Programmer Manual

Tektronix
/

TekVISA Verson 1.1
071-1101-00

www.tektronix.com

Copyright © Tektronix, Inc. All rights reserved.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes
that in all previoudy published material. Specifications and price change privileges reserved.

Tektronix, Inc., PO. Box 500, Beaverton, OR 97077

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

Table of Contents

Preface
Who Should Read ThisManual
About ThisManual e
CONVENTIONS . .. ottt e e e e
Related Manualsand Information,
Contacting TEKIrONIXottt e
Getting Started

Product DesCriptiono

Featuresand Benefitsc.cco i

Applications and Connectivity Supported by TekVISA
Terminologyt

Resources, INSTR Resource, and SESSionNSo v nnn

Operations, Attributes, and Events

TheResource Managerot

Virtual Instrumentsand Virtual GPIB oot
What YouNeedtoGet Started

TekVISA Ingtallation

The VISA Configuration Utility i,

FINdiNng RESOUICESo e

AddingaRemote Host

DeletingaRemote Host i

Reference

OperatioNnS SUMMArYot
OPEratioNS ...
ViAssertTrigger (Vi, protocol)o
viBufRead (vi, buf, count, retCount) i,
viBufWrite (vi, buf, count, retCount) i
VIC G (V1) .ot
VICIOSE (V1) © ottt
viDisableEvent (vi, eventType, mechanism),
viDiscardEvents (vi, eventType, mechanism)
viEnableEvent (vi, eventType, mechanism, context)
viEventHandler (vi, eventType, context, userHandle)
viFindNext (findList, INStrDESC)o v vt
viFindRsrc (sesn, expr, findList, retCount, instrDesc)
VIFIUSh (Vi, Mask)
viGetAttribute (vi, attribute, attrState)
vilnstallHandler (vi, eventType, handler, userHandle)
viLock (vi, lockType, timeout, requestedKey, accessKey)
viOpen (sesn, rsrcName, accessMode, timeout, Vi)t
viOpenDefaultRM (SEBSNn)o
viParseRsrc (sesn, rsrcName, intfType, intfNum)
ViPrintf (vi, writeFmt, <argl, arg2, ...>)

viQueryf (vi, writeFmt, readFmt, <argl, arg2,...>)

Tektronix Version 1.1 TekVISA Programmer Manual

Xiii
Xiii
Xiii
Xiv

XV
XVi

Pl e e
OOWONOOOUUITANNER

0
=

N
1

L A A N SUGURUEURUE L
el & o
CERVBELEERIBRESRREoLdOd ~

I\JI\)I\)I\)I\)I\JI\JI\JII\)I\)I\)I\JI\JI\JI\JI\)I\)

Table of Contents

Attributes

viRead (vi, buf, count, retCount) i 2-56
viReadAsync (vi, buf, count, jobld) i 2-59
VIREadSTB (Vi, StatusS) oot 2-64
viScanf (vi, readFmt, <argl, arg2,...>)o 2-66
viSetAttribute (vi, attribute, attrState)o 2-74
VISEtBUf (Vi, mask, SIZ€)ot 2-75
ViSPrintf (vi, buf, writeFmt, <argl, arg2,...>) 2-77
viSScanf (vi, buf, readFmt, <argl, arg2,...>) 2-80
ViStatusDesC (Vi, Status, deSC) ... oo vt 2-82
viTerminate (vi, degree, jobld) i 2-83
viUninstallHandler (vi, eventType, handler, userHandle) 2-85
VIUNIOCK (V) . e 2-86
ViVPrintf (vi, writeFmt, params) 2-89
viVQueryf (vi, writeFmt, readFmt, params) i, 2-91
viVScanf (vi, readFmt, params)ii i 2-94
ViV SPrintf (vi, buf, writeFmt, params) i 2-96
viVSScanf (vi, buf, readFmt, params) 2-98
viwaitOnEvent (vi, inEventType, timeout, outEventType, outContext) 2-100
viWrite (vi, buf, count, retCount) 2-102
viWriteAsync (vi, buf, count, jobld) il 2-104
AttributesSummary ... 3-1
Attributes 3-5
VI_ATTR_ASRL_AVAIL_NUM ... e 3-5
VI_ATTR_ASRL_BAUD .. o 3-5
VI_ATTR_ASRL_CTS STATE . . .o 3-6
VI_ATTR_ASRL_DATA BITS .. i 3-6
VI_ATTR_ASRL_DCD_STATE ... i 3-7
VI_ATTR_ASRL_DSR STATE 3-7
VI_ATTR_ASRL_DTR _STATE ... i 3-8
VI_ATTR_ASRL_END_IN ..o e 3-8
VI_ATTR_ASRL_END_OUT . it 3-9
VI_ATTR_ASRL_FLOW _CNTRL ...t 3-10
VI_ATTR ASRL _PARITY e 3-11
VI_ATTR_ASRL_REPLACE CHAR e 3-11
VI_ATTR_ASRL_RI_STATE ... e 3-12
VI_ATTR_ASRL_RTS STATE ...\ 3-12
VI_ATTR_ASRL_STOP BITS ..ot 3-13
VI_ATTR_ASRL_XOFF CHAR . .. e 3-13
VI_ATTR_ASRL_XON_CHAR ... e 3-14
VI_ATTR BUFFER 3-14
VI_ATTR EVENT _TYPE ... e 3-15
VI_ATTR_GPIB_PRIMARY_ADDR ... i 3-15
VI_ATTR_GPIB_READDR _EN 3-16
VI_ATTR_GPIB_SECONDARY_ADDRt 3-16
VI_ATTR_GPIB_UNADDR_EN e 3-17
VI_ATTRANTF_INST _NAME 3-17
VI_ATTRANTE NUM e 3-18
VI ATTR NTFE TYPE . e 3-18
VI_ATTR IO PROT . e 3-19
VI_ATTR JOB ID ..o e 3-19

Tektronix Version 1.1 TekVISA Programmer Manual

Table of Contents

VI_ATTR_MAX_QUEUE_LENGTH
VI_ATTR_OPER_NAME
VI_ATTR_RD_BUF_OPER_MODE
VI_ATTR RET_COUNT
VI_ATTR_RM_SESSION
VI_ATTR_RSRC_IMPL_VERSION
VI_ATTR_RSRC_LOCK_STATE ..
VI_ATTR_RSRC_MANF ID
VI_ATTR_RSRC_MANF_NAME ..
VI_ATTR_RSRC_NAME
VI_ATTR_RSRC_SPEC_VERSION
VI_ATTR _SEND_END EN
VI_ATTR STATUS
VI_ATTR_SUPPRESS END_EN ..
VI_ATTR_TERMCHAR
VI_ATTR_TERMCHAR EN
VI_ATTR_TMO VALUE
VI ATTR TRIGID ...
VI_ATTR USER DATA
VI_ATTR_WR_BUF_OPER_MODE

Events

VI_EVENT_EXCEPTION
VI_EVENT_|O_COMPLETION ...
VI_EVENT _SERVICE REQ......

Examples

Introduction
Compiling and Linking Examples . .
Opening and Closing Sessions
SIMPLE.CPP Example
Finding Resources
Using Regular Expressions

SIMPLEFINDRSRC.CPPExampleciiiiiiiinnnn..

Using Attribute Matching

FINDRSRCATTRMATCH.CPPExamplecoivivn.n.

Setting and Retrieving Attributes . . .
Retrieving Attributes
Setting Attributes
ATTRACCESS.CPP Example . .

Basic Input/Output
Reading and Writing Data
Synchronous Read/Write

Extract from SIMPLE.CPPExample

RWEXAM.CPP Example
Asynchronous Read/Write..
Clear
Trigger ...
Statug/Service Request
Reading and Writing Formatted Data

Tektronix Version 1.1 TekVISA Programmer Manual

i o1 1 1 1 1 1 1
WNNNNRNRNNNNNNNNNNDNDNDDNDND
CQOVWOVWOWONNOOUIRRDPRWWNNRELRELPOO

WWWWWWWWWwWwwWwWwwWwwWwwwwwww

-l>-ll>-l>
NP

Ll Leaaaaaaae
QU BRARBREADWWWNNOOOOOOWOOUTEAWNPEF

SESRO NG RO RGNS N RGN N RN oy
RPRRRRERRRRRRREREERR

Table of Contents

Appendices

Formatted 1/O Operationst 5-17
FORMATIO.CPPEXampleo 5-17
Resizing the Formatted /O Buffers o i, 5-22
BUFFERIO.CPPEXxamplettt 5-23
Flushing the Formatted /O Buffer 5-25
Buffered /O Operationsot 5-25
Variable List Operationsouiiiiiii i 5-26
Controllingthe Serial I/OBuffers. it 5-26
Handling Events 5-26
Queueing Mechanism i 5-27
SROQWAIT.CPPEXample 5-27
Callback Mechanism 5-30
SRQ.CPPEXaMpPIE 5-32
ExceptionHandling 5-35
Generating an Error Condition on Asynchronous Operations 5-36
Locking and Unlocking RESOUICESo oo v 5-36
Locking Typesand AccessPrivilegest 5-36
EXLOCKEXAM.CPPExample ... 5-37
Testing ExclusiveLockingo 5-39
LOCK Sharingo 5-39
Acquiring an Exclusive Lock While Owning aShared Lock 5-40
Nested LOCKSo e 5-41
SHAREDLOCK.CPPEXampleo 5-41
Testing Shared Lockingo oo 5-43
Building a Graphical User Interface it 5-44
Appendix A: VISA Data Type Assignments A-1
Appendix B: Completion and Error Codes. B-1

Tektronix Version 1.1 TekVISA Programmer Manual

Table of Contents

List of Figures

Figure 1-1: TekVISA Supports Multiple Development

Environments. ... 1-3
Figure 1-2: TekVISA Supports L ocal and Remote Connectivity . . . 1-4
Figure1l-3: Key VISA Terminology oot 1-6
Figure 1-4: VISA Configuration Window 1-8
Figure 1-5: TekVISA Add RemoteHost dialogbox 1-9
Figure 1-6: TekVISA Delete Remote Resourcedialogbox 1-10
Figure5-1: SIMPLE.CPPExample, 5-5
Figure5-2: SSMPLEFINDRSRC.CPP Example 5-7
Figure5-3: FINDRSRCATTRMATCH.CPP Example 5-9
Figure5-4: ATTRACCESS.CPPExample 5-12
Figure 5-5: Read/Write Extract from SIMPLE.CPP Example 5-13
Figure5-6: RWEXAM.CPPExample 5-14
Figure 5-7: Types of Formatted Read/Write Operations 5-17
Figure5-8: FORMATIO.CPPExample 5-22
Figure5-9: BUFFERIO.CPPExample 5-25
Figure5-10: SRQWAIT.CPPExample 5-30
Figure5-11: SRQ.CPPExample, 5-35
Figure5-12: EXLOCKEXAM.CPPExample 5-39
Figure5-13: SHAREDLOCK.CPPExample 5-43
Figure 5-14: VISAAPIDemo Graphical User Interface........... 5-44
Figure5-15: C++ Controls Toolbar and Form, Code, and Properties

WINAOWS . ..o 5-46

Figure A-1: Your Program Can UsethelInstrument Driver API or VISA
APl A-2

Tektronix Version 1.1 TekVISA Programmer Manual v

Table of Contents

List of Tables

Tablei: Table of Typographic Conventions Xiv
Table 2-1: Tableof VISA Operationsby Category 2-1
Table 2-2: viAssertTrigger() Parameters 2-5
Table 2-3: viAssertTrigger() Completion Codes 2-5
Table 2-4: viAssertTrigger () Error Codes 2-6
Table 2-5: viBufRead() Parameters 2-7
Table 2-6: viBufRead() Completion Codes 2-7
Table 2-7: viBufRead() Error Codes 2-8
Table 2-8: Special Value for retCount Parameter with

ViBUufRead()o 2-8
Table 2-9: viBufWrite() Parameters 2-9
Table 2-10: viBufWrite() Completion Codes 2-9
Table2-11: viBufWrite() Error Codes 2-9
Table 2-12: Special Value for retCount Parameter with

VIBUFWIItE() .. 2-10
Table 2-13: viClear() Parameters 2-11
Table 2-14: viClear() Completion Codes 2-11
Table 2-15: viClear() Error Codes ..., 2-1
Table 2-16: viClose() Parameters ..., 2-13
Table 2-17: viClose() Completion Codes 2-13
Table2-18: viClose() Error Codescoiiiiinnaon.. 2-13
Table 2-19: viDisableEvent() Parameters 2-14
Table 2-20: viDisableEvent() Completion Codes 2-14
Table 2-21: viDisableEvent() Error Codes 2-14
Table 2-22: Special Valuesfor eventType Parameter with

viDisableEvent() 2-15
Table 2-23: Special Values for mechanism Parameter with

viDisableEvent() 2-15
Table 2-24: viDiscardEvents() Parameters 2-16
Table 2-25: viDiscar dEvents() Completion Codes 2-16
Table 2-26: viDiscardEvents() Error Codes 2-17
Table 2-27: Special Valuesfor eventType Parameter with

viDiscardEvents() 2-17
Table 2-28: Special Values for mechanism Parameter with

viDiscardEvents()oiiiiii 2-17

vi Tektronix Version 1.1 TekVISA Programmer Manual

Table of Contents

Table 2-29: viEnableEvent() Parameters 2-18
Table 2-30: viEnableEvent() Completion Codes 2-18
Table 2-31: viEnableEvent() Error Codes 2-18
Table 2-32: Special Valuesfor eventType Parameter with

viEnableEvent() 2-19
Table 2-33: Special Values for mechanism Parameter with

viEnableEvent() 2-20
Table 2-34: viEventHandler() Parameters 2-21
Table 2-35: viEventHandler () Completion Codes 2-21
Table 2-36: viFindNext() Parameters 2-23
Table 2-37: viFindNext() Completion Codes 2-24
Table 2-38: viFindNext() Error Codes 2-24
Table 2-39: viFindRsrc() Parameters 2-25
Table 2-40: viFindRsrc() Completion Codes 2-26
Table 2-41: viFindRsrc() Error Codes ... 2-26
Table 2-42: Special Value for retCount Parameter with

