other hand
on the same session from being executed, it should return the value
VI_SUCCESS_NCHAIN rather than VI_SUCCESS. This does not affect the
invocation of event handlers on other sessions or in other processes.

Callback Modes
VISA gives you the choice of two different modes for using the callbac
mechanism. You can use either direct callbacks or suspended callbac
You can have only one of these callback modes enabled at any one ti

To use the direct callback mode, specify VI_HNDLR in the mechanism
parameter. In this mode, VISA invokes the callback routine at the time
event occurs.

To use the suspended callback mode, specify VI_SUSPEND_HNDLR in the
mechanism parameter. In this mode, VISA does not invoke the callbac
routine at the time of event occurrence; instead, the events are placed
suspended handler queue. This queue is similar to the queue used by
NI-VISA User Manual 7-6 © National Instruments Corporation

Chapter 7 VISA Events

acks.

t

nd
 the
 the
ism

te

eue

ng
he
oes

NIVISAUM.book Page 7 Tuesday, June 9, 1998 8:30 AM
queuing mechanism except that you cannot access it directly. You can
obtain the events on the queue only by re-enabling the session for callb
You can flush the queue with viDiscardEvents() .

For example, the following code segment shows how you can halt the
arrival of events while you perform some critical operations that would
conflict with code in the callback handler. Notice that no events are los
while this code executes, because they are stored on a queue.

status = viEnableEvent(instr, VI_EVENT_SERVICE_REQ,VI_HNDLR,

VI_NULL);

.

.

.

status = viEnableEvent(instr, VI_EVENT_SERVICE_REQ,

VI_SUSPEND_HNDLR, VI_NULL);

/*Perform code that must not be interrupted by a callback. */

status = viEnableEvent(instr, VI_EVENT_SERVICE_REQ, VI_HNDLR,

VI_NULL);

When you switch the event mechanism from VI_HNDLR to
VI_SUSPEND_HNDLR, the VISA driver can still detect the events. For
example, VXI interrupts still generate a local interrupt on the controller a
VISA handles these interrupts. However, the event VISA generates for
VXI interrupt is now placed on the handler queue rather than passed to
application. When the critical section completes, switching the mechan
from VI_SUSPEND_HNDLR back to VI_HNDLR causes VISA to call the
application’s callback functions whenever it detects a new event as well as
for every event waiting on the handler queue.

Independent Queues
As stated previously, the callback and the queuing mechanisms opera
totally independently of each other, so VISA keeps the information for
event occurrences separately for both mechanisms. Therefore, VISA
maintains the suspended handler queue separately from the event qu
used for the queuing mechanism. The VI_ATTR_MAX_QUEUE_LENGTH
attribute mentioned earlier in the Queuing section of this chapter applies
to the suspended handler queue as well as to the queue for the queui
mechanism. However, because these queues are separate, if one of t
queues reaches the predefined limit for storing event occurrences, it d
not directly affect the other mechanism.
© National Instruments Corporation 7-7 NI-VISA User Manual

Chapter 7 VISA Events

 the
n

en

cture
n
ta

ith a

ther
one
curs

 a

 the

GPIB
te,
ata.

NIVISAUM.book Page 8 Tuesday, June 9, 1998 8:30 AM
The userHandle Parameter
When using viInstallHandler() to install handlers for the callback
mechanism, your application can use the userHandle parameter to supply
a reference to any application-defined value. This reference is passed back
to the application as the userHandle parameter to the callback routine
during handler invocation. By supplying different values for this
parameter, applications can install the same handler with different
application-defined contexts.

For example, applications often need information that was received in
callback to be available for the main program. In the past, this has bee
done through global variables. In VISA, userHandle gives the application
more modularity than is possible with global variables. In this case, the
application can allocate a data structure to hold information locally. Wh
it installs the callback handler, it can pass the reference to this data stru
to the callback handler via the userHandle. This means that the handler ca
store the information in the local data structure rather than a global da
structure.

For another example, consider an application that installs a handler w
fixed value of 0x1 for the userHandle parameter. It can install the same
handler with a different value, say 0x2, for the same event type on ano
session. However, installations of the same handler are different from
another. Both handlers are invoked when the event of the given type oc
but in one invocation the value passed to userHandle is 0x1 and in the other
it is 0x2. As a result, you can uniquely identify VISA event handlers by
combination of the handler address and user context pair.

This structure also is important when the application attempts to remove
handler. The operation viUninstallHandler() requires not only the
handler’s address but also the userHandle value to correctly identify which
handler to remove.

Queuing and Callback Mechanism Sample Code
Example 7-1 demonstrates the use of both the queuing and callback
mechanisms in event handling. In the program, a message is sent to a
device telling it to read some data. When the data collection is comple
the device asserts SRQ, informing the program that it can now read d
After reading the device’s status byte, the handler begins to read
asynchronously using a buffer of information that the main program
passes to it.
NI-VISA User Manual 7-8 © National Instruments Corporation

Chapter 7 VISA Events

asic

NIVISAUM.book Page 9 Tuesday, June 9, 1998 8:30 AM
Note This example shows C source code. You can find the same example in Visual B
syntax in Appendix A, Visual Basic Examples.

Example 7-1
#include "visa.h"

#include <stdlib.h>

#define MAX_CNT 1024

/* This function is to be called when an SRQ event occurs */

/* Here, an SRQ event indicates the device has data ready */

ViStatus _VI_FUNCH myCallback(ViSession vi, ViEventType etype,

ViEvent event, ViAddr userHandle)

{

ViJobId jobID;

ViStatus status;

ViUInt16 stb;

status = viReadSTB(vi, &stb);

status = viReadAsync(vi,(ViBuf)userHandle,MAX_CNT,&jobID);

return VI_SUCCESS;

}

int main(void)

{

ViStatus status;

ViSession defaultRM, gpibSesn;

ViBuf bufferHandle;

ViUInt32 retCount;

ViEventType etype;

ViEvent event;

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error initializing VISA...exiting */

return -1;

}

/* Open communication with GPIB device at primary address 2 */

status = viOpen(defaultRM, "GPIB0::2::INSTR", VI_NULL, VI_NULL,

&gpibSesn);

/* Allocate memory for buffer */
© National Instruments Corporation 7-9 NI-VISA User Manual

Chapter 7 VISA Events

NIVISAUM.book Page 10 Tuesday, June 9, 1998 8:30 AM
/* In addition, allocate space for the ASCII NULL character */

bufferHandle = (ViBuf)malloc(MAX_CNT+1);

/* Tell the driver what function to call on an event */

status = viInstallHandler(gpibSesn, VI_EVENT_SERVICE_REQ, myCallback,

bufferHandle);

/* Enable the driver to detect events */
status = viEnableEvent(gpibSesn, VI_EVENT_SERVICE_REQ, VI_HNDLR, VI_NULL);

status = viEnableEvent(gpibSesn, VI_EVENT_IO_COMPLETION, VI_QUEUE, VI_NULL);

/* Tell the device to begin acquiring a waveform */

status = viWrite(gpibSesn, "E0x51; W1", 9, &retCount);

/* The device asserts SRQ when the waveform is ready */

/* The callback begins reading the data */

/* After the data is read, an I/O completion event occurs */

status = viWaitOnEvent(gpibSesn, VI_EVENT_IO_COMPLETION, 20000,

&etype, &event);

if (status < VI_SUCCESS) {

/* Waveform not received...exiting */

free(bufferHandle);

viClose(defaultRM);

return -1;

}

/* Your code should process the waveform data */

/* Close the event context */

viClose(event);

/* Stop listening for events */

status = viDisableEvent(gpibSesn, VI_ALL_ENABLED_EVENTS,

VI_ALL_MECH);

status = viUninstallHandler(gpibSesn, VI_EVENT_SERVICE_REQ,

myCallback,bufferHandle);

/* Close down the system */

free(bufferHandle);

status = viClose(gpibSesn);

status = viClose(defaultRM);

return 0;

}

NI-VISA User Manual 7-10 © National Instruments Corporation

Chapter 7 VISA Events

rs is
t is

hen
ut

ou.

t
t

than

e

ent
 life
t to

NIVISAUM.book Page 11 Tuesday, June 9, 1998 8:30 AM
The Life of the Event Context
The event context that the VISA driver generates when an event occu
a data object that contains the information about the event. Because i
more than just a simple variable, memory allocation and deallocation
becomes important.

Event Context with the Queuing Mechanism
When you use the queuing mechanism, the event context is returned w
you call viWaitOnEvent() . The driver has created this data structure, b
it cannot destroy it until you tell it to. For this reason, in VISA you call
viClose() on the event context so the driver can free the memory for y
Always remember to call viClose() when you are done with the event.

If you know the type of event you are receiving, and the event does no
provide any useful information to your application other than whether i
actually occurred, you can pass VI_NULL as the outEventType and
eventContext parameters as shown in the following example:

status = viWaitOnEvent(gpibSesn, VI_EVENT_SERVICE_REQ, 5000,

VI_NULL, VI_NULL);

In this case, VISA automatically closes the event data structure rather
returning it to you; calling viClose() on the event context is therefore
both unnecessary and incorrect.

Event Context with the Callback Mechanism
In the case of callbacks, the event is passed to you in a function, so th
driver has a chance to destroy it when the function ends. This has two
important repercussions. First, you do not need to call viClose() on the
event inside the callback function. Indeed, calling this operation on the
event could lead to serious problems because VISA will access the ev
(to close it) when your callback returns. Secondly, the event itself has a
only as long as the callback function is executing. Therefore, if you wan
keep any information about the event after the callback function, you
should use viGetAttribute() to retrieve the information for storage.
Any references to the event itself becomes invalid when the callback
function ends.
© National Instruments Corporation 7-11 NI-VISA User Manual

Chapter 7 VISA Events

you
s the
des
an
n
ays

e for
e
ling
 only

NIVISAUM.book Page 12 Tuesday, June 9, 1998 8:30 AM
Exception Handling
By using the VISA event VI_EVENT_EXCEPTION, you can have one point
in your code that traps all errors and handles them appropriately. This
means that after you install and enable your VISA exception handler,
do not have to check the return status from each operation, which make
code easier to read and maintain. How an application handles error co
is specific to both the device and the application. For one application,
error could mean different things from different devices, and might eve
be ignored under certain circumstances; for another, any error could alw
be fatal.