VIFINARSIC() ..o 2-27
Table 2-43: Special Valuefor findList Parameter with

VIFINARSIC() ..o e 2-28
Table 2-44: Regular Expression Special Characters and

OPE AIOrS .ot 2-28
Table 2-45: Examples of Regular Expression Matches 2-29
Table 2-46: Examples That Include Attribute Expression

MatChes 2-29
Table 2-47: viFlush() Parameters 2-30
Table 2-48: viFlush() Completion Codes 2-30
Table 2-49: viFlush() Error Codesc.iiieno.. 2-30
Table 2-50: viFlush Valuesfor mask Parameter 2-31
Table 2-51: viGetAttribute() Parameters 2-32
Table 2-52: viGetAttribute() Completion Codes 2-33
Table 2-53: viGetAttribute() Error Codes 2-33
Table 2-54: vilnstallHandler () Parameters 2-34
Table 2-55: vilnstallHandler () Completion Codes 2-34
Table 2-56: vilnstallHandler() Error Codes 2-34
Table 2-57: viLock() Parameters oo, 2-36
Table 2-58: viLock() Completion Codes 2-37
Table 2-59: viLock() Error Codes ..., 2-37
Table 2-60: viOpen() Parameters ..., 2-39
Table 2-61: viOpen() Completion Codes 2-40
Table 2-62: viOpen() Error Codes ..., 2-40

Tektronix Version 1.1 TekVISA Programmer Manual vii

Table of Contents

viii

Table 2-63: Resource Address String Grammar and Examples with

VIOPEN() ot 2-41
Table 2-64: Special Valuesfor accessM ode Parameter with

VIOPEN() oot 2-42
Table 2-65: viOpenDefaultRM () Parameters 2-42
Table 2-66: viOpenDefaultRM () Completion Codes 2-42
Table 2-67: viOpenDefaultRM() Error Codes 2-43
Table 2-68: viParseRsrc() Parameters 2-44
Table 2-69: viParseRsrc() Completion Codes 2-44
Table 2-70: viParseRsrc() Error Codes 2-44
Table 2-71: viPrintf() Parameters 2-46
Table 2-72: viPrintf() Completion Codes 2-46
Table 2-73: viPrintf() Error Codes 2-46
Table 2-74: Special Charactersused with viPrintf() 2-48
Table 2-75: ANSI C Standard Modifiersused with viPrintf() 2-48
Table 2-76: Enhanced Modifiersto ANSI C Standards used with

VIPIINtf() .o 2-50
Table 2-77: Modifiers used with Argument Types %, c, and d with

VIPIINtf() .o 2-51
Table 2-78: Modifiers used with Argument Type f with viPrintf() 2-52
Table 2-79: Modifiers used with Argument Typessand b with

VIPIINtf() .o 2-52
Table 2-80: Modifiers used with Argument Types B and y with

VIPIINtf() .o 2-53
Table 2-81: viQueryf() Parameters, 2-54
Table 2-82: viQueryf() Completion Codes 2-54
Table 2-83: viQueryf() Error Codes 2-55
Table 2-84: viRead() Parameters, 2-56
Table 2-85: viRead() Completion Codes 2-56
Table 2-86: viRead() Error Codes ..., 2-56
Table 2-87: Success Code Conditions for GPIB Interfaces with

VIREAA() ..o 2-59
Table 2-88: viReadAsync() Parameters 2-59
Table 2-89: viReadAsync() Completion Codes 2-60
Table 2-90: viReadAsync() Error Codes 2-60
Table 2-91: Special Valuefor jobld Parameter with viReadAsync() 2-63
Table 2-92: viReadSTB() Parameters 2-64
Table 2-93: viReadSTB() Completion Codes 2-64
Table 2-94: viReadSTB() Error Codes 2-64
Table 2-95: viScanf() Parameters 2-66

Tektronix Version 1.1 TekVISA Programmer Manual

Table of Contents

Table 2-96:
Table 2-97:

Table 2-98: ANS| C Standard Modifiers used with viScanf()

Table 2-99:

viScanf()
Table 2-100:
Table 2-101:
Table 2-102:
Table 2-103;
Table 2-104:
Table 2-105:
Table 2-106:
Table 2-107:
Table 2-108;
Table 2-109:
Table 2-110:

Table 2-111:

Table 2-112:
Table 2-113:
Table 2-114:
Table 2-115:
Table 2-116:
Table 2-117:
Table 2-118:
Table 2-119:
Table 2-120:
Table 2-121:
Table 2-122:
Table 2-123:
Table 2-124:
Table 2-125:
Table 2-126:
Table 2-127:
Table 2-128:

Table 2-129

viUninstallHandler ()

Table2-130
Table2-131
Table 2-132

Tektronix Version 1.1 TekVISA Programmer

viScanf() Completion Codes
viScanf() Error Codes

Enhanced Modifiersto ANSI C Standards used with

Modifiers used with Argument Type c with viScanf()
Modifiers used with Argument Type d with viScanf()
Modifiers used with Argument Type f with viScanf()
Modifiers used with Argument Type s with viScanf()
Modifiers used with Argument Type b with viScanf()
Modifiers used with Argument Typet with viScanf()
Modifiers used with Argument Type T with viScanf()
Modifiers used with Argument Typey with viScanf()
viSetAttribute() Parameters
viSetAttribute() Completion Codes
viSetAttribute() Error Codes
viSetBuf() Parameters
viSetBuf() Completion Codes
viSetBuf() Error Codes
Flags used with Mask Parameter with viSetBuf()
viSPrintf() Parameters
viSPrintf() Completion Codes
ViSPrintf() Error Codes
viSScanf() Parameters

viSScanf() Completion Codes
viSScanf() Error Codes
viStatusDesc() Parameters
viStatusDesc() Completion Codes
viTerminate() Parameters
viTerminate() Completion Codes
viTerminate() Error Codes
viUninstall[Handler () Parameters
viUninstall[Handler () Completion Codes
viUninstallHandler () Error Codes
: Special Values for handler Parameter with

- viUnlock() Parameters
> viunlock() Completion Codes
> viUnlock() Error Codes

Manual

2-66
2-66
2-69

2-69
2-70
2-70
2-70
2-71
2-72
2-72
2-73
2-73
2-74
2-74
2-74
2-76
2-76
2-76
2-77
2-78
2-78
2-78
2-80
2-80
2-81
2-83
2-83

2-84
2-84
2-85
2-85
2-85

2-86
2-87
2-87
2-87

Table of Contents

Table2-133: viVPrintf() Parameters 2-89
Table 2-134: viVPrintf() Completion Codes 2-89
Table 2-135: viVPrintf() Error Codes 2-89
Table2-136: viVQueryf() Parameters 2-92
Table 2-137: viVQueryf() Completion Codes 2-92
Table2-138: viVQueryf() Error Codes 2-92
Table 2-139: viVScanf() Parameters 2-94
Table 2-140: viVScanf() Completion Codes 2-94
Table 2-141: viVScanf() Error Codes 2-94
Table 2-142: viVSPrintf() Parameters 2-96
Table 2-143: viVSPrintf() Completion Codes 2-96
Table 2-144: viVSPrintf() Error Codes 2-96
Table 2-145: viVSScanf() Parameters 2-98
Table 2-146: viVSScanf() Completion Codes 2-98
Table 2-147: viVSScanf() Error Codes 2-98
Table 2-148: viwaitOnEvent() Parameters 2-100
Table 2-149: viwaitOnEvent() Completion Codes 2-100
Table 2-150: viwaitOnEvent() Error Codes 2-100
Table 2-151: Special Valuesfor inEventType Parameter with

VIWaitOnEvents()o 2-101
Table 2-152: Special Valuesfor timeout Parameter with

VIWaitOnEvents()oiiiiii i 2-102
Table 2-153: Special Valuesfor outEventType Parameter with

ViWaitOnEvents()o 2-102
Table 2-154: Special Valuesfor outContext Parameter with

ViWaitOnEvents()oiiii 2-102
Table 2-155: viWrite() Parameters ..., 2-103
Table 2-156: viwrite() Completion Codes 2-103
Table 2-157: viwrite() Error Codes, 2-103
Table 2-158: Special Valuefor retCount Parameter with

VIWEItE) .o 2-104
Table 2-159: viwriteAsync() Parameters 2-104
Table 2-160: viwriteAsync() Completion Codes 2-105
Table 2-161: viwriteAsync() Error Codes 2-105
Table 2-162: Special Valuefor jobld Parameter with

VIWEITEASYNC() .ot e 2-108
Table 3-1: Tableof VISA Attributesby Category 3-1
Table 3-2: VI_ATTR_ASRL_AVAIL_NUM Attribute 3-5
Table 3-3: VI_ATTR_ASRL_BAUD Attribute 3-5

Tektronix Version 1.1 TekVISA Programmer Manual

Table of Contents

Table3-4: VI_ATTR_ASRL_CTS STATE Attribute 3-6
Table3-5: VI_ATTR_ASRL_DATA_BITSAttribute 3-6
Table3-6: VI_ATTR_ASRL_DCD_STATE Attribute 3-7
Table3-7: VI_ATTR_ASRL_DSR_STATE Attribute 3-7
Table3-8: VI_ATTR_ASRL_DTR_STATE Attribute 3-8
Table3-9: VI_ATTR_ASRL_END_IN Attribute 3-8
Table3-10: VI_ATTR_ASRL_END_OUT Attribute 3-9
Table3-11: VI_ATTR_ASRL_FLOW_CNTRL Attribute 3-10
Table3-12: VI_ATTR_ASRL_PARITY Attribute 3-1
Table3-13: VI_ATTR_ASRL_REPLACE_CHAR Attribute 3-1
Table3-14: VI_ATTR_ASRL_RI_STATE Attribute 3-12
Table3-15: VI_ATTR_ASRL_RTS STATE Attribute 3-12
Table3-16: VI_ATTR_ASRL_STOP_BITSAttribute 3-13
Table3-17: VI_ATTR_ASRL_XOFF_CHAR Attribute 3-13
Table3-18: VI_ATTR_ASRL_XON_CHAR Attribute 3-14
Table3-19: VI_ATTR_BUFFER Attribute 3-14
Table3-20: VI_ATTR_EVENT_TYPE Attribute 3-15
Table3-21: VI_ATTR_GPIB_PRIMARY_ADDR Attribute 3-15
Table3-22: VI_ATTR_GPIB_READDR_EN Attribute 3-16
Table 3-23: VI_ATTR_GPIB_SECONDARY_ADDR Attribute ... 3-16
Table 3-24: VI_ATTR_GPIB_UNADDR_EN Attribute 3-17
Table3-25: VI_ATTR_INTF_INST_NAME Attribute 3-17
Table3-26: VI_ATTR_INTF_NUM Attribute 3-18
Table3-27: VI_ATTR_INTF_TYPE Attribute 3-18
Table3-28: VI_ATTR_IO_PROT Attribute 3-19
Table3-29: VI_ATTR_Job_ID Attribute 3-19
Table 3-30: VI_ATTR_MAX_QUEUE_LENGTH Attribute 3-20
Table3-31: VI_ATTR_OPER_NAME Attribute 3-20
Table3-32: VI_ATTR_RD_BUF_OPER_MODE Attribute 3-21
Table3-33: VI_ATTR_RET_COUNT Attribute 3-21
Table3-34: VI_ATTR_RM_SESSION Attribute 3-22
Table 3-35: VI_ATTR_RSRC_IMPL_VERSION Attribute 3-22
Table 3-36: ViVersion Description for VI_ATTR_RSRC_IMPL _

VERSION ..o 3-22
Table 3-37: VI_ATTR_RSRC_LOCK_STATE Attribute 3-23
Table3-38: VI_ATTR_RSRC_MANF_ID Attribute 3-23
Table 3-39: VI_ATTR_RSRC_MANF_NAME Attribute 3-24
Table 3-40: VI_ATTR_RSRC_NAME Attribute 3-24
Table 3-41: Resource Address String Grammar — 3-25

Tektronix Version 1.1 TekVISA Programmer Manual Xi

Table of Contents

Xil

Table 3-42: VI_ATTR_RSRC_SPEC_VERSION Attribute

Table 3-43: ViVersion Description for VI_ATTR_RSRC_SPEC _
VERSION .. e

Table3-44: VI_ATTR_SEND_END_EN Attribute
Table3-45: VI_ATTR_STATUSALtribute
Table 3-46: VI_ATTR_SUPPRESS END_EN Attribute
Table3-47: VI_ATTR_TERMCHAR Attribute
Table3-48: VI_ATTR_TERMCHAR_EN Attribute
Table3-49: VI_ATTR_TMO_VALUE Attribute
Table3-50: VI_ATTR_TRIG_ID Attributeovvevn..
Table3-51: VI_ATTR_USER_DATA Attribute
Table3-52: VI_ATTR_WR_BUF_OPER_MODE Attribute
Table4-1: VI_EVENT_EXCEPTION Related Attributes
Table4-2: VI_EVENT_|O_COMPLETION Related Attributes

Table4-3: VI_EVENT_SERVICE_REQ Related Attributes

Table A-1: Type Assignmentsfor VISA and I nstrument
Driver APIS ...

Table A-2: Type Assignmentsfor VISA APIsOnly

TableB-1: CompletionCodes ...,
TableB-2: Error Codes ...t

3-25

3-25
3-26
3-26
3-27
3-27
3-28
3-28
3-29
3-29
3-30

4-1

A-2
A-6

B-1
B-2

Tektronix Version 1.1 TekVISA Programmer Manual

Preface

Who Should Read This Manual

This manual is both areference and atutorial. It isintended for use by Tektronix
instrumentation end users and application programmers who wish to develop or

modify

H VISA-compliant instrument driver software.

H Applications that use VISA-compliant instrument driver software.

About This Manual

This programming manual describes TekVISA, the Tektronix implementation of
the Virtual Instrument Software Architecture (VISA) Library, an interface-inde-
pendent software interface endorsed by the V XIplug& play Systems Alliance.
The manual is organized as follows:

H The Preface and Getting Started sections briefly cover the audience and
conventions for this guide, present overview concepts, summarize TekVISA
features and applications, and explain how to configure TekVISA resources.

H The Reference section presents TekVISA operations, attributes, and events
in aphabetical order.

H

The Operations Summary chapter summarizes the VISA operations
implemented by Tektronix.