For an application that needs to treat all errors as fatal, one possible us
this event type would be to print out a debug message and then exit th
application. Because the method of installing the handler and then enab
the event has already been covered, the following code segment shows
the handler itself:

ViStatus _VI_FUNCH myEventHandler (ViSession vi, ViEventType etype,

ViEvent event, ViAddr uHandle)

{

ViChar rsrcName[256], operName[256];

ViStatus stat;

ViSession rm;

if (etype == VI_EVENT_EXCEPTION) {

viGetAttribute(vi,VI_ATTR_RSRC_NAME,rsrcName);

viGetAttribute(event,VI_ATTR_OPER_NAME,operName);

viGetAttribute(event,VI_ATTR_STATUS,&stat);

printf(

"Session 0x%08lX to resource %s caused error 0x%08lX in operation %s.\n",

vi,rsrcName,stat,operName);

/* Use this code only if you will not return control to VISA */

viGetAttribute(vi,VI_ATTR_RM_SESSION,&rm);

viClose(event);

viClose(vi);

viClose(rm);

exit(-1); /* exit the application immediately */

}

/* code for other event types */

return VI_SUCCESS;

}

NI-VISA User Manual 7-12 © National Instruments Corporation

Chapter 7 VISA Events

 that
nt
ded
re is

u

e
n

A
f the
nt

if
ce
e
s, an

ted

f the
t
.

NIVISAUM.book Page 13 Tuesday, June 9, 1998 8:30 AM
If you wanted just to print out a message, you would leave out the code
closes the objects and exits. Notice that in this code segment, the eve
object is closed inside of the callback, even though we just recommen
in the previous section that you not do this! The reason that we do it he
that the code will never return control to VISA—calling exit() will return
control to the operation system instead. This is the only case where yo
should ever invoke viClose() within a callback.

Another (more advanced) use of this event type is for throwing C++
exceptions. Because VISA exception event handlers are invoked in th
context of the same thread in which the error condition occurs, you ca
safely throw a C++ exception from the VISA handler. Like the example
above, you would invoke viClose() on the exception event (but you
would probably not close the actual session or its resource manager
session). You would also need to include the information about the VIS
exception (for example, the status code) in your own exception class (o
type that you throw), since this will not be available once the VISA eve
is closed.

Throwing C++ exceptions introduces several issues to consider. First,
you have mixed C and C++ code in your application, this could introdu
memory leaks in cases where C functions allocate local memory on th
heap rather than the stack. Second, if you use asynchronous operation
exception is thrown only if the error occurs before the operation is pos
(for example, if the error generated is VI_ERROR_QUEUE_ERROR). If the
error occurs during the operation itself, the status is returned as part o
VI_EVENT_IO_COMPLETION event. This is important because that even
may occur in a separate thread, due to the nature of asynchronous I/O
Therefore, you should not use asynchronous operations if you wish to
throw C++ exceptions from your handler.
© National Instruments Corporation 7-13 NI-VISA User Manual

© National Instruments Corporation 8-1 NI-V

NIVISAUM.book Page 1 Tuesday, June 9, 1998 8:30 AM
8

and
. In
sions

to

nd
SA
h

rces
d by
g on

l

hared

d
VISA Locks

This chapter describes how to use locks in VISA.

Introduction
VISA introduces locks for access control of resources. In VISA,
applications can open multiple sessions to a resource simultaneously
can access the resource through these different sessions concurrently
some cases, applications accessing a resource must restrict other ses
from accessing that resource. For example, an application may need
execute a write and a read operation as a single step so that no other
operations intervene between the write and read operations. The
application can lock the resource before invoking the write operation a
unlock it after the read operation, to execute them as a single step. VI
defines a locking mechanism to restrict accesses to resources for suc
special circumstances.

The VISA locking mechanism enforces arbitration of accesses to resou
on an individual basis. If a session locks a resource, operations invoke
other sessions are serviced or returned with a locking error, dependin
the operation and the type of lock used.

Lock Types
VISA defines two different types, or modes, of locks: exclusive and
sharedlocks, which are denoted by VI_EXCLUSIVE_LOCK and
VI_SHARED_LOCK, respectively. viLock() is used to acquire a lock on
a resource, and viUnlock() is used to release the lock.

If a session has an exclusive lock, other sessions cannot modify globa
attributes or invoke operations, but can still get attributes and set local
attributes. If the session has a shared lock, other sessions that have s
locks can also modify global attributes and invoke operations.

Regardless of which type of lock a session has, if the session is close
without first being unlocked, VISA automatically performs a viUnlock()
on that session.
ISA User Manual

Chapter 8 VISA Locks

ads
leges

quire

d to
ions
, and

locks.

ing
 The
ccess
 for

ther
using

ll

aintain
f

NIVISAUM.book Page 2 Tuesday, June 9, 1998 8:30 AM
Lock Sharing
Because the locking mechanism in VISA is session based, multiple thre
sharing a session that has locked a VISA resource have the same privi
for accessing the resource. However, some applications might have
separate sessions to a resource for these multiple threads, and might re
that all the sessions in the application have the same privileges as the
session that locked the resource. In other cases, there might be a nee
share locks among sessions in different applications. Essentially, sess
that have a lock to a resource may share the lock with certain sessions
exclude access from other sessions.

This section discusses the mechanism that makes it possible to share
VISA defines a lock type—VI_SHARED_LOCK—that gives exclusive
access privileges to a session, along with the capability to share these
exclusive privileges at the discretion of the original session. When lock
sessions with a shared lock, the locking session gains an access key.
session can then share this lock with any other session by passing the a
key. VISA allows user applications to specify an access key to be used
lock sharing, or VISA can generate the access key for an application.

If the application chooses to specify the accessKey, other sessions that
want access to the resource must choose the same unique accessKey for
locking the resource. Otherwise, when VISA generates the accessKey, the
session that gained the shared lock should make the accessKey available to
other sessions for sharing access to the locked resource. Before the o
sessions can access the locked resource, they must acquire the lock
the same access key in the accessKey parameter of the viLock()
operation. Invoking viLock() with the same access key will register the
new session with the same access privileges as the original session. A
sessions that share a resource should synchronize their accesses to m
a consistent state of the resource. The following code is an example o
obtaining a shared lock with a requested name:

status = viLock(instr, VI_SHARED_LOCK, 15000,

"MyLockName", accessKey);

This example attempts to acquire a shared lock with "MyLockName" as the
requestedKey and a timeout of 15 s. If the call is successful, accessKey
will contain "MyLockName" . If you want to have VISA generate a key,
simply pass VI_NULL in place of "MyLockName" and VISA will return a
unique key in accessKey that other sessions can use for locking the
resource.
NI-VISA User Manual 8-2 © National Instruments Corporation

Chapter 8 VISA Locks

 of
is

e
it was
her

hen

d
 the
e
 and
ute in

urce
 an

e
case

he

e

hen
sing it
 that

NIVISAUM.book Page 3 Tuesday, June 9, 1998 8:30 AM
Acquiring an Exclusive Lock While Owning a Shared Lock
When multiple sessions have acquired a shared lock, VISA allows one
the sessions to acquire an exclusive lock as well as the shared lock it
holding. That is, a session holding a shared lock can also acquire an
exclusive lock using the viLock() operation. The session holding both th
exclusive and shared lock has the same access privileges it had when
holding only the shared lock. However, the exclusive lock precludes ot
sessions holding the shared lock from accessing the locked resource. W
the session holding the exclusive lock unlocks the resource using the
viUnlock() operation, all the sessions (including the one that acquire
the exclusive lock) again have all the access privileges associated with
shared lock. This circumstance is useful when you need to synchroniz
multiple sessions holding a shared lock. A session holding an exclusive
shared lock can also be useful when one of the sessions needs to exec
a critical section.

Nested Locks
VISA supports nested locking. That is, a session can lock the same reso
multiple times (for the same lock type). Unlocking the resource requires
equal number of invocations of the viUnlock() operation. Each session
maintains a separate lock count for each type of locks. Repeated
invocations of the viLock() operation for the same session increase th
appropriate lock count, depending on the type of lock requested. In the
of shared locks, nesting viLock() calls return with the same accessKey
every time. In the case of exclusive locks, viLock() does not return an
accessKey, regardless of whether it is nested. For each invocation of
viUnlock() , the lock count is decremented. VISA unlocks a resource
only when the lock count equals 0.

Locking Sample Code
Example 8-1 uses a shared lock because two sessions are opened for
performing trigger operations. The first session receives triggers and t
second session sources triggers. A shared lock is needed because an
exclusive lock would prohibit the other session from accessing the sam
resource. If viWaitOnEvent() fails, this example performs a viClose()
on the resource manager without unlocking or closing the sessions. W
the resource manager session closes, all sessions that were opened u
automatically close as well. Likewise, remember that closing a session
has any lock results in automatically releasing its lock(s).
© National Instruments Corporation 8-3 NI-VISA User Manual

Chapter 8 VISA Locks

asic

NIVISAUM.book Page 4 Tuesday, June 9, 1998 8:30 AM
Note This example shows C source code. You can find the same example in Visual B
syntax in Appendix A, Visual Basic Examples.

Example 8-1
#include "visa.h"

#define MAX_COUNT 128

int main(void)

{

ViStatus status; /* For checking errors */

ViSession defaultRM; /* Communication channels */

ViSession instrIN, instrOUT; /* Communication channels */

ViChar accKey[VI_FIND_BUFLEN]; /* Access key for lock */

ViByte buf[MAX_COUNT]; /* To store device data */

ViEventType etype; /* To identify event */

ViEvent event; /* To hold event info */

ViUInt32 retCount; /* To hold byte count */

/* Begin by initializing the system */

status = viOpenDefaultRM(&defaultRM);

if (status < VI_SUCCESS) {

/* Error Initializing VISA...exiting */

return -1;

}

/* Open communications with VXI Device at Logical Addr 16 */

status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL, VI_NULL,

&instrIN);

status = viOpen(defaultRM, "VXI0::16::INSTR", VI_NULL, VI_NULL,

&instrOUT);

/* We open two sessions to the same device */

/* One session is used to assert triggers on TTL channel 4 */

/* The second is used to receive triggers on TTL channel 5 */

/* Lock first session as shared, have VISA generate the key */

/* Then lock the second session with the same access key */

status = viLock(instrIN, VI_SHARED_LOCK, 5000, VI_NULL, accKey);

status = viLock(instrOUT, VI_SHARED_LOCK, VI_TMO_IMMEDIATE, accKey,

accKey);
NI-VISA User Manual 8-4 © National Instruments Corporation

Chapter 8 VISA Locks

NIVISAUM.book Page 5 Tuesday, June 9, 1998 8:30 AM
/* Set trigger channel for sessions */

status = viSetAttribute(instrIN, VI_ATTR_TRIG_ID,VI_TRIG_TTL5);

status = viSetAttribute(instrOUT,VI_ATTR_TRIG_ID,VI_TRIG_TTL4);

/* Enable input session for trigger events */

status = viEnableEvent(instrIN, VI_EVENT_TRIG, VI_QUEUE, VI_NULL);

/* Assert trigger to tell device to start sampling */

status = viAssertTrigger(instrOUT, VI_TRIG_PROT_DEFAULT);

/* Device will respond with a trigger when data is ready */

if ((status = viWaitOnEvent(instrIN, VI_EVENT_TRIG, 20000, &etype,

&event)) < VI_SUCCESS) {

viClose(defaultRM);

return -1;

}

/* Close the event */

status = viClose(event);

/* Read data from the device */

status = viRead(instrIN, buf, MAX_COUNT, &retCount);

/* Your code should process the data */

/* Unlock the sessions */

status = viUnlock(instrIN);

status = viUnlock(instrOUT);

/* Close down the system */

status = viClose(instrIN);

status = viClose(instrOUT);

status = viClose(defaultRM);

return 0;

}

© National Instruments Corporation 8-5 NI-VISA User Manual

© National Instruments Corporation 9-1 NI-V

NIVISAUM.book Page 1 Tuesday, June 9, 1998 8:30 AM
9

hen

ME

rial
 can

n at

ugh
NI-VISA Platform-Specific and
Portability Issues

This chapter discusses programming information for you to consider w
developing applications that use the NI-VISA driver.