The Operations chapter describes each VISA operation including its
syntax and sample usage.

The Attributes Summary chapter summarizes the VISA attributes
implemented by Tektronix.

The Attributes chapter describes each VISA attribute including its syntax
and usage.

The Events chapter describes each VISA event implemented by
Tektronix including its syntax and usage.

H The Programming Examples section contains short programs that illustrate
usage of VISA operations, attributes, and events to accomplish specific
tasks.

H Appendices contain summary information for quick reference.

Tektronix Version 1.1 TekVISA Programmer Manual Xiii

Preface

Conventions

Xiv

H The VISA Data Type Assignments appendix lists VISA datatypesin

alphabetical order

H The Completion and Error Codes appendix lists operation completion
codes and error codes in alphabetical order.

H A Glossary and Index appear at the end of the manual.

This manual makes use of certain notational conventions and typefacesin
distinctive ways, as summarized in Tablei.

Table i: Table of Typographic Conventions

Typeface Meaning Example
italics Used to introduce terms orto | A common |/O library
specify variables for which called the Virtual Instru-
actual values should be sub- | ment Software Architec-
stituted. ture (VISA)
The requestedKey will
be copied into the user
buffer referred to by the
accessKey.
boldface Used to emphasize important | The viFindRsrc¢() opera-
points or to denote exact tion matches an expres-
characters to type or buttons | gjon against the re-
to click in step-by-step proce- | gorees available for a
dures. particular interface.
1. Click OK.
NOTE Used to call attention to notes | NOTE. Read this carefully.

or tips in text.

<iteml, item2, ...>

This notation is used to desig-

nate a variable list of one or
more items separated by
commas.

vi Scanf (vi, readFnt,
<argl, arg2, ...>)

Code

This font is used to designate
blocks of code.

*result = m Vi Status;

Menu > Submenu

This notation is used to desig-

nate a series of cascading
menus.

The example here means:
from the File menu, choose
Open.

1. Choose File > Open.

Tektronix Version 1.1 TekVISA Programmer Manual

Preface

Related Manuals and Information

Refer to the following manuals for information regarding related products,
manuals, and programming specifications.

H

This programming manual resides in Adobe Acrobat format on the TekVISA
Product Software CD.

The AD007 GPIB-LAN Adapter User Manual (071-0245-01) provides
related information if you are controlling your instrumentation from aremote
PC over an Ethernet GPIB-LAN connection. This guideislocated on the
ADO0O07 Product Software CD.

The TDS7000 Series Programmer Online Guide and TDS7000 Series Online
Help provide related information if you are using a TDS7000 Series
Oscilloscope, which provides an open, Windows-based interface. These
guides are located on the TDS7000 Product Software CD.

The TDS3000 Series Programmer Online Guide and TDS3000 Series Online
Help provide related information if you are using a TDS3000 Series
Oscilloscope. These guides are on the TDS3000 Product Software CD.

Genera information and specifications for Virtua Instrument Software
Architecture (VISA) are available from the web site of the V XIplug& play
System Alliance at http://www.vxipnp.org. The following documents relate
to the Tektronix implementation of VISA:

H VISA Software Design Implementation

H VPP-4.3: The VISA Library Revision 2.2. This specification is intended
to be used in conjunction with the VPP-3.X specifications including:

H the Instrument Drivers Architecture and Design Specification
(VPP-3.1)

H the Instrument Driver Functional Body Specification (VPP-3.2)

H the Instrument Interactive Devel oper Interface Specification
(VPP-3.3)

H the Instrument Driver Programmatic Developer Interface Specifica-
tion (VPP-3.4).

H the Installation and Packaging Specification (VPP-6).

These related specifications describe the implementation details for
specific instrument drivers used with specific system frameworks.

V XlIplug& play instrument drivers devel oped according to these
specifications can be used in awide variety of higher-level software
environments as described in the System Framewor ks Specification
(VPP-2).

Tektronix Version 1.1 TekVISA Programmer Manual XV

Preface

Contacting Tektronix

Phone 1-800-833-9200*

Address Tektronix, Inc.
Department or name (if known)
14200 SW Karl Braun Drive

PO. Box 500

Beaverton, OR 97077

USA
Web site www.tektronix.com
Sales support 1-800-833-9200, select option 1*
Service support 1-800-833-9200, select option 2*
Technical support Email: techsupport@tektronix.com

1-800-833-9200, select option 3*
6:00 a.m. - 5:00 p.m. Pacific time

* This phone number is toll free in North America. After office hours, please leave a
voice mail message.
Outside North America, contact a Tektronix sales office or distributor; see the
Tektronix web site for a list of offices.

Xvi Tektronix Version 1.1 TekVISA Programmer Manual

-/ |
Getting Started

Getting Started

Product Description

Test and measurement applications require some kind of 1/O library to communi-
cate with test instrumentation. As a step toward industry-wide software
compatibility, the VXIplug& play Systems Alliance developed acommon 1/0
library called the Virtual Instrument Software Architecture (VISA). VISA
provides a common standard for software developers so that software from
multiple vendors, such as instrument drivers, can run on the same platform.

An instrument driver isalibrary of functions that handles the details of
controlling and communicating with a specific instrument such as a Tektronix
oscilloscope. Instrumentation end users have been writing their own instrument
driversfor years.

This manual describes TekVISA, the Tektronix implementation of the VISA
Application Programming Interface (API). TekVISA isindustry-compliant
software, available with selected Tektronix instrument models, for writing (or
drawing) interoperable instrument driversin avariety of Application Develop-
ment Environments (ADES).

TekVISA implements a subset of Version 2.2 of the VISA specification for
controlling GPIB and seria (RS-232) instrument interfaces locally or remotely
viaan Ethernet LAN connection. TekVISA provides the interface-independent
functionality needed to control and access the embedded software of Tektronix
test and measurement equipment in the following ways:

H Using virtual GPIB software running locally on Windows-based instrumen-
tation such as TDS7000 and TDS/CSAB8000 Series Oscilloscopes

H Using physical GPIB controller hardware
H Using asynchronous serial controller hardware

H Over alLocal AreaNetwork (LAN) that uses VXI-11 protocol and one of the
following:

H an ADO007 LAN-to-GPIB adapter to GPIB controller hardware

H A 10Base-T Ethernet connection together with virtual GPIB software
running on Windows-based instrumentation such as TDS7000 and
TDS/CSAB8000 Series Oscill oscopes

Tektronix Version 1.1 TekVISA Programmer Manual 1-1

Getting Started

Features and Benefits

Applications and

Connectivity Supported

1-2

by TekVISA

TekVISA offers the following features and benefits:

H

H
H

Improves ease of use for end users by providing a consistent methodol ogy
for using instrument drivers from avariety of vendors

Provides language interface libraries for programmers using multiple
Application Development Environments as shown in Figure 1-1, including:

H Microsoft C/C++

H Microsoft Visual Basic

H LabVIEW graphics software using the G language

H MATLAB anaysis software

Provides a Configuration utility for setting up additional VISA resources

Allows software installation on any number of PCs

TekVISA isbeneficial in avariety of situations and applications:

H

A singleinstrument driver can be used by multiple Application Development
Environments.

Instrument drivers from severa vendors can be combined in a single user
application.

User programs running on Windows-based instrumentation (such as
TDS7000 and TDS/CSA8000 Series Oscilloscopes) can use TekVISA to
control instrument operation viaa virtual GPIB software connection, without
using any external GPIB hardware.

User programs running on remote PCs networked toWindows-based
instrumentation (such as TDS7000 and TDS/CSA8000 Series Oscill oscopes)
can use TekVISA to control instrument operation viaavirtual GPIB and
VXI-11 software connection. No external GPIB-LAN hardware is needed.
Only an Ethernet LAN connection is required.

User programs connected locally or remotely to other non-Windows-based
Tektronix instrumentation (such as TDS3000 Series Oscilloscopes) can use
TekVISA to control instrument operation viaa GPIB or serial (RS232)
connection locally, or remotely via a Tektronix AD007 GPIB-LAN adapter.

Figure 1-2 illustrates the variety of software, local hardware, and network
connections to embedded instrumentation supported by TekVISA.

Tektronix Version 1.1 TekVISA Programmer Manual

Getting Started

Application Development Environments (ADE)

) . LabVIEW
C, C++ Visual Basic and MATLAB
Program Program LabWindows
|
|
PnP |
Instrument |
Specific Instrument ‘
P Driver API ‘
\
v
TekVISA Input/Output Library API
Virtual GPIB ASRL LAN
GPIB i (RS232 COML, (VXI-11
(GPIBS) (GPIBO-GPIB3) COM2) Protocol)

|

S

0
0'p

o om 0|0

=l
B
=
=

(000 © @B 6O @ -

J

J

]

Test and Measurement

Instruments

Figure 1-1: TekVISA Supports Multiple Development Environments

Tektronix Version 1.1 TekVISA Programmer Manual 1-3

Getting Started

Remote Remote Local
UNIX-based Controller Windows- based Controller Windows- based Controller
User User
Application Application
I I
User
Application VISALibrary VISALibrary
/ T]
VXI-11 _ | VXI-11 ASRL L GPIB
Client Client
Windows- based Ethernet |
Oscilloscope LAN GPIB-LAN
Adapter
Windows-side . Embedded Software side W/VXI-11
of Instrument Ethernet of Instrument GPIB
LAN hardware
User RS-232
Application VXI-11 e —————— hardware
Server
I
VXL L} yisa Library ——— [Fos== 4]
Client & 9lonnno
50888 8
— Virtual software tw@@@ 22 ° 802¢c8
ASRL { GPIB GPIB ° S00Ogo
GPIB connection ?@D @:. @m @D)
Non Windows- based
Instruments

Figure 1-2: TekVISA Supports Local and Remote Connectivity

Terminology

The VISA specification introduces a number of new terms. Refer to the
Glossary at the end of this manual for a complete list of terms and definitions.
Some key terms are discussed in the following paragraphs and illustrated in
Figure 1-3.

1-4 Tektronix Version 1.1 TekVISA Programmer Manual

Getting Started

Resources, INSTR VISA defines an architecture consisting of many resources that encapsulate
Resource, and Sessions device functionality. In VISA, every defined software moduleis aresource. In
general, the term resource is synonymous with the word object in object-oriented
architectures. For VISA, resource more specifically refersto a particular
implementation or instance, in object-oriented terms, of aresource class, which
is the definition for how to create a particular resource.

A specialized type of resource classis aVISA instrument control (INSTR)
resource class, which defines how to control a particular device. An INSTR
resource class encapsulates the various operations for a particular device together
(reading, writing, triggering, and so on) so that a program can interact with that
device through a single resource. TekVISA supports two kinds of devices
associated with the INSTR resource class: GPIB and ASRL (serial) devices.

Applications that use VISA can access device resources by opening sessions to
them. A session is acommunication path between a software element and a
resource. Every session in VISA is unique and hasits own life cycle. VISA
defines alocking mechanism to restrict access to resources for specia circum-
stances.

Operations, Attributes, After establishing a session, an application can communicate with a resource by
and Events invoking operations associated with the resource or by updating characteristics
of resources called attributes. Some attributes depict the instantaneous state of
the resource and others define changeabl e parameters that modify the behavior of
resources. A VISA system also alows information exchange through events.

The Resource Manager VISA Resource Manager is the name given to the part of VISA that manages
resources. This management includes support for opening, closing, and finding
resources; setting and retrieving resource attributes; generating events on
resources; and so on.

The VISA Resource Manager provides access to all resources registered with it.
It istherefore at the root of a subsystem of connected resources. Currently, one
Resource Manager is available by default after initialization. Thisis called the
Default Resource Manager. Thisidentifier is used when opening resources,
finding available resources, and performing other operations on device resources.

Tektronix Version 1.1 TekVISA Programmer Manual 1-5

Getting Started

Virtual Instruments and
Virtual GPIB

raisefrespondto ——— | Events
have Attributes
INSTR
Default _ Resources
Resource [~ Pprovidesaccessto — (virtual
Manager Instruments)
perfform ——{ Operations
operate within ———{ Sessions

Figure 1-3: Key VISA Terminology

A virtual instrument is a name given to the grouping of software modules
(VISA resources with any associated or required hardware) to give the function-
ality of atraditional stand-alone instrument. Within VISA, avirtua instrument is
thelogical grouping of any of the VISA resources. TekVISA supports ASRL
(serial) and GPIB virtual instruments, which work with accompanying RS-232
and GPIB hardware respectively.

In addition, TekVISA includes a specialized type of GPIB resource called virtual
GPIB. User programs running on oscilloscopes with Windows-based instrumen-
tation (such as TDS7000 Series Oscilloscopes), or running on aremote PC
connected by LAN to such an instrument, can access the embedded instrument
software by using avirtual GPIB software connection, without the need for any
GPIB controller hardware or cables.

What You Need to Get Started

1-6

TekVISA Installation

VISA applications that communicate with Tektronix instrumentation should use
TekVISA, the Tektronix version of VISA. You should install and configure
TekVISA on each PC that communicates with Tektronix instrumentation using
the VISA standard.

Tektronix Version 1.1 TekVISA Programmer Manual

Getting Started

The software installation includes a utility to help you configure TekVISA
resources. The VISA configuration utility allows you to detect GPIB and seria
(ASRL) resource assignments, and to add or remove remote hosts (such as

V X1-11 clients connected by Ethernet LAN or by an AD0O7 adapter and
associated GPIB hardware).

NOTE. If you are connecting to a network just to print screen hardcopy data, you
do not need to install or configure TekVISA software.

If you are reading this online book on a Tektronix Windows-based oscilloscope,
TekVISA has aready been installed on your oscilloscope as part of the Product
Software.

To install TekVISA software on a PC connected to your Windows-based
oscilloscope, follow these steps:

NOTE. If you have already installed TekVISA from an earlier version of the
Tektronix Software Solutions CD or with Wavestar, we recommend that you
uninstall that version first, and then reinstall TekVISA from the most recent CD.

1. Insert the product software CD for your Series of Tektronix
oscilloscope into the CD-ROM drive. Select Start > Run,
browse the CD to the TekVISA folder, and run setup.exe.