After installing the driver software, you can begin to develop your VISA
application software. Remember that the NI-VISA driver relies on
NI-488.2 and NI-VXI for driver-level I/O accesses.

♦ Windows 95/NT users—On VXI and MXI systems, use T&M Explorer to
run the VXI Resource Manager, configure your hardware, and assign V
and GPIB-VXI addresses. For GPIB systems, use the system Device
Manager to configure your hardware. To control instruments through se
ports, you can use T&M Explorer to change the default settings, or you
perform all the necessary configuration at run time by setting VISA
attributes.

♦ All other platforms —On VXI and MXI systems, you must still run
vxiinit and resman , and use vxiedit or vxitedit for configuration
purposes. Similarly, for GPIB and GPIB-VXI systems, you still use the
GPIB Control Panel applet or ibconf to configure your system. To control
instruments through serial ports, you can do all necessary configuratio
run-time by setting VISA attributes.

The NI-VISA Programmer Reference Manual contains detailed
descriptions of the VISA attributes, events, and operations. Windows,
Solaris, and HP-UX users can access this same information online thro
NI-visa.hlp , which you can find in the NIvisa directory.
ISA User Manual

Chapter 9 NI-VISA Platform-Specific and Portability Issues

ine
ur
ur

ns
A

ame
r

tions
er.

or

l

 on

eck

NIVISAUM.book Page 2 Tuesday, June 9, 1998 8:30 AM
Programming Considerations
This section contains information for you to consider when developing
applications that use the NI-VISA I/O interface software.

Debugging Tool for Windows 95/NT
NI Spy tracks the calls your application makes to National Instruments
test and measurement (T&M) drivers, including NI-VXI, NI-VISA,
and NI-488.2. NI-488.2 users may notice that NI Spy is similar to
GPIB Spy.

NI Spy highlights functions that return errors, so you can quickly determ
which functions failed during your development. NI Spy can also log yo
program’s calls to these drivers so you can check them for errors at yo
convenience.

Multiple Applications Using the NI-VISA Driver
Multiple-application support is an important feature in all implementatio
of the NI-VISA driver. You can have several applications that use NI-VIS
running simultaneously. You can even have multiple instances of the s
application that uses the NI-VISA driver running simultaneously, if you
application is designed for this. The NI-VISA operations perform in the
same manner whether you have only one application or several applica
(or several instances of an application) all trying to use the NI-VISA driv

However, you need to be careful when you have multiple applications
sessions using the low-level VXIbus access functions. The memory
windows used to access the VXIbus are a limited resource. Call the
viMapAddress() operation before attempting to perform low-level
VXIbus access with viPeek XX() or viPoke XX() . Immediately after the
accesses are completed, always call the viUnmapAddress() operation so
that you free up the memory window for other applications.

Low-Level Access Functions
The viMapAddress() operation returns a pointer for use with low-leve
access functions. On some systems, such as the VXIpc embedded
computers, it is possible to directly dereference this pointer. However,
other systems such as the GPIB-VXI, you must use the viPeek XX() and
viPoke XX() operations. To make your source code portable between
these and other platforms, and even other implementations of VISA, ch
the attribute VI_ATTR_WIN_ACCESS after calling viMapAddress() .
NI-VISA User Manual 9-2 © National Instruments Corporation

Chapter 9 NI-VISA Platform-Specific and Portability Issues

lly
ich
etry
se

le

t

r

(s),

m
n in

NIVISAUM.book Page 3 Tuesday, June 9, 1998 8:30 AM
If the value of that attribute is VI_DEREF_ADDR, you can safely dereference
the address pointer directly. Otherwise, use the viPeek XX() and
viPoke XX() operations to perform register I/O accesses.

National Instruments also provides macros for viPeek XX() and
viPoke XX() on certain platforms. The C language macros automatica
dereference the pointer whenever possible without calling the driver, wh
can substantially improve performance. The macros also handle any r
conditions on the new MXI-2 platforms. Although the macros can increa
performance only on NI-VISA, your application will be binary compatib
with other implementations of VISA (the macros will just call the
viPeek XX() and viPoke XX() operations). However, the macros are no
enabled by default. To use the macros, you must define the symbol

NIVISA_PEEKPOKE before including visa.h .

Interrupt Callback Handlers
Application callbacks—available in C but not in LabVIEW or Visual
Basic—are registered with the viInstallHandler() operation and must
be declared with the following signature:

ViStatus _VI_FUNCH appHandler (ViSession vi, ViEventType eventType,

ViEvent event, ViAddr userHandle)

Notice that the _VI_FUNCH modifier expands to _far _pascal for
Windows 3.x (16-bit) and _stdcall for Windows 95 and Windows NT
(32-bit). These are the standard Windows callback definitions. On othe
systems, such as UNIX and Macintosh, VISA defines _VI_FUNCH to be
nothing (null). Using _VI_FUNCH for handlers makes your source code
portable to systems that need other modifiers (or none at all).

After you install an interrupt handler and enable the appropriate event
an event occurrence causes VISA to invoke the callback. When VISA
invokes an application callback, it does so in the correct application
context. From within any handler, you can call back into the NI-VISA
driver. On all platforms other than Macintosh, you can also make syste
calls. The way VISA invokes callbacks is platform dependent, as show
Table 9-1.
© National Instruments Corporation 9-3 NI-VISA User Manual

Chapter 9 NI-VISA Platform-Specific and Portability Issues

 to

A
e

p

NIVISAUM.book Page 4 Tuesday, June 9, 1998 8:30 AM
What this means is that on Windows 3.x (all interfaces) and Macintosh (all
interfaces other than VXI) you cannot wait in a tight loop for a callback
occur. For example, the following code does not work:

while (!intr_recv)

 ; /* do nothing */

For callbacks to be invoked on these platforms, you must call any VIS
operation or give up processor time. You can do this through any of th
following methods (listed in order of portability):

1. Any VISA-defined operation

2. The LabWindows/CVI ProcessSystemEvents() function

3. The Windows PeekMessage() or Yield() functions

For example, the following code in a LabWindows/CVI application does
allow callbacks to occur correctly.

while (!intr_recv)

 ProcessSystemEvents(); /* give up time */

Table 9-1. How VISA Invokes Callbacks

Platform Callback Invocation Method

Windows 3.x The application’s stack and data segments are set u
properly. The callback does not occur from within
the driver interrupt service routine.

Windows 95
Windows NT

The callback is performed in a separate thread
created by NI-VISA. The thread is signaled as soon
as the event occurs.

Macintosh 68K
Macintosh PPC

For VXI, the callback is performed from within the
driver interrupt service routine. For all other
interfaces, the callback is performed only when the
driver is accessed.

Solaris 2.x For VXI with the PCI-MXI-2, the callback is
performed in a separate thread. For all other
interfaces, the callback is performed via a UNIX
signal.

VxWorks
Solaris 1.x
HP-UX 9
HP-UX 10

The callback is performed via a UNIX signal.
NI-VISA User Manual 9-4 © National Instruments Corporation

Chapter 9 NI-VISA Platform-Specific and Portability Issues

sor

rm,
t to

al

f

on

NIVISAUM.book Page 5 Tuesday, June 9, 1998 8:30 AM
Notice that NI-VISA on Windows 95, Windows NT, and all UNIX
platforms does not require you to call VISA operations or give up proces
time to receive callbacks. However, because occasionally calling VISA
operations ensures that callbacks will be invoked correctly on any platfo
you should keep these issues in mind when writing code that you wan
be portable.

Multiple Interface Support Issues
This section contains information about how to use or configure your
NI-VISA software for certain types of interfaces.

VXI and GPIB Platforms
NI-VISA supports all existing National Instruments VXI, GPIB, and seri
hardware for the operating systems on which NI-VISA exists. For VXI,
this includes MXI-1 and MXI-2 platforms, the GPIB-VXI, and the line o
VXIpc embedded computers. For GPIB, this includes, but is not limited
to, the PCI-GPIB, NB-GPIB, GPIB-SPARC series, the full line of
AT-GPIB/TNT boards, and the GPIB-ENET box, which you can use to
remotely control GPIB devices. With the GPIB-ENET, you can even
remotely control VXI devices when using a GPIB-VXI controller.

Multiple GPIB-VXI Support
Windows 95/NT users can refer to the T&M Explorer utility to add
multiple National Instruments GPIB-VXI controllers, or any other
vendor’s GPIB-VXI controller, to your system. WIN16 and UNIX users
must use the VISAconf utility to add the controllers.

Serial Port Support
The maximum number of serial ports that NI-VISA currently supports
any platform is 32. The default numbering of serial ports is system
dependent, as shown in Table 9-2.
© National Instruments Corporation 9-5 NI-VISA User Manual

Chapter 9 NI-VISA Platform-Specific and Portability Issues

ee
e

e

ires
s.
ess

gured

ns,

NIVISAUM.book Page 6 Tuesday, June 9, 1998 8:30 AM
VME Support
To access VME devices in your system, you must configure NI-VXI to s
these devices. Windows 95/NT users can configure NI-VXI by using th
Add Device Wizard in T&M Explorer. Users on other platforms must us
the Non-VXI Device Editor in VXIedit or VXItedit. For each address
space in which your device has memory, you must create a separate
pseudo-device entry with a logical address between 256 and 511. For
example, a VME device with memory in both A24 and A32 spaces requ
two entries. You can also specify which interrupt levels the device use
VXI and VME devices cannot share interrupt levels. You can then acc
the device from NI-VISA just as you would a VXI device, by specifying
the address space and the offset from the base at which you have confi
it. NI-VISA support for VME devices includes the register access
operations (both high-level and low-level) and the block-move operatio
as well as the ability to receive interrupts.

Table 9-2. How Serial Ports Are Numbered

Platform Method

Windows 3.x
Windows 95
Windows NT

ASRL1–ASRL4 access COM1–COM4.
ASRL10–ASRL13 access LPT1–LPT4.

Macintosh 68K
Macintosh PPC

ASRL1 accesses the modem port.
ASRL2 accesses the printer port.

Solaris 2.x ASRL1–ASRL6 access /dev/cua/a –/dev/cua/f .

Solaris 1.x ASRL1–ASRL6 access /dev/ttya –/dev/ttyf .

HP-UX 9
HP-UX 10

ASRL1 and ASRL2 access serial ports 1 and 2
through /dev/tty00 and /dev/tty01 ,
respectively. Additional ports are numbered
consecutively starting at ASRL3, which uses
/dev/tty02 .

VxWorks NI-VISA for VxWorks does not currently support
the serial interface.
NI-VISA User Manual 9-6 © National Instruments Corporation

Chapter 9 NI-VISA Platform-Specific and Portability Issues

s

y
e of
ly
del

e
2,
low.

ble

NIVISAUM.book Page 7 Tuesday, June 9, 1998 8:30 AM
Windows 3.x Issues
This section contains information specific to Windows 3.x about the
installation and use of NI-VISA.

Installation Overview
After the NI-VISA driver is installed, the Setup program normally make
some modifications to your initialization files AUTOEXEC.BAT and
WIN.INI . If you choose not to let the installer make these changes
automatically, the NI-VISA driver may not perform properly.

The necessary changes include adding the VXIplug&play binary directory
(C:\VXIPNP\WIN\BIN by default) to the PATH environment variable in
AUTOEXEC.BAT, and setting the VPNPPATH environment variable in both
files to the root of the VXIplug&play directory tree (C:\ by default).

Memory Model
The NI-VISA driver was compiled using the large memory model.
However, Windows application programs that link with the VISA librar
can also use the medium, compact, or small memory models. Becaus
this ability to use different memory models for your application, not on
can you take advantage of the efficiency inherent in small memory mo
programs, but you can also run multiple instances of the application.

Application Stack Size
The default stack size in Borland C++ is 5 KB, and in Microsoft Visual
C++ it is 2 KB. In VISA, where the invocation of an operation may mak
other calls that in turn call a lower-level driver such as NI-VXI or NI-488.
such a small stack may easily be exhausted, resulting in a stack overf
For Windows 3.x (16-bit) VISA applications, set the stack size to a
minimum of 8 KB using the STACKSIZE statement in the application’s
.DEF file. In LabWindows/CVI for Windows 3.x, the stack size is not
normally a problem, as the default stack size is set to a more reasona
16 KB.
© National Instruments Corporation 9-7 NI-VISA User Manual

© National Instruments Corporation A-1 NI-V

NIVISAUM.book Page 1 Tuesday, June 9, 1998 8:30 AM
A

re is

 of

he
Visual Basic Examples

This appendix shows the Visual Basic syntax of the ANSI C examples
given earlier in this manual. The examples use the same numbering
sequence for easy reference.

These examples use the VISA data types where applicable. This featu
available only on Windows 95/NT. To use this feature, select the VISA
library (visa32.dll) as a reference from Visual Basic. This makes use
the type library embedded into the DLL.

♦ Windows 3.x users—Use the native Visual Basic types as described in t
NI-VISA online help or NI-VISA Programmer Reference Manual in the
Data Types section.
ISA User Manual

Appendix A Visual Basic Examples

NIVISAUM.book Page 2 Tuesday, June 9, 1998 8:30 AM
Example 2-1
Private Sub vbMain()

 Const MAX_CNT = 200

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim retCount As Long

 Dim buffer As String * MAX_CNT

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with GPIB Device at Primary Addr 1

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "GPIB0::1::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Set the timeout for message-based communication

 stat = viSetAttribute(sesn, VI_ATTR_TMO_VALUE, 5000)

 Rem Ask the device for identification

 stat = viWrite(sesn, "*IDN?", 5, retCount)

 stat = viRead(sesn, buffer, MAX_CNT, retCount)

 Rem Your code should process the data

 Rem Close down the system

 stat = viClose (sesn)

 stat = viClose (dfltRM)

End Sub
NI-VISA User Manual A-2 © National Instruments Corporation

Appendix A Visual Basic Examples

NIVISAUM.book Page 3 Tuesday, June 9, 1998 8:30 AM
Example 2-2
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim deviceID As Integer

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with VXI Device at Logical Addr 16

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Read the Device ID and write to memory in A24 space

 stat = viIn16(sesn, VI_A16_SPACE, 0, deviceID)

 stat = viOut16(sesn, VI_A24_SPACE, 0, &H1234)

 Rem Close down the system

 stat = viClose(sesn)

 stat = viClose(dfltRM)

End Sub
© National Instruments Corporation A-3 NI-VISA User Manual

Appendix A Visual Basic Examples

NIVISAUM.book Page 4 Tuesday, June 9, 1998 8:30 AM
Example 2-3
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim eType As ViEventType

 Dim eData As ViEvent

 Dim statID As Integer

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with VXI Device at Logical Address 16

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Enable the driver to detect the interrupts

 stat = viEnableEvent(sesn, VI_EVENT_VXI_SIGP, VI_QUEUE, VI_NULL)

 Rem Send the commands to the oscilloscope to capture the

 Rem waveform and interrupt when done

 stat = viWaitOnEvent(sesn, VI_EVENT_VXI_SIGP, 5000, eType, eData)

 If (stat < VI_SUCCESS) Then

 Rem No interrupts received after 5000 ms timeout

 stat = viClose (dfltRM)

 Exit Sub

 End If

 Rem Obtain the information about the event and then destroy the

 Rem event. In this case, we want the status ID from the interrupt.

 stat = viGetAttribute(eData, VI_ATTR_SIGP_STATUS_ID, statID)

 stat = viClose(eData)

 Rem Your code should read data from the instrument and process it.

 Rem Stop listening to events

 stat = viDisableEvent(sesn, VI_EVENT_VXI_SIGP, VI_QUEUE)

 Rem Close down the system

 stat = viClose(sesn)

 stat = viClose(dfltRM)

End Sub
NI-VISA User Manual A-4 © National Instruments Corporation

Appendix A Visual Basic Examples

NIVISAUM.book Page 5 Tuesday, June 9, 1998 8:30 AM
Example 2-4
Private Sub vbMain()

 Const MAX_CNT = 200

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim retCount As Long

 Dim buffer As String * MAX_CNT

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with Serial Port 1

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "ASRL1::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Set the timeout for message-based communication

 stat = viSetAttribute(sesn, VI_ATTR_TMO_VALUE, 5000)

 Rem Lock the serial port so that nothing else can use it

 stat = viLock(sesn, VI_EXCLUSIVE_LOCK, 5000, "", "")

 Rem Set serial port settings as needed

 Rem Defaults = 9600 Baud, no parity, 8 data bits, 1 stop bit

 stat = viSetAttribute(sesn, VI_ATTR_ASRL_BAUD, 2400)

 stat = viSetAttribute(sesn, VI_ATTR_ASRL_DATA_BITS, 7)

 Rem Ask the device for identification

 stat = viWrite(sesn, "*IDN?", 5, retCount)

 stat = viRead(sesn, buffer, MAX_CNT, retCount)

 Rem Unlock the serial port before ending the program

 stat = viUnlock(sesn)

 Rem Your code should process the data

 Rem Close down the system

 stat = viClose(sesn)

 stat = viClose(dfltRM)

End Sub
© National Instruments Corporation A-5 NI-VISA User Manual

Appendix A Visual Basic Examples

NIVISAUM.book Page 6 Tuesday, June 9, 1998 8:30 AM
Example 4-1
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Rem Open Default RM

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Access other resources

 stat = viOpen(dfltRM, "GPIB::1::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Use device and eventually close it.

 stat = viClose (sesn)

 stat = viClose (dfltRM)

End Sub
NI-VISA User Manual A-6 © National Instruments Corporation

Appendix A Visual Basic Examples

NIVISAUM.book Page 7 Tuesday, June 9, 1998 8:30 AM
Example 4-2
Rem Find the first matching device and return a session to it

Private Function AutoConnect(instrSesn As ViSession) As ViStatus

 Const MANF_ID = &HFF6 '12-bit VXI manufacturer ID of a device

 Const MODEL_CODE = &H0FE '12-bit or 16-bit model code of a device

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim fList As ViFindList

 Dim desc As String * VI_FIND_BUFLEN

 Dim nList As Long

 Dim iManf As Integer

 Dim iModel As Integer

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA ... exiting

 AutoConnect = stat

 Exit Function

 End If

 Rem Find all VXI instruments in the system

 stat = viFindRsrc(dfltRM, "?*VXI[0-9]*::?*INSTR", fList, nList, desc)

 If (stat < VI_SUCCESS) Then

 Rem Error finding resources ... exiting

 viClose (dfltRM)

 AutoConnect = stat

 Exit Function

 End If
© National Instruments Corporation A-7 NI-VISA User Manual

Appendix A Visual Basic Examples

NIVISAUM.book Page 8 Tuesday, June 9, 1998 8:30 AM
 Rem Open a session to each and determine if it matches

 While (nList)

 stat = viOpen(dfltRM, desc, VI_NULL, VI_NULL, sesn)

 If (stat >= VI_SUCCESS) Then

 stat = viGetAttribute(sesn, VI_ATTR_MANF_ID, iManf)

 If ((stat >= VI_SUCCESS) And (iManf = MANF_ID)) Then

 stat = viGetAttribute(sesn, VI_ATTR_MODEL_CODE, iModel)

 If ((stat >= VI_SUCCESS) And (iModel = MODEL_CODE)) Then

 Rem We have a match, return session without closing

 instrSesn = sesn

 stat = viClose (fList)

 Rem Do not close dfltRM; that would close sesn too

 AutoConnect = VI_SUCCESS

 Exit Function

 End If

 End If

 stat = viClose (sesn)

 End If

 stat = viFindNext(fList, desc)

 nList = nList - 1

 Wend

 Rem No match was found, return an error

 stat = viClose (fList)

 stat = viClose (dfltRM)

 AutoConnect = VI_ERROR_RSRC_NFOUND

End Function

Example 4-3
Example 4-3 uses functionality not available in Visual Basic. Refer to
Example 4-2 for sample code using viFindRsrc() .
NI-VISA User Manual A-8 © National Instruments Corporation

Appendix A Visual Basic Examples

NIVISAUM.book Page 9 Tuesday, June 9, 1998 8:30 AM
Example 5-1
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim retCount As Long