2. Follow theinstructions in the installation wizard.

The VISA Configuration Included with the TekVISA installation is the VISA configuration utility, which
Utility letsyou find resource assignments and add or remove network hosts (instru-
ments). Once an instrument is added to the TekVISA configuration, you can
communicate with it by using a TekVISA-compliant instrument driver.

To run the VISA configuration utility, select Start > Programs > Tektronix VISA >
VISA Config. Windows opens the VISA Configuration window, shown in
Figure 1-4. The configuration program then searches the network for installed
resources; this may take a few minutes depending on the number of resources
loaded and the network |oad.

Tektronix Version 1.1 TekVISA Programmer Manual 1-7

Getting Started

1-8

B Tek¥ISA Configuration [[7] |

— T ekd15h Resources

Find |
GPIBS:1:INSTR

— R emote Hosts

Host Mame Interface “iga Mame

&dd GEIED GPIES

Remove |

atatuz: | 2 rezources found.

Yiza Librany: W 1.10 Tektronix

Figure 1-4: VISA Configuration Window

The VISA Configuration window has the following features:

H
H

VISA ResourcesList Box. Listsall resources that VISA can currently find.

Find Button. Rescansthe VISA resources and is useful for verifying the
presence of new instruments. GPI B8 is Virtual GPIB.

Remote Hosts List Box. Liststhe current name (myhost in this example)
or IP address (such as 123. 123. 12) of the remote host. Interface (GPI BO in
this example) is the name of the interface on the remote host. Visa Name
(GP1 B9 in this example) is the resource name used when this remote host
interface is accessed through VISA.

Add Button. Displaysthe Add Remote Host Diaog for adding a remote
interface.

Remove Button. Removes the host selected in the Remote Hosts list and
displays a dialog box before removing the host.

NOTE. Always remove host information for any equipment no longer connected
to the network in order to reduce the VISA instrument search time. Searching for
unconnected instruments drastically increases the time it takes to locate and
connect to an instrument.

Tektronix Version 1.1 TekVISA Programmer Manual

Getting Started

H Status Box. The status box displays helpful information about the last
operation performed. The Busy / Ready indicator shows when the utility is
busy. When the utility is busy, changes cannot be made.

H Quit Button. Quits the application.

Finding Resources To search for new instruments, click Find. The VISA configuration utility
rescans the VISA resources to find any new instruments.

Adding a Remote Host ~ To add aremote host (configure aVX1-11 client), follow these steps:
1. Click Add. The Add Remote Host dialog appears (Figure 1-5).

B Add Romote tost K|

Host Mame: [massmit]

Remote |nterface: IW 0k, |
IS4 Name:lw Cancel |

Figure 1-5: TekVISA Add Remote Host dialog box

The Add Remote Host dialog has the following fields:

H Host Name. The name or | P address of the remoted host. Thisfied is
initially blank.

H Remotelnterface. The name of the interface on the remote host. The
default is GPI BO.

H VISA Name. The name used to access the interface through VISA. A
default name is provided that does not conflict with currently used
names. You may change this setting only if you are reordering these
names and do not want the default name provided by the configuration
utility.

2. Inthe Add Remote Host dialog, enter the correct host name (or equivaent IP
address) of the new interface. The setting for Remote Interfaces must remain
at the default (GPI BO). The VISA name can remain at the default as well.
The indicated value (for example, GPI B9) is the name that refersto this
GPIB interface through VISA.

Tektronix Version 1.1 TekVISA Programmer Manual 1-9

Getting Started

3. Click OK to add the host (as configured) to VISA. If the Add fails, a
message displays and the dialog remains open. If the Add succeeds, the
dialog closes and a Find operation updates the main window. The new
interface appears in the Remote Hosts list box. If the host is running and
configured, the instrument name appears in the Resources box.

Deleting a Remote Host To delete aremote host (remove a V X1-11 client), perform these steps:
1. Select the host name to remove in the Remote Hosts list box.

2. Click Delete. The Delete Remote Resource dialog box (Figure 1-6) appears.
The dialog box describes the resource to be removed and provides an
opportunity to confirm or cancel the operation.

Delete Remote Resource [E3

Are pou sure pou wank b remove
GFIBO on Host massmit]

? Cancel |

Figure 1-6: TekVISA Delete Remote Resource dialog box

3. Click OK in the confirmation dialog to remove the selected host from VISA
and update the main window, or Cancel to abort the delete operation.

1-10 Tektronix Version 1.1 TekVISA Programmer Manual

Y 4
Reference

-/ |
Operations Summary

The following table summarizes Tektronix VISA operations by category.

NOTE. Inversion 1.1 and earlier versions of TekVISA, operatons marked with
an asterisk (*) return the value NOT IMPLEMENTED.

Table 2-1: Table of VISA Operations by Category

Operation Description Page

Opening and Closing Sessions, Events, and Find Lists

viOpenDefaultRM Return a session to the Default Resource Manager 2-42
viOpen Open a session to the specified resource 2-39
viClose Close the specified session, event, or find list 2-12

Finding Resources

viFindRsrc Find a list of resources associated with a specified 2-25
interface

viFindNext Return the next resource from the find list 2-23

viParseRsrc Parses a resource string to get the interface information 2-41

Setting and Retrieving Attributes

viGetAttribute Retrieve the state of an attribute for the specified session, |2-32
event, or find list

viSetAttribute Set the state of an attribute for the specified session, 2-74
event, or find list

viStatusDesc Retrieve a user-readable description of the specified 2-82
status code

Reading and Writing Basic Data

viWrite Write data synchronously to a device from the specified 2-102
buffer

viWriteAsync Write data asynchronously to a device from the specified | 2-104
buffer

viRead Read data synchronously from a device into the specified | 2-56
buffer

viReadAsync Read data asynchronously from a device into the specified | 2-59
buffer

viTerminate Terminate normal execution of an asynchronous read or 2-83

write operation

Other Basic 1/O Operations

viClear Clear a device 2-11

Tektronix Version 1.1 TekVISA Programmer Manual 2-1

Operations Summary

Table 2- 1: Table of VISA Operations by Category (Cont.)

Operation Description Page
Other Basic 1/O Operations

ViAssertTrigger Assert software or hardware trigger 2-5
viReadSTB Read a status byte of the service request 2-64

Reading and Writing Formatted Data

Formatted Buffer Operations

* viBufWrite Write data synchronously to a device from the formatted 2-9
/0 buffer

* viBufRead Read data synchronously from a device into the formatted | 2-7
/0 buffer

* viSetBuf Set the size of the formatted 1/0 and/or serial buffer(s) 2-75

* viFlush Manually flush the specified buffer(s) 2-30

Formatted Write Operations * (See Note)

* ViPrintf Format and write data to a device using a variable 2-46
argument list

*viVprintf Format and write data to a device using a pointer to a 2-89
variable argument list

* ViSPrintf Format and write data to a user-specified buffer using a 2-77
variable argument list

* viVSPrintf Format and write data to a user-specified buffer using a 2-96
pointer to a variable argument list

Formatted Read Operations * (See Note)

* viScanf Read and format data from a device using a variable 2-66
argument list

* viVScanf Read and format data from a device using a pointer to a 2-94
variable argument list

* viSScanf Read and format data from a user-specified buffer usinga | 2-80
variable argument list

* vivVSScanf Read and format data from a user-specified buffer usinga | 2-98
pointer to a variable argument list

Formatted Read/Write Operations * (See Note)

* viQueryf Write and read formatted data to and from a device using a | 2-54
variable argument list

*vivQueryf Write and read formatted data to and from a device using a | 2-91
pointer to a variable argument list

Handling Events

viEnableEvent Enable notification of a specified event 2-18

viDisableEvent Disable notification of the specified event using the 2-14
specified mechanism

2-2 Tektronix Version 1.1 TekVISA Programmer Manual

Operations Summary

Table 2-1: Table of VISA Operations by Category (Cont.)

Operation Description Page

Handling Events

viDiscardEvents Discard all pending occurrences of the specified events for | 2-16
the specified mechanism(s) and session

viwaitOnEvent Wait_for an occurrence of the specified event for a given 2-100
session

vilnstallHandler Install callback handler(s) for the specified event 2-34

viUninstallHandler Uninstall callback handler(s) for the specified event 2-85

viEventHandler Prototype for handler(s) to be called back when a particular | 2-21
event occurs

Locking and Unlocking Resources

viLock Obtain a lock on the specified resource 2-36

viUnlock Relinquish a lock on the specified resource 2-86

Tektronix Version 1.1 TekVISA Programmer Manual 2-3

Operations Summary

2-4 Tektronix Version 1.1 TekVISA Programmer Manual

./ |
Operations

The following Tektronix VISA operations are presented in alphabetical order.

NOTE. Inversion 1.1 and earlier versions of TekVISA, some operations return
the value NOT IMPLEMENTED.

viAssertTrigger (vi, protocol)
Usage Assartsasoftware trigger for a GPIB or seria device.
C Format ViStatus viAssertTrigger (ViSession vi, ViUlntl6 protocol)

Visual Basic Format viAssertTrigger (Byval vi As Long, ByVval protocol As
Integer) As Long

Parameters Table 2-2: viAssertTrigger() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

protocol IN Trigger protocol to use during assertion. Valid values are:
VI_TRIG_PROT_DEFAULT

Return Values Table 2- 3: viAssertTrigger() Completion Codes

Completion Codes Description

VI_SUCCESS The specified trigger was successfully asserted to the device.

Tektronix Version 1.1 TekVISA Programmer Manual 2-5

Operations

2-6

C Example

Comments

Table 2- 4: viAssertTrigger() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both
are the same value).

VI_ERROR_NSUP_OPER

The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED

Specified operation could not be performed because
the resource identified by vi has been locked for this
kind of access.

VI_ERROR_INV_PROT

The protocol specified is invalid.

VI_ERROR_TMO

Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT VIOL

Violation of raw write protocol occurred during
transfer.

VI_ERROR_RAW_RD_PROT VIOL

Violation of raw read protocol occurred during
transfer.

VI_ERROR_INP_PROT VIOL

Device reported an input protocol error during
transfer.

VI_ERROR_BERRt

Bus error occurred during transfer.

VI_ERROR_LINE_IN_USE

The specified trigger line is currently in use.

VI_ERROR_NCIC

The interface associated with the given vi is not
currently the controller in charge.

VI_ERROR_NLISTENERS

No Listeners condition is detected (both NRFD and
NDAC are deasserted).

VI_ERROR_INV_SETUP

Unable to start operation because setup is invalid
(due to attributes being set to an inconsistent state).

ViSession rm, vi;
Viulntl6 val ;

iT (viOpenDefault(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR*“, VI_NULL, VI_NULL, &vi)

< VI_SUCCESS) return;

VviAssertTrigger(vi, value);

viClose(rm);

The viAssertTrigger() operation will assert a software trigger as follows:

H For aGPIB device, the device is addressed to listen, and then the GPIB GET

command is sent.

H For asaria device, if VI_ATTR_10_PROT isVI_ASRLA488, the deviceis
sent the string “* TRG\n". This operation is not valid for aserial deviceif
VI_ATTR_IO_PROT isVI_NORMAL.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

H For GPIB and seria softwaretriggers, VI_TRIG_PROT_DEFAULT isthe

only valid protocol.

See Also

viBufRead (vi, buf, count, retCount)

Basic I nput/Output
VI_ATTR_IO_PROT

NOTE. Inversion 1.1 and earlier versions of TekVISA, this operation returns the
value NOT IMPLEMENTED.

Usage Readsdata synchronously from adevice into the formatted I/O buffer.

C Format

ViStatus viBufRead (ViSession vi, ViPBuf buf, ViUInt32

count, ViPUINnt32 retCount)

Visual Basic Format

viBufRead (ByVal vi As Long, ByVal buf As String, ByVal

count As Long, retCount As Long) As Long

Description

Unique logical identifier to a session.

Represents the location of a buffer to receive data from device.

Number of bytes to be read.

Parameters Table 2-5: viBufRead() Parameters
Name Direction
Vi IN
buf ouT
count IN
retCount ouT

Represents the location of an integer that will be set to the
number of bytes actually transferred.

Return Values

Table 2- 6: viBufRead() Completion Codes

Completion Codes

Description

VI_SUCCESS

The operation completed successfully and the END indicator
was received (for interfaces that have END indicators).

VI_SUCCESS_TERM_CHAR

The specified termination character was read.

VI_SUCCESS_MAX_CNT

The number of bytes read is equal to count..

Tektronix Version 1.1 TekVISA Programmer Manual

2-7

Operations

C Example

Comments

See Also

2-8

Table 2-7: viBufRead() Error Codes

Error Codes Description

VI_ERROR_INV_SESSION | The given session or object reference is invalid (both are the
VI_ERROR_INV_OBJECT same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED | Specified operation could not be performed because the
resource identified by vi has been locked for this kind of

access.
VI_ERROR_TMO Timeout expired before operation completed.
VI_ERROR_IO An unknown 1/O error occurred during transfer.

ViSession rm, Vvi;
char buffer[256];
iT (viOpenDefault(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR*“, VI_NULL, VI_NULL, &vi)
< VI_SUCCESS) return;
if (viBufWrite(vi, (ViBuf) ”*IDN?*“, 5, VI_NULL) < VI_SUC-
CESS)
return;
viBufRead(vi, (ViBuf) buffer, sizeof(buffer), VI_NULL);
printfF(C’%s\n*“, buffer);
viClose(rm);

The viBufRead() operation is similar to viRead() and does not perform any kind
of data formatting. It differs from viRead() in that the datais read from the
formatted 1/0 read buffer—the same buffer used by viScanf() and related
operations—rather than directly from the device.

NOTE. You can intermix this operation with viScanf(), but you should not mix it
with viRead().

Table 2-8: Special Value for retCount Parameter with viBufRead()

Value Description

VI_NULL If you pass this value, the number of bytes transferred is not returned. You
may find this useful if you only need to know whether the operation
succeeded or failed.

Reading and Writing Formatted Data
viBufWrite (vi, buf, count, retCount)

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

viBufWrite (vi, buf, count, retCount)

NOTE. Inversion 1.1 and earlier versions of TekVISA, this operation returns the
value NOT IMPLEMENTED.

Usage Writes data synchronously to a device from the formatted 1/O buffer.