 Dim idnResult As String * 72

 Dim resultBuffer As String * 256

 Rem Open Default Resource Manager

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with GPIB Device at Primary Addr 1

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "GPIB::1::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Initialize the timeout attribute to 10 s

 stat = viSetAttribute(sesn, VI_ATTR_TMO_VALUE, 10000)

 Rem Set termination character to carriage return (\r=0x0D)

 stat = viSetAttribute(sesn, VI_ATTR_TERMCHAR, &H0D)

 stat = viSetAttribute(sesn, VI_ATTR_TERMCHAR_EN, VI_TRUE)

 Rem Don't assert END on the last byte

 stat = viSetAttribute(sesn, VI_ATTR_SEND_END_EN, VI_FALSE)

 Rem Clear the device

 stat = viClear(sesn)

 Rem Request the IEEE 488.2 identification information

 stat = viWrite(sesn, "*IDN?", 5, retCount)

 stat = viRead(sesn, idnResult, 72, retCount)

 Rem Your code should use idnResult and retCount to parse device info

 Rem Trigger the device for an instrument reading

 stat = viAssertTrigger(sesn, VI_TRIG_PROT_DEFAULT)

 Rem Receive results

 stat = viRead(sesn, resultBuffer, 256, retCount)

 Rem Close sessions

 stat = viClose (sesn)

 stat = viClose (dfltRM)

End Sub
© National Instruments Corporation A-9 NI-VISA User Manual

Appendix A Visual Basic Examples

NIVISAUM.book Page 10 Tuesday, June 9, 1998 8:30 AM
Example 6-1
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim addr As ViAddr

 Dim mSpace As Integer

 Dim Value As Integer

 Rem Open Default Resource Manager

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with VXI Device at Logical Address 16

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesn)

 mSpace = VI_A16_SPACE

 stat = viMapAddress(sesn, mSpace, 0, &H40, VI_FALSE, VI_NULL, addr)

 viPeek16 sesn, addr, Value

 Rem Access a different register by manipulating the pointer.

 viPeek16 sesn, addr + 2, Value

 stat = viUnmapAddress(sesn)

 Rem Close down the system

 stat = viClose(sesn)

 stat = viClose(dfltRM)

End Sub
NI-VISA User Manual A-10 © National Instruments Corporation

Appendix A Visual Basic Examples

NIVISAUM.book Page 11 Tuesday, June 9, 1998 8:30 AM
Example 6-2
Private Sub vbMain()

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim self As ViSession

 Dim addr As ViAddr

 Dim offs As Long

 Dim mSpace As Integer

 Dim Value As Integer

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with VXI Device at Logical Address 0

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpen(dfltRM, "VXI0::0::INSTR", VI_NULL, VI_NULL, self)

 Rem Allocate a portion of the device's memory

 stat = viMemAlloc(self, &H100, offs)

 Rem Determine where the shared memory resides

 stat = viGetAttribute(self, VI_ATTR_MEM_SPACE, mSpace)

 stat = viMapAddress(self, mSpace, offs, &H100, VI_FALSE, VI_NULL, addr)

 viPeek16 self, addr, Value

 Rem Access a different register by manipulating the pointer.

 viPeek16 self, addr + 2, Value

 stat = viUnmapAddress(self)

 stat = viMemFree(self, offs)

 Rem Close down the system

 stat = viClose(self)

 stat = viClose(dfltRM)

End Sub
© National Instruments Corporation A-11 NI-VISA User Manual

Appendix A Visual Basic Examples

vents

NIVISAUM.book Page 12 Tuesday, June 9, 1998 8:30 AM
Example 7-1
Visual Basic does not support callback handlers, so currently the only way to handle e
is through viWaitOnEvent() . Because Visual Basic does not support asynchronous
operations either, this example uses the viRead() call instead of the viReadAsync() call.

Private Sub vbMain()

 Const MAX_CNT = 1024

 Dim stat As ViStatus

 Dim dfltRM As ViSession

 Dim sesn As ViSession

 Dim bufferHandle As String

 Dim retCount As Long

 Dim etype As ViEventType

 Dim event As ViEvent

 Dim stb As Integer

 Rem Begin by initializing the system

 Rem NOTE: For simplicity, we will not show error checking

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communication with GPIB device at primary address 2

 stat = viOpen(dfltRM, "GPIB0::2::INSTR", VI_NULL, VI_NULL, sesn)

 Rem Allocate memory for buffer

 Rem In addition, allocate space for the ASCII NULL character

 bufferHandler = Space$(MAX_CNT + 1)

 Rem Enable the driver to detect events

 stat = viEnableEvent(sesn, VI_EVENT_SERVICE_REQ, VI_QUEUE, VI_NULL)

 Rem Tell the device to begin acquiring a waveform

 stat = viWrite(sesn, "E0x51; W1", 9, retCount)

 Rem The device asserts SRQ when the waveform is ready

 stat = viWaitOnEvent(sesn, VI_EVENT_SERVICE_REQ, 20000, etype, event)

 If (stat < VI_SUCCESS) Then

 Rem Waveform not received...exiting

 stat = viClose (dfltRM)

 Exit Sub

 End If

 stat = viReadSTB (sesn, stb)
NI-VISA User Manual A-12 © National Instruments Corporation

Appendix A Visual Basic Examples

NIVISAUM.book Page 13 Tuesday, June 9, 1998 8:30 AM
 Rem Read the data

 stat = viRead(sesn, bufferHandle, MAX_CNT, retCount)

 Rem Your code should process the waveform data

 Rem Close the event context

 stat = viClose (event)

 Rem Stop listening for events

 stat = viDisableEvent(sesn, VI_ALL_ENABLED_EVENTS, VI_ALL_MECH)

 Rem Close down the system

 stat = viClose(sesn)

 stat = viClose(dfltRM)

End Sub
© National Instruments Corporation A-13 NI-VISA User Manual

Appendix A Visual Basic Examples

NIVISAUM.book Page 14 Tuesday, June 9, 1998 8:30 AM
Example 8-1
Private Sub vbMain()

 Const MAX_COUNT = 128

 Dim stat As ViStatus 'For checking errors

 Dim dfltRM As ViSession 'Communication channels

 Dim sesnIN As ViSession 'Communication channels

 Dim sesnOUT As ViSession 'Communication channels

 Dim aKey As String * VI_FIND_BUFLEN 'Access key for lock

 Dim buf As String * MAX_COUNT 'To store device data

 Dim etype As ViEventType 'To identify event

 Dim event As ViEvent 'To hold event info

 Dim retCount As Long 'To hold byte count

 Rem Begin by initializing the system

 stat = viOpenDefaultRM(dfltRM)

 If (stat < VI_SUCCESS) Then

 Rem Error initializing VISA...exiting

 Exit Sub

 End If

 Rem Open communications with VXI Device at Logical Addr 16

 stat = viOpen(dfltRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesnIN)

 stat = viOpen(dfltRM, "VXI0::16::INSTR", VI_NULL, VI_NULL, sesnOUT)

 Rem We open two sessions to the same device

 Rem One session is used to assert triggers on TTL channel 4

 Rem The second is used to receive triggers on TTL channel 5

 Rem Lock first session as shared, have VISA generate the key

 Rem Then lock the second session with the same access key

 stat = viLock(sesnIN, VI_SHARED_LOCK, 5000, "", aKey)

 stat = viLock(sesnOUT, VI_SHARED_LOCK, VI_TMO_IMMEDIATE, aKey, aKey)

 Rem Set trigger channel for sessions

 stat = viSetAttribute(sesnIN, VI_ATTR_TRIG_ID, VI_TRIG_TTL5)

 stat = viSetAttribute(sesnOUT, VI_ATTR_TRIG_ID, VI_TRIG_TTL4)

 Rem Enable input session for trigger events

 stat = viEnableEvent(sesnIN, VI_EVENT_TRIG, VI_QUEUE, VI_NULL)

 Rem Assert trigger to tell device to start sampling

 stat = viAssertTrigger(sesnOUT, VI_TRIG_PROT_DEFAULT)

 Rem Device will respond with a trigger when data is ready

 stat = viWaitOnEvent(sesnIN, VI_EVENT_TRIG, 20000, etype, event)

 If (stat < VI_SUCCESS) Then

 stat = viClose (dfltRM)

 Exit Sub
NI-VISA User Manual A-14 © National Instruments Corporation

Appendix A Visual Basic Examples

NIVISAUM.book Page 15 Tuesday, June 9, 1998 8:30 AM
 End If

 Rem Close the event

 stat = viClose(event)

 Rem Read data from the device

 stat = viRead(sesnIN, buf, MAX_COUNT, retCount)

 Rem Your code should process the data

 Rem Unlock the sessions

 stat = viUnlock(sesnIN)

 stat = viUnlock(sesnOUT)

 Rem Close down the system

 stat = viClose(sesnIN)

 stat = viClose(sesnOUT)

 stat = viClose(dfltRM)

End Sub
© National Instruments Corporation A-15 NI-VISA User Manual

© National Instruments Corporation B-1 NI-V

NIVISAUM.book Page 1 Tuesday, June 9, 1998 8:30 AM
B

ry

 and
 your

 quickly
P site,
try the
r
 staffed

 files
ownload
 to use
u can

Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessa
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form
the configuration form, if your manual contains one, about your system configuration to answer
questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to
provide the information you need. Our electronic services include a bulletin board service, an FT
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first
electronic support systems. If the information available on these systems does not answer you
questions, we offer fax and telephone support through our technical support centers, which are
by applications engineers.

Electronic Services

Bulletin Board Support
National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
and documents to answer most common customer questions. From these sites, you can also d
the latest instrument drivers, updates, and example programs. For recorded instructions on how
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. Yo
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support
To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use
your Internet address, such as joesmith@anywhere.com , as your password. The support files and
documents are located in the /support directories.
ISA User Manual

 wide
t

l at the
 we can

al
act

NIVISAUM.book Page 2 Tuesday, June 9, 1998 8:30 AM
Fax-on-Demand Support
Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a
range of technical information. You can access Fax-on-Demand from a touch-tone telephone a
512 418 1111.

E-Mail Support (Currently USA Only)
You can submit technical support questions to the applications engineering team through e-mai
Internet address listed below. Remember to include your name, address, and phone number so
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the technic
support number for your country. If there is no National Instruments office in your country, cont
the source from which you purchased your software to obtain support.

Country Telephone Fax
Australia 03 9879 5166 03 9879 6277
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Québec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 725 725 11 09 725 725 55
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
United Kingdom 01635 523545 01635 523154
United States 512 795 8248 512 794 5678
NI-VISA User Manual B-2 © National Instruments Corporation

nd use
orm

,

__

NIVISAUM.book Page 3 Tuesday, June 9, 1998 8:30 AM
Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, a
the completed copy of this form as a reference for your current configuration. Completing this f
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem
include the configuration forms from their user manuals. Include additional pages if necessary.