C Format ViStatus viBufWrite(ViSession vi, ViBuf buf, ViUlnt32 count,
ViPUINt32 retCount)

Visual Basic Format ~ viBufWrite(ByVal vi As Long, ByVal buf As String, Byval
count As Long, retCount As Long) As Long

Parameters Table 2-9: viBufWrite() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

buf ouTt Represents the location of a data block to be sent to the device

count IN Number of bytes to be written

retCount ouTt Represents the location of an integer that will be set to the
number of bytes actually transferred.

Return Values Table 2- 10: viBufWrite() Completion Codes

Completion Codes Description

VI_SUCCESS Operation completed successfully.

Table 2- 11: viBufWrite() Error Codes

Error Codes Description

VI_ERROR_INV_SESSION | The given session or object reference is invalid (both are the
VI_ERROR_INV_OBJECT same value).

VI_ERROR_NSUP_OPER The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED | Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Tektronix Version 1.1 TekVISA Programmer Manual 2-9

Operations

C Example

Comments

See Also

2-10

Table 2- 11: viBufWrite() Error Codes (Cont.)

Error Codes Description

VI_ERROR_TMO Timeout expired before operation completed.

If this operation returns this message, the write buffer for the
specified session is cleared.

VI_ERROR_INV_SETUP Unable to start write operation because setup is invalid (due to
attributes being set to an inconsistent state).

VI_ERROR_IO An unknown 1/O error occurred during transfer.

ViSession rm, Vvi;
char buffer[256];
iT (viOpenDefault(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR*“, VI_NULL, VI_NULL, &vi)
< VI_SUCCESS) return;
if (viBufWrite(vi, (ViBuf) “*IDN?”, 5, VI_NULL) < VI_SUC-
CESS)
return;
viBufRead(vi, (ViBuf) buffer, sizeof(buffer), VI_NULL);
printf(C’%s\n*“, buffer);
viClose(rm);

The viBufWrite() operation is similar to viWrite() and does not perform any kind
of data formatting. It differs from viwrite() in that the datais written to the
formatted 1/0O write buffer—the same buffer used by viPrintf() and related
operations—rather than directly to the device.

NOTE. You can intermix this operation with viPrintf(), but you should not mix it
with viwrite().

Table 2- 12: Special Value for retCount Parameter with viBufWrite()

Value Description

VI_NULL If you pass this value, the number of bytes transferred is not returned. You
may find this useful if you only need to know whether the operation
succeeded or failed.

Reading and Writing Formatted Data
viBufRead (vi, buf, count, retCount)

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

viClear (vi)
Usage
C Format
Visual Basic Format

Parameters

Return Values

Clears adevice.

ViStatus viClear (ViSession Vi)

viClear (Byval vi As Long) As Long

Table 2- 13: viClear() Parameters

Name Direction

Description

vi IN

Unique logical identifier to a session.

Table 2- 14: viClear() Completion Codes

Completion Codes

Description

VI_SUCCESS

Operation completed successfully.

Table 2- 15: viClear() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_OPER

The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO

Timeout expired before operation completed.

VI_ERROR_RAW_WR_PROT
_vioL

Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW_RD_PROT
_vioL

Violation of raw read protocol occurred during transfer.

VI_ERROR_BERRt

Bus error occurred during transfer.

VI_ERROR_NCIC

The interface associated with the given vi is not currently the
controller in charge.

Tektronix Version 1.1 TekVISA Programmer Manual

2-11

Operations

C Example

Comments

See Also

viClose (Vi)
Usage
C Format

Visual Basic Format

2-12

Table 2- 15: viClear() Error Codes (Cont.)

Error Codes Description
VI_ERROR_NLISTENERS No Listeners condition is detected (both NRFD and NDAC are
deasserted).

VI_ERROR_INV_SETUP Unable to start operation because setup is invalid (due to
attributes being set to an inconsistent state).

ViSession rm, Vvi;

ifT (viOpenDefault(&rm) < VI_SUCCESS) return;

if (viOpen(rm, ”GPIB8::1::INSTR*“, VI_NULL, VI_NULL, &vi)
< VI_SUCCESS) return;

viClear(vi);

viClose(rm);

The viClear() operation performs an |EEE 488.1-style clear of the device.
H For GPIB systems, the Selected Device Clear command is used.

H For asaria device, if VI_ATTR_10_PROT isVI_ASRLA488, the deviceis
sent the string “*CLS\n”. This operation is not valid for aserial deviceif
VI_ATTR_IO_PROT isVI_NORMAL.

NOTE. Invoking viClear() will also discard the read and write buffers used by the
formatted 1/O services for that session.

Basic I nput/Output
VI_ATTR_IO_PROT

Closes the specified session, event, or find list.

ViStatus viClose (ViObject vi)

viClose (Byval vi As Long) As Long

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Parameters Table 2- 16: viClose() Parameters

Name Direction Description
Vi IN Unique logical identifier to a session, event, or find list.

Return Values Table 2-17: viClose() Completion Codes

Completion Codes Description
VI_SUCCESS Session, event, or find list closed successfully.

VI_WARN_NULL _OBJECT The specified object reference is uninitialized.

This message is returned if the value VI_NULL is passed to it.

Table 2- 18: viClose() Error Codes

Error Codes Description

VI_ERROR_INV_SESSION | The given session or object reference is invalid (both are the
VI_ERROR_INV_OBJECT same value).

VI_ERROR_CLOS- Unable to deallocate the previously allocated data structures
ING_FAILED corresponding to this session or object reference.

CExample ViSession rm, vi;
iT (viOpenDefault(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR*“, VI_NULL, VI_NULL, &vi)
< VI_SUCCESS) return;
viClose(vi);
viClose(rm);

Comments The viClose() operation closes asession, event, or afind list, and frees al data
structures allocated for the specified vi.

See Also Opening and Closing Sessions, Events, and Find Lists
viOpen (sesn, rsrcName, accessM ode, timeout, vi)
viOpenDefaultRM (sesn)

Tektronix Version 1.1 TekVISA Programmer Manual 2-13

Operations

viDisableEvent (vi, eventType, mechanism)

Usage

C Format

Visual Basic Format

Parameters

Return Values

2-14

Disables notification of the specified event using the specified mechanism.

ViStatus viDisableEvent (ViSession vi, ViEventType event-

Type,

Viulntl6 mechanism)

viDisableEvent (Byval vi As Long, ByVal EventType As Long,
ByVal mechanism As Integer) As Long

Table 2- 19: viDisableEvent() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

eventType IN Logical event identifier.

mechanism IN Specifies event handling mechanisms to be disabled. The

queuing mechanism is disabled by specifying VI_QUEUE, and
the callback mechanism is disabled by specifying VI_HNDLR
or VI_SUSPEND_HNDLR. It is possible to disable both
mechanisms simultaneously by specifying VI_ALL_MECH.

Table 2- 20: viDisableEvent() Completion Codes

Completion Codes

Description

VI_SUCCESS

Event disabled successfully.

VI_SUCCESS_EVENT DIS

Specified event is already disabled for at least one of the
specified mechanisms.

Table 2-21: viDisableEvent() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_INV_EVENT

Specified event type is not supported by the resource.

VI_ERROR_INV_MECH

Invalid mechanism specified.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

C Example

Comments

ViSession rm, Vi;

it (viOpenDefaultRM(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR*“, NULL, NULL, &vi) <
VI_SUCCESS)
return;
viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE, VI_NULL);

// Do some processing here

// Cleanup and exit

viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE);
viClose(vi);

viClose(rm);

The viDisableEvent() operation disables servicing of an event identified by
eventType for the mechanisms specified in mechanism.

H This operation prevents new event occurrences from being added to the
gueue(s); however, event occurrences already existing in the queue(s) are not
flushed. Use viDiscardEvents() if you want to discard events remaining in
the queue(s).

Table 2-22: Special Values for eventType Parameter with viDisableEvent()

Value Description

VI_ALL_ENABLED_EVENTS | Disable all events that were previously enabled. Allows a
session to stop receiving all events.

Table 2-23: Special Values for mechanism Parameter with viDisableEvent()

Value Description

VI_QUEUE Disable this session from receiving the specified event(s) via
the waiting queue. Stops the session from receiving queued
events.

VI_HNDLR or VI_SUS- Disable this session from receiving the specified event(s) via a

PEND_HNDLR callback handler or a callback queue. Specifying either

VI_HNDLR or VI_SUSPEND_HNDLR stops applications from
receiving callback events.

VI_ALL_MECH Disable this session from receiving the specified event(s) via
any mechanism. Disables both the queuing and callback
mechanisms.

Tektronix Version 1.1 TekVISA Programmer Manual 2-15

Operations

See Also Handling Events

viEnableEvent (vi, eventType, mechanism, context)

viDiscardEvents (vi, eventType, mechanism)

2-16

Usage Discardsal pending occurrences of the specified events for the specified

mechanism(s) and session.

C Format ViStatus viDiscardEvents (ViSession vi, ViEventType event-

Type,

Viulntl6 mechanism)

Visual Basic Format viDiscardEvents (ByVal vi As Long, ByVal EventType As Long,
ByvVal mechanism As Integer) As Long

Parameters Table 2-24: viDiscardEvents() Parameters

Description

Unique logical identifier to a session.

Logical event identifier.

Name Direction
Vi IN
eventType IN
mechanism IN

Specifies event handling mechanisms to be discarded. The
VI_QUEUE value is specified for the queuing mechanism and
the VI_SUSPEND_HNDLR value is specified for pending
events in the callback mechanism. To discard both mecha-
nisms simultaneously, specify VI_ALL_MECH.

Return Values Table 2- 25: viDiscardEvents() Completion Codes

Completion Codes

Description

VI_SUCCESS

Event queue flushed successfully.

VI_SUCCESS_QUEUE_
EMPTY

Operation completed successfully, but queue was empty.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2- 26: viDiscardEvents() Error Codes

Error Codes Description

VI_ERROR_INV_SESSION | The given session or object reference is invalid (both are the
VI_ERROR_INV_OBJECT same value).

VI_ERROR_INV_EVENT Specified event type is not supported by the resource.
VI_ERROR_INV_MECH Invalid mechanism specified.

CExample 7/ Cleanup and exit
status = viDiscardEvents(vi, VI_EVENT_SERVICE_REQ,
VI1_QUEUE);

Comments The viDiscardEvents() operation discards all pending occurrences of the
specified event types and mechanisms from the specified session.

H The discarded event occurrences are not available to a session at alater time.
H This operation does not apply to event contexts that have already been
delivered to the application.

Table 2-27: Special Values for eventType Parameter with viDiscardEvents()

Value Description

VI_ALL_ENABLED_EVENTS | Discard events of every type enabled for the given session.
The information about all the event occurrences which have not
yet been handled is discarded. This operation is useful to
remove event occurrences that an application no longer needs.

Table 2-28: Special Values for mechanism Parameter with
viDiscardEvents()

Value Description

VI_QUEUE Discard the specified event(s) from the waiting queue.
VI_HNDLR or VI_SUS- Discard the specified event(s) from the callback queue.
PEND_HNDLR

VI_ALL_MECH Discard the specified event(s) from all mechanisms.

See Also Handling Events
viwaitOnEvent (vi, inEventType, timeout, outEventType, outContext)

Tektronix Version 1.1 TekVISA Programmer Manual 2-17

Operations

viEnableEvent (vi, eventType, mechanism, context)

Usage

C Format

Visual Basic Format

Parameters

Return Values

2-18

Enables notification of a specified event.

ViStatus viEnableEvent (ViSession vi, ViEventType eventType,

Viulntl6 mechanism, viEventFilter context)

viEnableEvent (ByVal vi As Long, ByVal EventType As Long,
ByVal mechanism As Integer, ByVal context As Long) As Long

Table 2-29: viEnableEvent() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

eventType IN Logical event identifier.

mechanism | IN Specifies event handling mechanisms to be enabled. The
queuing mechanism is enabled by specifying VI_QUEUE, and
the callback mechanism is enabled by specifying VI_HNDLR
or VI_SUSPEND_HNDLR. It is possible to enable both
mechanisms simultaneously by specifying “bit-wise OR" of
VI_QUEUE and one of the two mode values for the callback
mechanism.

context IN VI_NULL

Table 2-30: viEnableEvent() Completion Codes

Completion Codes

Description

VI_SUCCESS

Event enabled successfully.

VI_SUCCESS_EVENT _EN

Specified event is already enabled for at least one of the
specified mechanisms.

Table 2-31: viEnableEvent() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_INV_EVENT

Specified event type is not supported by the resource.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-31: viEnableEvent() Error Codes (Cont.)

Error Codes Description
VI_ERROR_INV_MECH Invalid mechanism specified.

Returned if called with the mechanism parameter equal to the
“bit-wise OR” of VI_SUSPEND_HNDLR and VI_HNDLR.

VI_ERROR_INV_CONTEXT | Specified event context is invalid.

VI_ERROR_HNDLR_NINS- | If no handler is installed for the specified event type, the
TALLED request to enable the callback mechanism for the event type
returns this error code. The session cannot be enabled for the
VI_HNDLR mode of the callback mechanism.

CExample ViSession rm, vi;

it (viOpenDefaultRM(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR*“, NULL, NULL, &vi) <
VI_SUCCESS)
return;
viEnableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE, VI_NULL);

// Do some processing here
// Cleanup and exit
viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_QUEUE);

viClose(vi);
viClose(rm);

Comments The viEnableEvent() operation enables notification of an event identified by
eventType for mechanisms specified in mechanism.

Table 2- 32: Special Values for eventType Parameter with viEnableEvent()

Value Description

VI_ALL_ENABLED_EVENTS | Switch all events previously enabled on this session to the
callback mechanism specified in the mechanism parameter.

Makes it easier to switch between the two callback mecha-
nisms for multiple events.

Tektronix Version 1.1 TekVISA Programmer Manual 2-19

Operations

See Also

2-20

Table 2-33: Special Values for mechanism Parameter with viEnableEvent()

Value Description

VI_QUEUE Enable this session to receive the specified event via the
waiting queue. Events must be retrieved manually via the
viwaitOnEvent() operation.

Enables the specified session to queue events.

VI_HNDLR Enable this session to receive the specified event via a
callback handler, which must have already been installed via
vilnstallHandler().