Name __

Company ___

Address __

Fax (___) ________________Phone (___) ______________________________________

Computer brand____________ Model ___________________Processor _____________________

Operating system (include version number) __

Clock speed ______MHz RAM _____MB Display adapter ________________________

Mouse ___yes ___no Other adapters installed___________________________________

Hard disk capacity _____MB Brand__

Instruments used ___

National Instruments hardware product model _____________ Revision ____________________

Configuration ___

National Instruments software product ___________________ Version _____________________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem: _______________________________________

ducts.

NIVISAUM.book Page 5 Tuesday, June 9, 1998 8:30 AM
Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our pro
This information helps us provide quality products to meet your needs.

Title: NI-VISA™ User Manual

Edition Date: June 1998

Part Number: 321074D-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

E-Mail Address __

Phone (___) __________________________ Fax (___) ___________________________

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway 512 794 5678
Austin, Texas 78730-5039

NIVISAUM.book Page 1 Tuesday, June 9, 1998 8:30 AM
Glossary
ifies a
gs

er
 of

ce

Prefix Meanings Value

p- pico 10–12

n- nano- 10–9

µ- micro- 10– 6

m- milli- 10–3

k- kilo- 103

M- mega- 106

G- giga- 109

t- tera- 1012

A

address location Refers to the location of a specific register.

address string A string (or other language construct) that uniquely locates and ident
resource. VISA defines an ASCII-based grammar that associates strin
with particular physical devices and VISA resources.

API Application Programming Interface. The direct interface that an end us
sees when creating an application. In VISA, the API consists of the sum
all of the operations, attributes, and events of each of the VISA resour
classes.

attribute A value within an object or resource that reflects a characteristic of its
operational state.

B

b Bit

B Byte
© National Instruments Corporation G-1 NI-VISA User Manual

Glossary

th

t

us

also
 with

t

n
l

s.

ntial

red

NIVISAUM.book Page 2 Tuesday, June 9, 1998 8:30 AM
bus error An error that signals failed access to an address. Bus errors occur wi
low-level accesses to memory and usually involve hardware with bus
mapping capabilities. For example, nonexistent memory, a nonexisten
register, or an incorrect device access can cause a bus error.

C

callback Same as handler. A software routine that is invoked when an asynchrono
event occurs. In VISA, callbacks can be installed on any session that
processes events.

commander A device that has the ability to control another device. This term can
denote the unique device that has sole control over another device (as
the VXI Commander/Servant hierarchy).

communication channel The same as session. A communication path between a software elemen
and a resource. Every communication channel in VISA is unique.

controller An entity that can control another device(s) or is in the process of
performing an operation on another device.

D

device An entity that receives commands from a controller. A device can be a
instrument, a computer (acting in a non-controller role), or a periphera
(such as a plotter or printer).

DLL Dynamic Link Library. Same as a shared library or shared object. A file
containing a collection of functions that can be used by multiple
applications. This term is usually used for libraries on Windows platform

E

event An asynchronous occurrence that is independent of the normal seque
execution of the process running in a system.

F

FIFO First In-First Out; a method of data storage in which the first element sto
is the first one retrieved.
NI-VISA User Manual G-2 © National Instruments Corporation

Glossary

us

 task,
age
r

f

ller

a

ck

ress

. In

NIVISAUM.book Page 3 Tuesday, June 9, 1998 8:30 AM
H

handler Same as callback. A software routine that is invoked when an asynchrono
event occurs. In VISA, callbacks can be installed on any session that
processes events.

I

instrument A device that accepts some form of stimulus to perform a designated
test, or measurement function. Two common forms of stimuli are mess
passing and register reads and writes. Other forms include triggering o
varying forms of asynchronous control.

instrument driver A set of routines designed to control a specific instrument or family o
instruments, and any necessary related files for LabWindows/CVI or
LabVIEW.

interface A generic term that applies to the connection between devices and
controllers. It includes the communication media and the device/contro
hardware necessary for cross-communication.

interrupt A condition that requires attention out of the normal flow of control of
program.

L

lock A state that prohibits sessions other than the session(s) owning the lo
from accessing a resource.

M

mapping An operation that returns a reference to a specified section of an add
space and makes the specified range of addresses accessible to the
requester. This function is independent of memory allocation.

O

operation An action defined by a resource that can be performed on a resource
general, this term is synonymous with the connotation of the word method
in object-oriented architectures.
© National Instruments Corporation G-3 NI-VISA User Manual

Glossary

ms

ay
itten
n

 is

rs to

A is

d

e
to

NIVISAUM.book Page 4 Tuesday, June 9, 1998 8:30 AM
P

process An operating system element that shares a system's resources. A
multi-process system is a computer system that allows multiple progra
to execute simultaneously, each in a separate process environment. A
single-process system is a computer system that allows only a single
program to execute at a given point in time.

R

register An address location that can be read from or written into or both. It m
contain a value that is a function of the state of hardware or can be wr
into to cause hardware to perform a particular action. In other words, a
address location that controls and/or monitors hardware.

resource class The definition for how to create a particular resource. In general, this
synonymous with the connotation of the word class in object-oriented
architectures. For VISA Instrument Control resource classes, this refe
the definition for how to create a resource which controls a particular
capability or set of capabilities of a device.

resource or resource
instance

In general, this term is synonymous with the connotation of the word object
in object-oriented architectures. For VISA, resource more specifically
refers to a particular implementation (or instance in object-oriented terms)
of a Resource Class.

S

s second

session The same as communication channel. A communication path between a
software element and a resource. Every communication channel in VIS
unique.

shared library or
shared object

Same as DLL. A file containing a collection of functions that can be use
by multiple applications. This term is usually used for libraries on UNIX
platforms.

shared memory A block of memory that is accessible to both a client and a server. Th
memory block operates as a buffer for communication. This is unique
register-based interfaces such as VXI.
NI-VISA User Manual G-4 © National Instruments Corporation

Glossary

mote
pt
e on
rue

rrent
ns,
ting

a
le
cess.

al

 to
f two

nt

r-

s to

NIVISAUM.book Page 5 Tuesday, June 9, 1998 8:30 AM
SRQ IEEE 488 Service Request. This is an asynchronous request from a re
device that requires service. A service request is essentially an interru
from a remote device. For GPIB, this amounts to asserting the SRQ lin
the GPIB. For VXI, this amounts to sending the Request for Service T
event (REQT).

status byte A byte of information returned from a remote device that shows the cu
state and status of the device. If the device follows IEEE 488 conventio
bit 6 of the status byte indicates whether the device is currently reques
service.

T

thread An operating system element that consists of a flow of control within
process. In some operating systems, a single process can have multip
threads, each of which can access the same data space within the pro
However, each thread has its own stack and all threads can execute
concurrently with one another (either on multiple processors, or by
time-sharing a single processor).

V

virtual instrument A name given to the grouping of software modules (in this case, VISA
resources with any associated or required hardware) to give the
functionality of a traditional stand-alone instrument. Within VISA, a virtu
instrument is the logical grouping of any of the VISA resources.

VISA Virtual Instrument Software Architecture. This is the general name given
this product and its associated architecture. The architecture consists o
main VISA components: the VISA resource manager and the VISA
resources.

VISA instrument
control resources

This is the name given to the part of VISA that defines all of the
device-specific resource classes. VISA Instrument Control resources
encompass all defined device capabilities for direct, low-level instrume
control.

VISA memory
access resources

This is the name given to the part of VISA that defines all of the registe
or memory-specific resource classes. The VISA MEMACC resources
encompass all high- and low-level services for interface-level accesse
all memory defined in the system.
© National Instruments Corporation G-5 NI-VISA User Manual

Glossary

 This
ns to

traints
ll
A

NIVISAUM.book Page 6 Tuesday, June 9, 1998 8:30 AM
VISA resource manager This is the name given to the part of VISA that manages resources.
management includes support for finding resources and opening sessio
them.

VISA resource template This is the name given to the part of VISA that defines the basic cons
and interface definition for the creation and use of a VISA resource. A
VISA resources must derive their interface from the definition of the VIS
Resource Template. This includes services for setting and retrieving
attributes, receiving events, locking resources, and closing objects.
NI-VISA User Manual G-6 © National Instruments Corporation

NIVISAUM.book Page 1 Tuesday, June 9, 1998 8:30 AM
Index
A
address mapping

accessing multiple address spaces, 5-11
operation versus pointer dereference, 5-8
overview of register accesses from

computers, 5-5 to 5-7
performing low-level register accesses,

5-6 to 5-7
pointer manipulation, 5-8 to 5-9
programming example, 5-9 to 5-10

application stack size, under Windows 3.x, 9-7
asynchronous read/write services, 4-3 to 4-4
attributes

definition, 3-4
global, 3-5
local, 3-5

B
basic I/O services, 4-1 to 4-7

asynchronous read/write services, 4-3 to 4-4
clear services, 4-4 to 4-5
status/service request service, 4-6 to 4-7
synchronous read/write services, 4-2 to 4-3
trigger services, 4-5 to 4-6

buffers
automatically flushing formatted I/O

buffers, 4-9 to 4-10
controlling serial I/O buffers, 4-11
manually flushing formatted I/O

buffers, 4-9
resizing formatted I/O buffers, 4-10
bulletin board support, B-1

C
callbacks, 7-5 to 7-8

callback modes, 7-6 to 7-7
definition, 7-1
direct, 7-6
event context, 7-11
independent queues, 7-7
interrupt callback handlers, 9-3 to 9-4
programming considerations, 2-7
sample code, 7-8 to 7-10
suspended, 7-6
userHandle parameter, 7-7 to 7-8

clear services, 4-4 to 4-5
communication channels. See also

message-based communication;
register-based communication.

closing, 3-6
opening, 3-5 to 3-6
programming considerations, 3-5 to 3-6

customer communication, xiii , B-1 to B-2

D
device triggering, 4-5
documentation

conventions used in manual, x
how to use documentation set, xi
organization of manual, ix-x
related documentation, xi-xii

E
electronic support services, B-1 to B-2
e-mail support, B-2
event handling programming examples

example 7-1, 7-9 to 7-11
© National Instruments Corporation I-1 NI-VISA User Manual

Index

8

5

NIVISAUM.book Page 2 Tuesday, June 9, 1998 8:30 AM
Visual Basic examples, A-4,
A-12 to A-13

events
callbacks, 7-5 to 7-8

callback modes, 7-6 to 7-7
definition, 7-1
event context, 7-11
independent queues, 7-7
interrupt callback handlers,

9-3 to 9-4
programming considerations, 2-7
sample code, 7-8 to 7-10
userHandle parameter, 7-7 to 7-8

definition, 7-1
enabling and disabling, 7-3 to 7-4
I/O completion event, 4-3 to 4-4
life of event context, 7-11
queuing, 7-4 to 7-5

definition, 7-1
event context, 7-11
programming considerations, 2-7
sample code, 7-8 to 7-10

supported events, 7-2 to 7-3
VISA event model, 7-1

examples. See programming examples.
exclusive locks, 8-1, 8-3. See also locks.

F
fax and telephone support, B-2
FaxBack support, B-2
flushing buffers. See buffers.
formatted I/O services, 4-7 to 4-11

automatically flushing formatted I/O
buffers, 4-9 to 4-10

controlling serial I/O buffers, 4-11
formatted I/O operations, 4-7 to 4-8
manually flushing formatted I/O

buffers, 4-9
resizing formatted I/O buffers, 4-10
Variable List operations, 4-8

framework
definition, 1-2
framework and programming language

support (table), 1-3 to 1-4
FTP support, B-1

G
global attributes, 3-5
GPIB platforms, NI-VISA support for, 9-5

multiple GPIB-VXI support, 9-5

H
High-Level Access operations, 5-2 to 5-3

comparison of high- and low-level
access, 5-10 to 5-11

accessing multiple address
spaces, 5-11

ease of use, 5-10
speed, 5-10

read and write operations (table), 5-2
register-based communication, 3-7 to 3-

high-level block operations
read and write operations (table), 5-2
register-based communication, 5-4 to 5-

I
INSTR Resource, definition, 3-4
instrument drivers, 3-3
interface independence, GPIB

example, 3-8 to 3-9
interface support with NI-VISA. See multiple

interface support with NI-VISA.
interface-level triggering, 4-6
interrupt callback handlers, 9-3 to 9-4
I/O completion event, 4-3 to 4-4

asynchronous read/write services,
4-3 to 4-4

enabling (note), 4-3
NI-VISA User Manual I-2 © National Instruments Corporation

Index

NIVISAUM.book Page 3 Tuesday, June 9, 1998 8:30 AM
I/O services
basic I/O services, 4-1 to 4-7

asynchronous read/write
services, 4-3 to 4-4

clear services, 4-4 to 4-5
status/service request

service, 4-6 to 4-7
synchronous read/write

services, 4-2 to 4-3
trigger services, 4-5 to 4-6

formatted I/O services, 4-7 to 4-11
automatically flushing formatted I/O

buffers, 4-9 to 4-10
controlling serial I/O buffers, 4-11
formatted I/O operations, 4-7 to 4-8
manually flushing formatted I/O

buffers, 4-9
resizing formatted I/O buffers, 4-10
Variable List operations, 4-8

L
local attributes, 3-5
locks, 8-1 to 8-6

acquiring exclusive lock, 8-3
lock sharing, 8-2 to 8-3
nested locks, 8-3
overview, 8-1
programming examples

example 2-4, 2-10 to 2-12
example 8-1, 8-4 to 8-6
Visual Basic examples, A-5,

A-14 to A-15
types of locks, 8-1 to 8-2

Low-Level Access operations, 5-5 to 5-10
bus errors, 5-10
comparison of high- and low-level access,

5-10 to 5-11
accessing multiple address

spaces, 5-11

ease of use, 5-10
speed, 5-10

computer access overview, 5-5 to 5-7
example 5-1, 5-9 to 5-10
operations versus pointer deference, 5-8
overview, 3-8
pointer manipulation, 5-8 to 5-9
programming considerations for

NI-VISA, 9-1 to 9-4
read and write operations (table), 5-2
using VISA for performing, 5-7 to 5-8

M
manual. See documentation.
mapping. See address mapping.
memory, shared. See shared

memory operations.
Memory I/O services, 5-1
memory model for NI-VISA under

Windows 3.x, 9-6
message-based communication, 4-1 to 4-13

basic I/O services, 4-1 to 4-7
asynchronous read/write

services, 4-3 to 4-4
clear services, 4-4 to 4-5
status/service request

service, 4-6 to 4-7
synchronous read/write services,

4-2 to 4-3
trigger services, 4-5 to 4-6

examples
example 2-1, 2-2 to 2-4
example 4-1, 4-12 to 4-13
Visual Basic examples, A-2, A-6

formatted I/O services, 4-7 to 4-11
automatically flushing formatted I/O

buffers, 4-9 to 4-10
controlling serial I/O buffers, 4-11
formatted I/O operations, 4-7 to 4-8
© National Instruments Corporation I-3 NI-VISA User Manual

Index

,

0

7

NIVISAUM.book Page 4 Tuesday, June 9, 1998 8:30 AM
manually flushing formatted I/O
buffers, 4-9

resizing formatted I/O buffers, 4-10
variable list operations, 4-8

overview, 4-1
multiple applications support under

NI-VISA, 9-2
multiple interface support with

NI-VISA, 9-5 to 9-6
multiple GPIB-VXI support, 9-5
serial port support, 9-5
VME support, 9-6
VXI and GPIB platforms, 9-5

N
nested locks, 8-3
NI-VISA. See programming considerations

for NI-VISA; VISA.

O
object-oriented (OO) design, 3-4
operations, definition, 3-4

P
platform-specific issues for NI-VISA. See

programming considerations for NI-VISA.
pointer

dereferencing vs. operations, 5-8
manipulating, 5-8 to 5-9

portability issues. See programming
considerations for NI-VISA.

programming considerations for NI-VISA,
9-1 to 9-4. See also programming with
VISA.

interrupt callback handlers, 9-3 to 9-4
low-level access functions, 9-2
multiple applications using NI-VISA

driver, 9-2

multiple interface support
issues, 9-4 to 9-6

multiple GPIB-VXI support, 9-4
serial port support, 9-5
VME support, 9-6
VXI and GPIB platforms, 9-5

Windows 3.x issues, 9-6 to 9-7
application stack size, 9-7
installation overview, 9-6
memory model, 9-6

programming examples
event handling, 2-7 to 2-10

callbacks, 2-7
discussion of example 2-3,

2-9 to 2-10
example 2-3, 2-8 to 2-9
queuing, 2-7
queuing and callback (example 7-1)

7-9 to 7-11
Visual Basic examples, A-4,

A-12 to A-13
locking, 2-10 to 2-12

discussion of example 2-4, 2-12
example 2-4, 2-10 to 2-11
example 8-1, 8-4 to 8-6
Visual Basic examples, A-5,

A-14 to A-15
Low-Level Access operations, 5-9 to 5-1
message-based communication,

2-1 to 2-4
discussion of example 2-1, 2-3 to 2-4
example 2-1, 2-2
example 4-1, 4-12 to 4-13
overview, 2-1
Visual Basic examples, A-2, A-6

register-based communication, 2-4 to 2-
discussion of example 2-2, 2-6 to 2-7
example 2-2, 2-5 to 2-6
example 5-1, 5-9 to 5-10
overview, 2-4 to 2-5
Visual Basic examples, A-3, A-7
NI-VISA User Manual I-4 © National Instruments Corporation

Index

0

7

NIVISAUM.book Page 5 Tuesday, June 9, 1998 8:30 AM
Resource Manager
accessing resources

example 6-1, 6-2 to 6-3
Visual Basic example, A-9

searching for resources
example 6-2, 6-4 to 6-6
Visual Basic example,

A-10 to A-11
shared memory operations

example 5-2, 5-12 to 5-13
Visual Basic example, A-8

programming language support for NI-VISA
(table), 1-3 to 1-4

programming with VISA. See also
programming considerations for NI-VISA.

communication channels, 3-5 to 3-6
interface independence (example),

3-8 to 3-9
register communication, 3-7 to 3-8
Resource Manager, 3-6 to 3-7
terminology, 3-3 to 3-5

Q
queuing, 7-4 to 7-5

definition, 7-1
event context, 7-11
programming considerations, 2-7
sample code, 7-8 to 7-10

R
read/write services

asynchronous, 4-3 to 4-4
synchronous, 4-2 to 4-3

register-based communication, 5-1 to 5-13
comparison of high- and low-level

access, 5-10 to 5-11
accessing multiple address

spaces, 5-11

ease of use, 5-10
speed, 5-10

examples
example 2-2, 2-5 to 2-7
example 5-1, 5-9 to 5-10
Visual Basic examples, A-3, A-7

High-Level Access operations
overview, 3-7 to 3-8
purpose and use, 5-2 to 5-3

high-level block operations, 5-4 to 5-5
Low-Level Access operations, 5-5 to 5-1

bus errors, 5-10
computer access overview, 5-5 to 5-
example, 5-9 to 5-10
operations versus pointer

deference, 5-8
overview, 3-8
pointer manipulation, 5-8 to 5-9
using VISA for performing,

5-7 to 5-8
overview, 5-1 to 5-2
shared memory operations, 5-11 to 5-13

overview, 5-11 to 5-12
sample code, 5-12 to 5-13
when to use (note), 5-11

Register-based devices (RBDs), 5-1
resizing formatted I/O buffers, 4-10
resource, definition, 3-3 to 3-4
Resource Manager. See VISA

Resource Manager.

S
serial I/O buffers, controlling, 4-11
serial port support, 9-5
service request service. See status/service

request service.
sessions. See also communication channels.

definition, 3-5
shared locks, 8-1. See also locks.
© National Instruments Corporation I-5 NI-VISA User Manual

Index

NIVISAUM.book Page 6 Tuesday, June 9, 1998 8:30 AM
shared memory operations, 5-11 to 5-13
examples

sample code (example 5-2),
5-12 to 5-13

Visual Basic example, A-8
overview, 5-11 to 5-12
when to use (note), 5-11
stack size, under Windows 3.x, 9-7
status/service request service, 4-6 to 4-7
synchronous read/write services,

4-2 to 4-3

T
technical support, B-1 to B-2
telephone and fax support, B-2
termination mechanisms, setting attributes

for, 4-2 to 4-3
timeout, setting (example), 3-4
trigger services, 4-5 to 4-6

description, 4-5 to 4-6
device triggering, 4-5
interface-level, 4-6

U
userHandle parameter, 7-7 to 7-8

V
Variable List operations, 4-8
viAssertTrigger operation, 4-5
VI_ATTR_DEST_INCREMENT, 5-4
VI_ATTR_MAX_QUEUE_

LENGTH, 7-5, 7-7
VI_ATTR_RD_BUF_OPER_MODE, 4-10
VI_ATTR_SEND_END_EN, 4-3
VI_ATTR_SRC_INCREMENT, 5-4
VI_ATTR_TERMCHAR, 4-3
VI_ATTR_TERMCHAR_EN, 4-3
VI_ATTR_TMO_VALUE, 3-4, 4-3