Enables the session to invoke a callback function to execute
the handler. Applications must install at least one handler to
be enabled for this mode.

VI_SUSPEND HNDLR Enable this session to receive the specified event via a
callback queue. Events will not be delivered to the session until
viEnableEvent() is invoked again with the VI_HNDLR
mechanism.

Enables the session to receive callbacks, but invocation of the
handler is deferred to a later time. Successive calls to this
operation replace the old callback mechanism with the new
callback mechanism.

H Event queuing and callback mechanisms operate independently. Enabling
one mode does not enable or disable the other mode.

H If themodeis switched from VI_SUSPEND_HNDLR to VI_HNDLR for an
event type,VISA will call installed handlers once for each event occurrence
pending in the session (and dequeued from the suspend handler queue)
before switching modes.

H A session enabled to receive events can start receiving them before the
viEnableEvent() operation returns. In this case, the handlers set for an event
type are executed before completion of the enable operation.

H If themodeis switched from VI_HNDLR to VI_SUSPEND_HNDLR for an

event type, VISA will defer handler invocation for occurrences of the event
type.
H If asession has events pending in its queue(s) and viClosg() isinvoked on

that session, VISA will free al pending event occurrences and associ ated
contexts not yet delivered to the application for that session.

Handling Events
viDisableEvent (vi, EventType, mechanism)

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

viEventHandler (vi, eventType, context, userHandle)

Usage

C Format

Visual Basic Format

Parameters

Return Values

Prototype for handler(s) to be called back when a particular event occurs.

ViStatus viEventHandler(ViSession vi, ViEventType eventType,

ViEvent context, ViAddr userHandle)

Not applicable

Table 2- 34: viEventHandler() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

eventType IN Logical event identifier.

context IN A handle specifying the unique occurrence of an event.
userHandle IN A value specified by an application that can be used for

identifying handlers uniquely in a session for an event..

Table 2- 35: viEventHandler() Completion Codes

Completion Codes

Description

VI_SUCCESS

Event handled successfully.

VI_SUCCESS_NCHAIN

Event handled successfully. Do not invoke any other handlers
on this session for this event.

Tektronix Version 1.1 TekVISA Programmer Manual

2-21

Operations

C Example ViStatus _VI_FUNCH ServiceReqEventHandler(ViSession vi,
ViEventType eventType, ViEvent event, ViAddr userHandle)

{
printf(’srq occurred\n);
return VI1_SUCCESS;
}
int main(int argc, char* argv[])
{
ViSession rm, Vi;
ViStatus status;
char string[256];
Viulnt32 retCnt;
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;
status = viOpen(rm, ”GPIB8::1::INSTR*, NULL, NULL,
&vi);

if (status < VI_SUCCESS) goto error;

// Setup and enable event handler

status = vilnstallHandler(vi, VI_EVENT_SERVICE_REQ,
ServiceRegEventHandler, NULL);

if (status < VI_SUCCESS) goto error;

status = viEnableEvent(vi, VI_EVENT_SERVICE_REQ,
VI_HNDLR, VI_NULL);

if (status < VI_SUCCESS) goto error;

// Do processing here

// Cleanup and exit

status = viDisableEvent(vi, VI_EVENT_SERVICE_REQ,
VI_HNDLR);

if (status < VI_SUCCESS) goto error;

status = viUninstallHandler(vi, VI_EVENT_SERVICE_REQ,

ServiceRegEventHan—

dler, NULL);

if (status < VI_SUCCESS) goto error;

viClose(vi);

viClose(rm);

Comments viEventHandler() isthe prototype for a user event handler that is installed with
the vilnstallHandler() operation. The user handler is called whenever a session
receives an event and is enabled for handling eventsin the VI_HNDLR mode.
The handler services the event and returns VI_SUCCESS on completion.
Because each event type defines its own context in terms of attributes, refer to

2-22 Tektronix Version 1.1 TekVISA Programmer Manual

Operations

See Also

the appropriate event definition to determine which attributes can be retrieved
using the context parameter.

H

The VISA system automatically invokes the viClose() operation on the event
context when a user handler returns. Because the event context must still be
valid after the user handler returns (so that VISA can freeit up), do not
invoke the viClose() operation on an event context passed to a user handler.
However, if the user handler will not return to VISA, call viClosg() on the
event context to manually delete the event object. This situation may occur
when a handler throws a C++ exception in response to a VISA exception
event.

Normally, you should always return VI_SUCCESS from all callback
handlers, since future versions or implementations of VISA may take actions
based on other return values. However, if a specific handler does not want
other handlers to be invoked for the given event for the given session, you
should return VI_SUCCESS NCHAIN. No return value from a handler on
one session will affect callbacks on other sessions.

Handling Events
vilnstallHandler (vi, eventType, handler, userHandle)
viUninstallHandler (vi, eventType, handler, userHandle)

viFindNext (findList, instrDesc)

Usage

C Format

Visual Basic Format

Parameters

Returns the next resource from the find list.

ViStatus viFindNext(ViFindList findList, ViPRsrc
instrDesc[])

viFindNext (ByvVal findList As Long, ByVal instrDesc As
String) As Long

Table 2- 36: viFindNext() Parameters

Name Direction Description

findList IN Describes a find list. This parameter must be created by
viFindRsrc().

instrDesc ouT Returns a string identifying the location of a device. Strings can
then be passed to viOpen() to establish a session to the given
device.

Tektronix Version 1.1 TekVISA Programmer Manual 2-23

Operations

Return Values Table 2-37: viFindNext() Completion Codes

Completion Codes Description

VI_SUCCESS Resource(s) found.

Table 2-38: viFindNext() Error Codes

Error Codes Description

VI_ERROR_INV_SESSION | The given session or object reference is invalid (both are the
VI_ERROR_INV_OBJECT same value).

VI_ERROR_NSUP_OPER The given findList does not support this operation.

VI_ERROR_RSRC_NFOUND | There are no more matches.

CExample ViSession rm, vi;
ViStatus status;
ViChar desc[256], 1d[256], buffer[256];
Viulnt32 retCnt, itemCnt;
ViFindList list;
Viulnt32 i;

// Open a default Session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;

// Find all GPIB devices

status = viFindRsrc(rm, “GPIB?*INSTR*, &list, &itemCnt,
desc);

if (status < VI_SUCCESS) goto error;

for (i = 0; i < itemCnt; i++) {
// Open resource found iIn rsrc list
status = viOpen(rm, desc, VI_NULL, VI_NULL, &vi);
if (status < VI_SUCCESS) goto error;

// Send an ID query.
status = viWrite(vi, (ViBuf) 7*idn“, 5, &retCnt);
if (status < VI_SUCCESS) goto error;

// Clear the buffer and read the response

status = viRead(vi, (ViBuf) id, sizeof(id), &retCnt);
id[retCnt] = °\07;

if (status < VI_SUCCESS) goto error;

// Print the response
printf(C’id: %s: %s\n*“, desc, id);

2-24 Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Comments

See Also

// We’re done with this device so close i1t
viClose(vi);

// Get the next item
viFindNext(list, desc);

}

// Clean up
viClose(rm);

The viFindNext() operation returns the next device found in the list created by
viFindRsrc(). Thelist is referenced by the handle returned by viFindRsrc().

NOTE. The size of the instrDesc parameter should be at least 256 bytes.

Finding Resources
viFindRsrc (sesn, expr, findList, retent, instrDesc)

viFindRsrc (sesn, expr, findList, retCount, instrDesc)

Usage

C Format

Visual Basic Format

Parameters

Find alist of resources associated with a specified interface.

ViStatus viFindRsrc(ViSession sesn, ViString expr,
ViPFindList findList, ViPUINnt32 retCount, ViPRsrc
instrDesc[])

viFindRsrc (ByVal sesn As Long, ByVal expr As String, ByVval
findList As Long, ByVal retCount As Long, ByVal instrDesc As
String) As Long

Table 2-39: viFindRsrc() Parameters

Name Direction Description

sesn IN Resource Manager session (should always be the Default
Resource Manager for VISA returned from viOpenDefaultRM())

expr IN This is a regular expression followed by an optional logical
expression. The grammar for this expression is given below.

findList ouT Returns a handle identifying this search session. This handle
will be used as an input in viFindNext().

Tektronix Version 1.1 TekVISA Programmer Manual 2-25

Operations

Return Values

C Example

2-26

Table 2-39: viFindRsrc() Parameters (Cont.)

Name Direction Description

retCount ouT Number of matches.

instrDesc ouTt Returns a string identifying the location of a device. Strings can
then be passed to viOpen() to establish a session to the given
device.

Table 2- 40: viFindRsrc() Completion Codes

Completion Codes Description

VI_SUCCESS Resource(s) found.

Table 2-41: viFindRsrc() Error Codes

Error Codes Description

VI_ERROR_INV_SESSION | The given session or object reference is invalid (both are the
VI_ERROR_INV_OBJECT same value).

VI_ERROR_NSUP_OPER The given sesn does not support this operation.

VI_ERROR_INV_EXPR Invalid expression specified for search.

VI_ERROR_RSRC_NFOUND | Specified expression does not match any devices.

ViSess
ViStat
ViChar
Viulnt
ViFind
Viulnt

// Ope
status
if (st

// Fin
status
desc);
if (st

for (1

ion rm, vi;
us status;
desc[256], 1d[256], buffer[256];

32 retCnt, i1temCnt;
List list;

32 i;

n a default Session

= viOpenDefaul tRM(&rm);
atus < VI_SUCCESS) goto error;

d all GPIB devices
= viFindRsrc(rm, “GPIB?*INSTR”, &list, &itemCnt,

atus < VI_SUCCESS) goto error;
=0; 1 < itemCnt; i++) {
// Open resource found iIn rsrc list

status = viOpen(rm, desc, VI_NULL, VI_NULL, &vi);
if (status < VI_SUCCESS) goto error;

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

// Send an ID query.
status = viWrite(vi, (ViBuf) 7*idn?*“, 5, &retCnt);
if (status < VI_SUCCESS) goto error;

// Clear the buffer and read the response

status = viRead(vi, (ViBuf) id, sizeof(id), &retCnt);
id[retCnt] = °\07;

if (status < VI_SUCCESS) goto error;

// Print the response
printf(C’id: %s: %s\n*“, desc, id);

// We’re done with this device so close i1t
viClose(vi);

// Get the next item
viFindNext(list, desc);
}

// Clean up
viClose(rm);

Comments The viFindRsrc() operation matches the value specified in expr with the
resources available for a particular interface. On successful completion, this
function returns the first resource found in the list (instrDesc).

NOTE. The size of the instrDesc parameter should be at least 256 bytes.

H Thisfunction aso returns a count (retcnt) to indicate if more resources were
found, and returns a handle to the list of resources (findList). This handle
must be used as an input to viFindNext() and should be passed to viClos()
when it is no longer needed.

H Theretent and findList parameters can optionally be omitted if. only the first
match is important and the number of matches is not needed.

Table 2- 42: Special Value for retCount Parameter with viFindRsrc()

Value Description

VI_NULL If you pass this value, VISA does not return the number of matches.

Tektronix Version 1.1 TekVISA Programmer Manual 2-27

Operations

2-28

Table 2-43: Special Value for findList Parameter with viFindRsrc()

Value

Description

VI_NULL

If you pass this value and the operation completes successfully, VISA does
not return the findList handle and invokes viClose() on the handle instead.

H The search criteria specified in the expr parameter has two parts: aregular
expression over aresource string, and an optional logical expression over
attribute values. A regular expression is a string consisting of ordinary
characters as well as specia characters.

Table 2- 44: Regular Expression Special Characters and Operators

Special Char-
acters and Op-
erators

Meaning

?

Matches any one character.

\

Makes the character that follows it an ordinary character instead of special
character. For example, when a question mark follows a backslash (\?), it
matches the ? character instead of any one character.

llist]

Matches any one character from the enclosed list. You can use a hyphen to
match a range of characters.

[ist]

Matches any character not in the enclosed list. You can use a hyphen to
match a range of characters.

*

Matches 0 or more occurrences of the preceding character or expression.

+

Matches 1 or more occurrences of the preceding character or expression.

explexp

Matches either the preceding or following expression. The or operator |
matches the entire expression that precedes or follows it and not just the
character that precedes or follows it. For example, ASRL|GPIB means
(ASRL)|(GPIB), not ASR(L|G)PIB.

(exp)

Grouping characters or expressions.

H You use aregular expression to specify patterns to match in agiven string.
The regular expression is matched against the resource strings of resources
known to the VISA Resource Manager.

H TheviFindRsrc() operation uses a case-insensitive compare feature when
matching resource names against the regular expression specified in expr.
For example, calling viFindRsrc() with “GPIB?*INSTR” would return the
same resources as invoking it with “gpib?*instr”.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2- 45: Examples of Regular Expression Matches

Regular Expression

Sample Matches

GPIB?*INSTR

Matches GPIB0::2::INSTR and GPIB1::1::1::INSTR.

GPIB[0-9]*:?*INSTR

Matches GPIB0::2::INSTR and GPIB1::1::1::INSTR..

GPIB[0-9]::?*INSTR

Matches GPIB0::2::INSTR and GPIB1::1::1::INSTR but not
GPIB12::8::INSTR.

GPIB[*0]::?*INSTR

Matches GPIB1::1::1::INSTR but not GPIBO0::2::INSTR or
GPIB12::8::INSTR.

ASRL[0-9]*::?*INSTR

Matches ASRL1::INSTR but not GPIB0::5::INSTR.

ASRL1+:INSTR

Matches ASRL1L::INSTR and ASRL11::INSTR but not
ASRL2:INSTR.

7*INSTR

Matches all INSTR (device) resources.

ok

Matches all resources.

H If the resource string matches the regular expression, the attribute va ues of
the resource are then matched against the expression over attribute values. If
the match is successful, the resource has met the search criteria and gets
added to thelist of resources found.

H Theoptiona attribute expression allows construction of flexible and
powerful expressions with the use of logical ANDs, ORs and NOTs. Equal
(==) and unequal (!=) comparators can be used compare attributes of any
type, and in addition, other inequality comparators (>, <, >=, <=) can be
used to compare attributes of numeric type. If the attribute type is ViString,
aregular expression can be used in matching the attribute. Only global
attributes can be used in the attribute expression.

Table 2- 46: Examples That Include Attribute Expression Matches

Expr

Meaning

GPIB[0-9]*::7*:?*:INSTR
{VI_ATTR_GPIB_SEC-
ONDARY_ADDR > 0}

Find all GPIB devices that have secondary addresses greater
than 0.

ASRL?*INSTR{VI_ATTR_ASR
L_BAUD == 9600}

Find all serial ports configured at 9600 baud.

P*ASRL2INSTR{VI_ATTR_M
ANF_ID == OXFF6 &&
I(VI_ATTR_ASRL_LA==0 |
VI_ATTR_SLOT <= 0)}

Find all ASRL instrument resources whose manufacturer ID is
FF6 and who are not logical address 0, slot 0, or external
controllers.

Tektronix Version 1.1 TekVISA Programmer Manual

2-29

Operations

See Also

viFlush (vi, mask)

Usage
C Format
Visual Basic Format

Parameters

Return Values

2-30

Finding Resources

viFindNext (findList, instrDesc)

NOTE. Inversion 1.1 and earlier versions of TekVISA, this operation returns the

value NOT IMPLEMENTED.

Manually flushes the specified buffer(s).

ViStatus viFlush (ViSession vi, ViUintl6 mask)

viFlush (Byval vi As Long, ByVal mask As Integer) As Long

Table 2-47: viFlush() Parameters

Name Direction Description
Vi IN Unique logical identifier to a session.
mask IN Specifies the action to be taken with flushing the buffer.

Table 2-48: viFlush() Completion Codes

Completion Codes

Description

VI_SUCCESS

Buffers flushed successfully.

Table 2-49: viFlush() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_IO

Could not perform read/write operation because of I/O error.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

C Example

Comments

Table 2-49: viFlush() Error Codes (Cont.)

Error Codes Description

VI_ERROR_TMO The read/write operation was aborted because timeout expired
while operation was in progress.

VI_ERROR_INV_MASK The specified mask does not specify a valid flush operation on
read/write resource.

// Request the curve
status = viPrintf(vi, “CURVE?\n”");
if (status < VI_SUCCESS) goto error;

// Always flush if a viScanft follows a viPrintf or

// viBufWrite.

status = viFlush(vi, VI_WRITE_BUF | VI_READ_BUF_DISCARD);
if (status < VI_SUCCESS) goto error;

// Get fTirst char and validate

status = viScanf(vi, “%c*“, &c);

The value of mask can be one of the following flags:

Table 2-50: viFlush Values for mask Parameter

Flag Meaning

VI_READ_BUF Discard the read buffer contents. If data was present in the
read buffer and no END-indicator was present, read from the
device until encountering an END indicator (which causes the
loss of data). This action resynchronizes the next viScanf() call
to read a <TERMINATED RESPONSE MESSAGE>. (Refer to
the IEEE 488.2 standard.)

VI_READ_BUF_DISCARD Discard the read buffer contents (does not perform any 1/0 to

the device).
VI_WRITE_BUF Flush the write buffer by writing all buffered data to the device.
VI_WRITE_BUF_DISCARD | Discard the write buffer contents (does not perform any 1/O to
the device).
VI_ASRL_IN_BUF Discard the receive buffer contents (same as

VI_ASRL_IN_BUF_DISCARD).

VI_ASRL_IN_BUF_DISCARD | Discard the receive buffer contents (does not perform any I/O
to the device)

Tektronix Version 1.1 TekVISA Programmer Manual 2-31

Operations

Table 2-50: viFlush Values for mask Parameter (Cont.)

Flag Meaning
VI_ASRL_OUT_BUF Flush the transmit buffer by writing all buffered data to the
device.

VI_ASRL_OUT_BUF_DIS- Discard the transmit buffer contents (does not perform any I/O
CARD to the device).

H Itispossibleto combine any of these read flags and write flags for different
buffers by ORing the flags. However, combining two flags for the same
buffer in the same call to viFlush() isillegal.

H Notice that when using formatted 1/0O operations with a serial device, aflush
of the formatted 1/0O buffers also causes the corresponding serial communica-
tion buffers to be flushed. For example, calling viFlush() with
VI_WRITE_BUF aso flushesthe VI_ASRL_OUT_BUF.

See Also Reading and Writing Formatted Data
viSetBuf (vi, mask, size)

viGetAttribute (vi, attribute, attrState)
Usage Retrieves the state of an attribute for the specified session, event, or find list.

C Format ViStatus viGetAttribute(ViObject vi, ViAttr attribute,
ViAttrState attrState)

Visual Basic Format ~ viGetAttribute (Byval vi As Long, Byval attribute As Long,
Byval attrState As Long) As Long

Parameters Table 2-51: viGetAttribute() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session, event, or find list.

attribute IN Session, event, or find list attribute for which the state query is
made.

attrState ouTt The state of the queried attribute for a specified resource. The
interpretation of the returned value is defined by the individual
resource.

2-32 Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Return Values Table 2-52: viGetAttribute() Completion Codes

Completion Codes Description

VI_SUCCESS Session, event, or find list attribute retrieved successfully.

Table 2-53: viGetAttribute() Error Codes

Error Codes Description

VI_ERROR_INV_SESSION | The given session or object reference is invalid (both are the
VI_ERROR_INV_OBJECT same value).

VI_ERROR_NSUP_ATTR The specified attribute is not defined by the referenced
session, event, or find list.

C Example // Get VISA’s vendors name, VISA Specification

// Version, and implementation version.

status = viGetAttribute(rm, VI_ATTR_RSRC_MANF_NAME, buffer);

if (status < VI_SUCCESS) goto error;

status = viGetAttribute(rm, VI_ATTR_RSRC_SPEC_VERSION,
&version);

if (status < VI_SUCCESS) goto error;

status = viGetAttribute(rm, VI_ATTR_RSRC_IMPL_VERSION,
&impl);

if (status < VI_SUCCESS) goto error;

Comments tThe viGetAttribute() operation is used to retrieve the state of an attribute for the
specified session, event, or find list.

H The output parameter attr State is of the type of the attribute actually being
retrieved. For example, when retrieving an attribute defined as a ViBoolean,
your application should pass areference to a variable of type ViBoolean.
Similarly, if the attribute is defined as being ViUInt32, your application
should pass areference to a variable of type ViUInt32.

See Also Setting and Retrieving Attributes
viSetAttribute (vi, attribute, attr State)

Tektronix Version 1.1 TekVISA Programmer Manual 2-33

Operations

vilnstallHandler (vi, eventType, handler, userHandle)

Usage Instalscallback handler(s) for the specified event.

C Format ViStatus vilnstallHandler (ViSession vi, ViEventType
eventType,

ViHndlr handler, ViAddr userHandle)

Visual Basic Format Not Applicable

2-34

Parameters Table 2-54: vilnstallHandler() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

eventType IN Logical event identifier.

handler IN Interpreted as a valid reference to a handler to be installed by a
client application.

userHandle IN A value specified by an application that can be used for
identifying handlers uniquely for an event type.

Return Values

Table 2-55: vilnstallHandler() Completion Codes

Completion Codes

Description

VI_SUCCESS

Event handler installed successfully.

Table 2-56: vilnstallHandler() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_INV_EVENT

Specified event type is not supported by the resource.

VI_ER-

ROR_INV_HNDLR_REF

The given handler reference is invalid.

VI_ERROR_HNDLR_NINS-

TALLED

The handler was not installed. This may be returned if an
application attempts to install multiple handlers for the same
event on the same session.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

C Example ViStatus _VI_FUNCH ServiceReqEventHandler(ViSession vi,
ViEventType eventType, ViEvent event, ViAddr userHandle)

{
printf(’srq occurred\n);
return VI1_SUCCESS;
}
int main(int argc, char* argv[])
{
ViSession rm, Vi;
ViStatus status;
char string[256];
Viulnt32 retCnt;

status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;

status = viOpen(rm, “GPIB8::1::INSTR*“, NULL, NULL,
&vi);
if (status < VI_SUCCESS) goto error;

// Setup and enable event handler
status = vilnstallHandler(vi, VI_EVENT_SERVICE_REQ,
ServiceRegEventHandler, NULL);
if (status < VI_SUCCESS) goto error;
status = viEnableEvent(vi, VI_EVENT_SERVICE_REQ,
VI_HNDLR, VI_NULL);
if (status < VI_SUCCESS) goto error;

// Do processing here

// Cleanup and exit
status = viDisableEvent(vi, VI_EVENT_SERVICE_REQ,
VI_HNDLR) ;
if (status < VI_SUCCESS) goto error;
status = viUninstallHandler(vi, VI_EVENT_SERVICE_REQ,
ServiceRegEventHan—

dler, NULL);

if (status < VI_SUCCESS) goto error;

viClose(vi);

viClose(rm);

return O;
error:

viStatusDesc(rm, status, string);

fprintf(stderr, “Error: %s\n“, (ViBuf) string);

return O;

Tektronix Version 1.1 TekVISA Programmer Manual 2-35

Operations

Comments

See Also

The vilnstallHandler() operation allows applications to install handlers on
sessions. The handler specified in handler isinstalled along with any previously
installed handlers for the specified event.

H You can specify avauein userHandle that is passed to the handler on its
invocation. VISA identifies handlers uniquely using the handler reference
and this value.

H VISA alowsyou to install multiple handlers for an event type on the same
session. You can install multiple handlers through multiple invocations of
the vilnstall[Handler() operation, where each invocation adds to the previous
list of handlers. If more than one handler isinstalled for an event type, each
handlersis invoked on every occurrence of the specified event(s). Handlers
areinvoked in Last In First Out (LI1FO) order.

Handling Events
viUninstallHandler (vi, eventType, handler, userHandle)

viLock (vi, lockType, timeout, requestedKey, accessKey)

2-36

Usage

C Format

Visual Basic Format

Parameters

Obtains alock on the specified resource.

ViStatus vilLock(ViSession vi, ViAccessMode lockType,
Viulnt32 timeout, ViKeyld requestedKey, ViPKeyld access—

KeyL1)

viLock (Byval vi As Long, ByVal lockType As Long, ByVal
timeout As Long, ByVal requestedKey As String, ByVval
accesskKey As String) As Long

Table 2-57: viLock() Parameters

Name Direction Description
Vi IN Unique logical identifier to a session.
lockType IN Specifies the type of lock requested, which can be either

VI_EXCLUSIVE_LOCK or VI_SHARED_LOCK.

timeout IN Absolute time period (in milliseconds) that a resource waits to
get unlocked by the locking session before returning this
operation with an error.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Return Values

Table 2-57: viLock() Parameters (Cont.)

Name Direction

Description

requestedKey | IN

This parameter is not used and should be set to VI_NULL
when lockType is VI_EXCLUSIVE_LOCK (exclusive locks).
When trying to lock the resource as VI_SHARED LOCK
(shared), a session can either set it to VI_NULL, so that VISA
generates an accessKey for the session, or the session can
suggest an accessKey to use for the shared lock. Refer to the
comments section below for more details.

accessKey ouT

This parameter should be set to VI_NULL when lockType is
VI_EXCLUSIVE_LOCK (exclusive locks). When trying to lock
the resource as VI_SHARED_LOCK (shared), the resource
returns a unique access key for the lock if the operation
succeeds. This accessKey can then be passed to other
sessions to share the lock.

Table 2-58: viLock() Completion Codes

Completion Codes

Description

VI_SUCCESS

Specified access mode is successfully acquired.

VI_SUCCESS_NESTED_EX-
CLUSIVE

Specified access mode is successfully acquired, and this
session has nested exclusive locks.

VI_SUCCESS_NESTED
SHARED

Specified access mode is successfully acquired, and this
session has nested shared locks.

Table 2-59: viLock() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_RSRC_LOCKED

Specified type of lock cannot be obtained because the
resource is already locked with a lock type incompatible with
the lock requested. For example, this error is returned if a
viLock() operation requesting a shared lock is invoked from a
session that has an exclusive lock.

VI_ERROR_INV_LOCK_
TYPE

The specified type of lock is not supported by this resource.

VI_ERROR_INV_AC-
CESS_KEY

The requestedKey value passed in is not a valid access key to
the specified resource.

VI_ERROR_TMO

Specified type of lock could not be obtained within the
specified timeout period.

Tektronix Version 1.1 TekVISA Programmer Manual

2-37

Operations

2-38

C Example

Comments

ViSession rm, vi;
char string[256];
Viulnt32 retCnt;
int i =0;

iT (viOpenDefaultRM(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR*“, NULL, NULL, &vi) <
VI_SUCCESS)

return;
for (i = 1; 1 < 100; i++) {
viLock(vi, VI_EXCLUSIVE_LOCK, VI_TMO_INFINITE, NULL,
NULL);
if (viWrite(vi, (ViBuf) ”chl:scale?*, 10, &retCnt)
< VI_SUCCESS) return;
if (viRead(vi, (ViBuf) string, 256, &retCnt)
< VI_SUCCESS) return;
printf(C’%d: scale %s*“, i, string);
viunlock(vi);
}

This operation is used to obtain alock on the specified resource. The caller can
specify the type of lock requested—exclusive or shared lock—and the length of
time the operation will suspend while waiting to acquire the lock before timing
out. This operation can aso be used for sharing and nesting locks.

NOTE. If requesting a VI_SHARED_LOCK, the size of the accessKey parameter
should be at least 256 bytes.

H TherequestedKey and the accessKey parameters apply only to shared locks.
When using the lock type VI_EXCLUSIVE_LOCK, requestedKey and
accessKey should be set to VI_NULL.

H VISA alowsyou to specify akey to be used for lock sharing through the use
of the requestedKey parameter. Or, you can pass VI_NULL for requestedKey
when obtaining a shared lock, in which case VISA will generate a unique
access key and return it through accessKey. If you do specify arequestedKey,
VISA will try to use this value for the accessKey. Aslong as the resourceis
not locked, VISA will use the requestedKey as the access key and grant the
lock. When the operation succeeds, the requestedKey will be copied into the
user buffer referred to by the accessKey.

H The session that gained a shared lock can pass the accessKey to other
sessions for the purpose of sharing the lock. The session wanting to join the
group of sessions sharing the lock can use the key as an input value to the
requestedKey parameter. VISA will add the session to the list of sessions

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

See Also

sharing the lock, as long as the requestedKey value matches the accessKey
value for the particular resource. The session obtaining a shared lock in this
manner will then have the same access privileges as the original session that
obtained the lock.