VI_ATTR_TRIG_ID, 4-5
VI_ATTR_WR_BUF_OPER_MODE, 4-10
viClear operation, 4-4, 4-10
viClose operation

closing communication channels
(example), 3-6

closing resource manager session, 6-4
event context, 7-11

viDisableEvent operation
disabling events, 7-3 to 7-4, 7-5
programming example 2-3, 2-9

viDiscardEvents operation, 7-5, 7-6
viEnableEvent operation

asynchronous read/write services
(example), 4-4

callback modes (example), 7-6 to 7-7
enabling events, 7-3 to 7-4
programming example 2-3, 2-8, 2-9

VI_EVENT_IO_COMPLETION event, 7-2
VI_EVENT_SERVICE_REQ event, 4-6, 7-2
VI_EVENT_TRIG event, 7-2
VI_EVENT_VXI_SIGP event, 7-2
viFindNext operation (example), 6-5, 6-6
viFindRsrc operation

searching for resources
(example), 6-4 to 6-5, 6-6

specifying regular expression for
Resource Manager, 3-7

viFlush operation
automatically flushing formatted I/O

buffers, 4-9
controlling serial I/O buffers, 4-11
manually flushing formatted I/O

buffers, 4-9
viGetAttribute operation

event context with callback
mechanism, 7-11

programming example 2-3, 2-9
service request (example), 4-6

viIn8 / viIn16 / viIn32 operations
High-Level Access operations, 5-2 to 5-3
NI-VISA User Manual I-6 © National Instruments Corporation

Index

5

NIVISAUM.book Page 7 Tuesday, June 9, 1998 8:30 AM
opening Resource Manager
communications (example), 3-7

programming example 2-2, 2-5, 2-6
requirements for accessing registers, 5-3

viInstallHandler operation, 7-6, 7-7, 9-3
viLock operation

acquiring exclusive lock, 8-3
lock sharing, 8-2
nested locks, 8-3
programming example 2-4, 2-11, 2-12
sample code, 8-5

viMapAddress operation
calling before using viPeekXX or

viPokeXX, 9-2
performing low-level register

accesses, 5-7, 9-2
pointer dereferencing vs. operations, 5-8
pointer manipulation, 5-8 to 5-9

viMemAlloc operation
programming example, 5-13
shared memory operation, 5-11

viMemFree operation
programming example, 5-13
shared memory operation, 5-11

viMoveIn8 / viMoveIn16 / viMoveIn32
operations, 5-4 to 5-5

viMoveOut8 / viMoveOut16 / viMoveOut32
operations, 5-4 to 5-5

viOpen operation
creating session for resource example, 6-2
opening communication channels

(example), 3-5 to 3-6
programming example, 2-2, 2-3, 6-2

viOpenDefaultRM operation
programming example, 2-2, 2-3, 6-2
starting sessions, 3-6 to 3-7, 6-2

viOut8 / viOut16 / viOut32 operations
High-Level Access operations, 5-2 to 5-3
interface independence (example), 3-9
programming example 2-2, 2-5, 2-6

writing to memory location
(example), 3-7 to 3-8

viPeek8 / viPeek16 / viPeek32
operations, 5-8, 9-2

viPoke8 / viPoke16 / viPoke32
operations, 5-8, 9-2

viPrintf operation
automatically flushing formatted I/O

buffers, 4-9
formatted I/O operations, 4-7
manually flushing formatted I/O

buffers, 4-9
viQueryf operation, 4-8
viRead operation

reading string from device (example), 3-
synchronous read/write services

(example), 4-2
viReadSTB operation, 4-6
Virtual Instrument Software Architecture.

See VISA.
VISA

background and history, 1-2 to 1-4, 3-1
framework and programming language

support (table), 1-3 to 1-4
objectives, 3-2 to 3-3
requirements for getting started, 1-1
standards for VXIplug&play

software, 1-2
VISA API, 3-1
VISA Resource Manager, 6-1 to 6-6

accessing resources, 6-1 to 6-3
address string examples (table), 6-3
default value for optional string

segments (table), 6-3
example 6-1, 6-2 to 6-3
strings for describing resources

(table), 6-2 to 6-3
Visual Basic example, A-9

function of, 3-6 to 3-7
purpose, 6-1
searching for resources, 6-4 to 6-6
© National Instruments Corporation I-7 NI-VISA User Manual

Index

NIVISAUM.book Page 8 Tuesday, June 9, 1998 8:30 AM
example 6-2, 6-4 to 6-5
range of expressions passed to

viFindRsrc (table), 6-6
Visual Basic example, A-10 to A-11

starting session with Default Resource
Manager, 3-7 to 3-7

Visa Transition Library (VTL)
specification, 1-2

viScanf operation
automatically flushing formatted I/O

buffers, 4-9
formatted I/O operations, 4-7
manually flushing formatted I/O

buffers, 4-9
viSetAttribute operation

programming example 2-1, 2-3
setting timeout attribute (example), 3-4
synchronous read/write services

(example), 4-3
trigger service (example), 4-5

viSetBuf operation
automatically flushing formatted I/O

buffers, 4-10
controlling serial I/O buffers, 4-11
resizing formatted I/O buffers, 4-10

Visual Basic examples
accessing resources, A-9
event handling, A-4, A-12 to A-13
locking, A-14 to A-15
locks, A-5
message-based communication, A-2, A-6
register-based communication, A-3, A-7
searching for resources, A-10 to A-11
shared memory operations, A-8

viTerminate operation, 4-3, 4-4
viUninstallHandler operation, 7-8
viUnlock operation

exclusive locks, 8-3
nested locks, 8-3
programming example 2-4, 2-11, 2-12
sample code, 8-5

viUnmapAddress operation, 5-8
viVPrintf operation, 4-8
viVQueryf operation, 4-8
viVScanf operation, 4-8
viWaitOnEvent operation

asynchronous read/write services
(example), 4-4

event context, 7-11
event queuing process, 7-5
programming example 2-3, 2-8, 2-9

viWrite operation
formatted I/O operations (example), 4-8
programming example 2-1, 2-4
sending string to device

(example), 3-4 to 3-5
synchronous read/write services

(example), 4-2
viWriteAsync operation (example), 4-4
VME devices, NI-VISA support for, 9-6
VTL specification, 1-2
VXI platforms, NI-VISA support for, 9-5

multiple GPIB-VXI support, 9-5
VXI plug&play standards, 1-2

W
Windows 3.x programming issues, 9-6 to 9-7

application stack size, 9-7
installation overview, 9-6
memory model, 9-6

word serial protocol, 2-1
write services. See read/write services.
NI-VISA User Manual I-8 © National Instruments Corporation

	NI-VISA™ User Manual
	Support
	Internet
	Bulletin Board
	Fax-on-Demand
	Telephone
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Copyright
	Trademarks
	WARNING

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	How to Use This Document Set
	Related Documentation
	Customer Communication

	Chapter 1 Introduction
	How to Use This Manual
	What You Need to Get Started
	Introduction to VISA

	Chapter 2 Introductory Programming Examples
	Example of Message-Based Communication
	Example 2-1
	Example 2-1 Discussion

	Example of Register-Based Communication
	Example 2-2
	Example 2-2 Discussion

	Example of Handling Events
	Callbacks
	Queuing
	Example 2-3
	Example 2-3 Discussion

	Example of Locking
	Example 2-4
	Example 2-4 Discussion

	Chapter 3 VISA Overview
	Introduction
	Objectives of VISA
	Interactive Control of VISA
	Programming with VISA
	Beginning Terminology
	Communication Channels
	The Resource Manager
	Register Communication
	Example of Interface Independence

	Chapter 4 Initializing Your VISA Application
	Introduction
	Opening a Session
	Example 4-1

	Finding Resources
	Example 4-2
	Finding VISA Resources Using Regular Expressions
	Attribute-Based Resource Matching
	Example 4-3

	Configuring a Session
	Accessing Attributes
	Common Considerations for Using Attributes

	Chapter 5 Message-Based Communication
	Introduction
	Basic I/O Services
	Synchronous Read/Write Services
	Asynchronous Read/Write Services
	Clear Service
	Trigger Service
	Status/Service Request Service

	Formatted I/O Services
	Formatted I/O Operations
	I/O Buffer Operations
	Variable List Operations
	Manually Flushing the Formatted I/O Buffers
	Automatically Flushing the Formatted I/O Buffers
	Resizing the Formatted I/O Buffers
	Controlling the Serial I/O Buffers

	Example VISA Message-Based Application
	Example 5-1

	Chapter 6 Register-Based Communication
	Introduction
	High-Level Access Operations
	High-Level Block Operations
	Low-Level Access Operations
	Overview of Register Accesses from Computers
	Using VISA to Perform Low-Level Register Accesses
	Operations versus Pointer Dereference
	Manipulating the Pointer
	Example 6-1
	Bus Errors

	Comparison of High-Level and Low-Level Access
	Speed
	Ease of Use
	Accessing Multiple Address Spaces

	Shared Memory Operations
	Shared Memory Sample Code
	Example 6-2

	Chapter 7 VISA Events
	Introduction
	Supported Events
	Enabling and Disabling Events
	Queuing
	Callbacks
	Callback Modes
	Independent Queues
	The userHandle Parameter

	Queuing and Callback Mechanism Sample Code
	Example 7-1

	The Life of the Event Context
	Event Context with the Queuing Mechanism
	Event Context with the Callback Mechanism

	Exception Handling

	Chapter 8 VISA Locks
	Introduction
	Lock Types
	Lock Sharing
	Acquiring an Exclusive Lock While Owning a Shared Lock
	Nested Locks

	Locking Sample Code
	Example 8-1

	Chapter 9 NI-VISA Platform-Specific and Portability Issues
	Programming Considerations
	Debugging Tool for Windows 95/NT
	Multiple Applications Using the NI-VISA Driver
	Low-Level Access Functions
	Interrupt Callback Handlers

	Multiple Interface Support Issues
	VXI and GPIB Platforms
	Multiple GPIB-VXI Support
	Serial Port Support
	VME Support

	Windows 3.x Issues
	Installation Overview
	Memory Model
	Application Stack Size

	Appendix A Visual Basic Examples
	Example 2-1
	Example 2-2
	Example 2-3
	Example 2-4
	Example 4-1
	Example 4-2
	Example 4-3
	Example 5-1
	Example 6-1
	Example 6-2
	Example 7-1
	Example 8-1

	Appendix B Customer Communication
	Electronic Services
	Bulletin Board Support
	FTP Support
	Fax-on-Demand Support
	E-Mail Support (Currently USA Only)

	Telephone and Fax Support
	Technical Support Form
	Documentation Comment Form

	Glossary
	Index
	Tables
	Table 1-1. NI-VISA Support
	Table 9-1. How VISA Invokes Callbacks
	Table 9-2. How Serial Ports Are Numbered