You can obtain nested locks through this operation. To acquire nested locks,
invoke the viLock() operation with the same lock type as the previous
invocation of this operation. For each session, viLock() and viUnlock() share
alock count, which isinitialized to 0. Each invocation of viLock() for the
same session (and for the same lockType) increases the lock count. In the
case of ashared lock, it returns with the same accessKey every time.

When a session locks the resource a multiple number of times, you must
invoke the viUnlock() operation an equal number of timesin order to unlock
theresource. That is, the lock count increments for each invocation of

viL ock(), and decrements for each invocation of viUnlock(). A resourceis
actually unlocked only when the lock count isO.

L ocking and Unlocking Resources
viUnlock (vi)

viOpen (sesn, rsrcName, accessMode, timeout, vi)

Usage

C Format

Visual Basic Format

Parameters

Opens a session to the specified resource.

ViStatus viOpen(ViSession sesn, ViRsrc rsrcname, ViAccess—
Mode mode, ViUInt32 timeout, ViPSession vi)

viOpen (ByVal sesn As Long, ByVal rsrcName As String,
ByvVal accessMode As Long, Byval timeout As Long, vi As Long)
As Long

Table 2-60: viOpen() Parameters

Name Direction Description

sesn IN Resource Manager session (should always be the Default
Resource Manager for VISA returned from viOpenDe-
faultRM()).

rsrcName IN Unique symbolic name of a resource.

Tektronix Version 1.1 TekVISA Programmer Manual 2-39

Operations

2-40

Table 2-60: viOpen() Parameters (Cont.)

Name Direction

Description

accessMode | IN

Specifies the mode(s) by which the resource is to be accessed:

VI_EXCLUSIVE_LOCK and/or VI_LOAD_CONFIG. If the latter
value is not used, the session uses the default values provided

by VISA. Multiple access modes can be used simultaneously
by specifying a “bit-wise OR” of the above values.

timeout IN If the accessMode parameter requests a lock, then this
parameter specifies the absolute time period (in milliseconds)
that the resource waits to get unlocked before this operation
returns an error; otherwise, this parameter is ignored.

Vi ouTt Unique logical identifier reference to a session.

Return Values

Table 2-61: viOpen() Completion Codes

Completion Codes

Description

VI_SUCCESS

Session opened successfully.

VI_SUCCESS_DEV_NPRE-
SENT

Session opened successfully, but the device at the specified
address is not responding.

VI_WARN_CONFIG_
NLOADED

The specified configuration either does not exist or could not
be loaded; using VISA-specified defaults instead.

Table 2-62: viOpen() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_INV_RSRC_
NAME

Invalid resource reference specified. Parsing error.

VI_ER-
ROR_INV_ACC_MODE

Invalid access mode.

VI_ERROR_RSRC_NFOUND

Insufficient location information or resource not present in the
system.

VI_ERROR_ALLOC

Insufficient system resources to open a session.

VI_ERROR_RSRC_BUSY

The resource is valid, but VISA cannot currently access it.

VI_ERROR_RSRC_LOCKED

Specified type of lock cannot be obtained because the
resource is already locked with a lock type incompatible with
the lock requested

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-62: viOpen() Error Codes (Cont.)

Error Codes Description

VI_ERROR_TMO A session to the resource could not be obtained within the
specified timeout period.

VI_ERROR_LIBRARY _ A code library required by VISA could not be located or loaded.

NFOUND

C Example // Open the GPIB device at primary address 1, GPIB board 8
status = viOpen(rm, “GPIB8::1::INSTR”, VI_NULL, VI_NULL,
&vi);
if (status < VI_SUCCESS) goto error;

Comments The viOpen() operation opens a session to the specified resource. It returns a
session identifier that can be used to call any other operations of that resource.

H The GPIB keyword can be used to establish communication with a GPIB
device.

H The ASRL keyword is used to establish communication with an asynchro-
nous serial device (such as RS-232).

H Anaddress string must uniquely identify the resource. The following table
shows the grammar for the address string and gives examples.

H Optiona string segments are shown in square brackets ([]).
H The default value for the optional string segment board is 0.

H The default value for the optional string segment secondary addressis
none.

H Address strings are not case sensitive.

Table 2-63: Resource Address String Grammar and Examples with

viOpen()

Grammar Example Description

GPIBJ board] GPIB::1::0:1INSTR A GPIB device at primary address 1 and

;> primary address secondary address 0 in GPIB interface 0.

[:: secondary address]

[:INSTR]

ASRL ASRL1:INSTR A serial device attached to interface ASRL1.
[board][::INSTR]

Tektronix Version 1.1 TekVISA Programmer Manual 2-41

Operations

Table 2-64: Special Values for accessMode Parameter with viOpen()

Value

Description

VI_EXCLUSIVE_LOCK

Used to acquire an exclusive lock immediately upon opening a
session; if a lock cannot be acquired, the session is closed and
an error is returned.

VI_LOAD_CONFIG

Used to configure attributes to values specified by an external
configuration utility.

See Also
viClose (vi)
viOpenDefaultRM (sesn)
Usage
C Format
Visual Basic Format

Parameters

Opening and Closing Sessions
viOpenDefaultRM (sesn)

Returns a session to the Default Resource Manager.

ViStatus viOpenDefaultRM(ViSession sesn)

viOpenDefaultRM (ByVal sesn As Long) As Long

Table 2- 65: viOpenDefaultRM() Parameters

Name Direction

Description

sesn ouT

Unique logical identifier to a Default Resource Manager
session.

Return Values

Table 2- 66: viOpenDefaultRM() Completion Codes

Completion Codes

Description

VI_SUCCESS

Session to the Default Resource Manager resource created
successfully

2-42

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-67: viOpenDefaultRM() Error Codes

Error Codes Description

VI_ERROR_SYSTEM _ The VISA system failed to initialize.

ERROR

VI_ERROR_ALLOC Insufficient system resources to create a session to the Default
Resource Manager resource.

VI_ERROR_INV_SETUP Some implementation-specific configuration file is corrupt or
does not exist.

VI_ERROR_LI- A code library required by VISA could not be located or loaded.

BRARY_NFOUND

CExample 7/ Open a default session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;

Comments The viOpenDefaultRM () function must be called before any VISA operations
can be invoked.

H Thefirst cal to this function initializes the VISA system, including the
Default Resource Manager resource, and also returns a session to that
resource.

H Subsequent calls to this function return new and unique sessions to the same
Default Resource Manager resource.

H When a Resource Manager session is closed, al find lists and device
sessions opened with that Resource Manager session are also closed.

See Also Opening and Closing Sessions
viOpen (sesn, rsrcName, accessM ode, timeout, vi)
viClose (vi)

Tektronix Version 1.1 TekVISA Programmer Manual 2-43

Operations

viParseRsrc (sesn, rsrcName, intfType, intfNum)

2-44

Usage

C Format

Visual Basic Format

Parameters

Return Values

Parses aresource string to get the interface information.

ViStatus viParseRsrc(ViSession sesn,ViRsrc rsrcName,
Vilintlé intfType, ViUlnt intfNum)

viParseRsrc (ByVal sesn As Long, ByVal rsrcName As String,
Byval intfType As Integer, ByVal intfNum As Integer) As Long

Table 2-68: viParseRsrc() Parameters

Name Direction Description

sesn IN Resource Manager session (should always be the Default
Resource Manager for VISA returned from viOpenDefaultRM())

rsrcName IN Unique symbolic name of a resource.

intfType ouTt Interface type of the given resource string.

intfNum ouTt Board number of the interface of the given resource string.

Table 2-69: viParseRsrc() Completion Codes

Completion Codes

Description

VI_SUCCESS

Resource string is valid

Table 2-70: viParseRsrc() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_OPER

The given session does not support this operation. For VISA,
this operation is supported only by the Default Resource
Manager session.

VI_ERROR_INV_
RSRC_NAME

Invalid resource reference specified. Parsing error.

VI_ERROR_RSRC_NFOUND

Insufficient location information or resource not present in the
system.

VI_ERROR_ALLOC

Insufficient system resources to parse the string.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-70: viParseRsrc() Error Codes (Cont.)

Error Codes Description

VI_ERROR_LIBRARY _ A code library required by VISA could not be located or loaded.
NFOUND

VI_ERROR_INTF_NUM_ The interface type is valid but the specified interface number is
NCONFIG not configured.

C Example if (viOpenDefaultRM(&rm) < VI_SUCCESS) return;
it (viParseRsrc(rm,“GPIB8::1::INSTR”, ifType, 1fNum)) <
VI_SUCCESS)
return;

Comments This operation parses aresource string to verify its validity. It should succeed for
all strings returned by viFindRsrc() and recognized by viOpen(). This operation
isuseful if you want to know what interface a given resource descriptor would
use without actually opening a session to it.

The values returned in intf Type and intfNum correspond to the attributes
VI_ATTR_INTF_TYPE and VI_ATTR_INTF_NUM. These values would be the
sameif auser opened that resource with viOpen() and queried the attributes with
viGetAttribute().

NOTE. The size of the instrDesc parameter should be at least 256 bytes.

H Thisfunction returns information determined solely from the resource string
and any static configuration information (such as.INI files or the Registry).

H Thisfunction is case-insensitive when matching resource names against the
name specified in rsrcName. Calling viParseRsrc() with “gpib8::1::instr”
will produce the same results as invoking it with “GPIB 8::1::INSTR”.

See Also Finding Resources
viFindNext (findList, instrDesc)
viFindRsrc (sesn, expr, findList, retent, instrDesc)

Tektronix Version 1.1 TekVISA Programmer Manual 2-45

Operations

viPrintf (vi, writeFmt, <argl, arg2, ...>)

NOTE. Inversion 1.1 and earlier versions of TekVISA, this operation returns the
value NOT IMPLEMENTED.

Usage Formatsand writes data to a device using the optional variable-length argument
list.

C Format ViStatus viPrintf (ViSession vi, ViString writeFmt, ...)
Visual Basic Format Not applicable

Parameters Table 2-71: viPrintf() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

writeFmt IN String describing the format for arguments.

<argl, arg2, |IN Optional argument(s) the format string is applied to.
>

Return Values Table 2- 72: viPrintf() Completion Codes

Completion Codes Description
VI_SUCCESS Parameters were successfully formatted.

Table 2-73: viPrintf() Error Codes

Error Codes Description

VI_ERROR_INV_SESSION | The given session or object reference is invalid (both are the
VI_ERROR_INV_OBJECT same value).

VI_ERROR_RSRC_LOCKED | Specified operation could not be performed because the
resource identified by vi has been locked for this kind of

access.
VI_ERROR_IO Could not perform write operation because of /O error.
VI_ERROR_TMO Timeout expired before write operation completed.
VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

2-46 Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-73: viPrintf() Error Codes (Cont.)

Error Codes Description

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not supported.

VI_ ERROR_ALLOC The system could not allocate a formatted I/O buffer because
of insufficient system resources.

C Example // Turn headers off, this makes parsing easier
status = viPrintf(vi, “header off\n”);
if (status < VI_SUCCESS) goto error;

// Get record length value
status = viQueryf(vi, “hor:reco?\n“, “%l1d*, elements);
if (status < VI_SUCCESS) goto error;

// Make sure start, stop values for curve query match the

// full record length

status = viPrintf(vi, “data:start %d;data:stop %d\n”’, O,
(*elements)-1);

if (status < VI_SUCCESS) goto error;

Comments The viPrintf() operation sends data to a device as specified by the format string
(writeFmt). Before sending the data, the operation formats the argument
characters as specified in the writeFmt string.

H The viWrite() operation performs the actual low-level I/O to the device. Asa
result, you should not use the viWrite() and viPrintf() operations in the same
session.

H ThewriteFmt string can include regular character sequences, specia
formatting characters, and specid format specifiers.

H Theregular characters (including white spaces) are written to the device
unchanged.

H The special characters consist of * \' (backslash) followed by a character.

H Theformat specifier sequence consists of ‘%' (percent) followed by an
optiona modifier (flag), followed by aformat code.

Special Formatting ~ Specia formatting character sequences send special characters. The following
Characters tableliststhe special characters and describes what they send to the device.

Tektronix Version 1.1 TekVISA Programmer Manual 2-47

Operations

Table 2-74: Special Characters used with viPrintf()

Formatting
Character

Character Sent to Device

\n

Sends the ASCII LF character. The END identifier will also be automatically
sent.

\r

Sends an ASCII CR character.

\t

Sends an ASCII TAB character.

\tH#

Sends the ASCII character specified by the octal value.

\x##

Sends the ASCII character specified by the hexadecimal value.

Sends the ASCII double-quote (”) character.

\\

Sends a backslash (\) character.

Format Specifiers ~ The format specifiers convert the next parameter in the sequence according to the
modifier and format code, after which the formatted data is written to the
specified device. The format specifier takes the following syntax:

%[modifiers]format code

H Modifiers are optional codes that describe the target data.

H Format code specifies which data type the argument is represented in.

H Inthefollowing tables, a‘d’ format code refersto al conversion codes of
typeinteger (‘d’, ‘i’, ‘o', ‘u’, ‘X, *X"), unless specified as %d only.
Similarly, an ‘f’ format code refersto all conversion codes of type float (‘f’,
‘e,'FE, ‘d, 'G), unless specified as %f only. Every conversion command
starts with the % character and ends with a conversion character (format
code). Between the % character and the format code, the following modifiers
can appear in the sequence.

ANSI C Standard Table 2- 75: ANSI C Standard Modifiers used with viPrintf()

Modifiers

Modifier

Supported with
Format Code Description

2-48

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-75: ANSI C Standard Modifiers used with viPrintf() (Cont.)

Modifier

Supported with
Format Code

Description

An integer specifying
field width.

d, f, s format codes

This specifies the minimum field width of the
converted argument. If an argument is shorter
than the field width, it will be padded on the
left (or on the right if the - flag is present).

Special case:

For the @H, @Q, and @B flags, the field
width includes the #H, #Q, and #B strings,
respectively.

An asterisk (*) may be present in lieu of a field
width modifier, in which case an extra arg is
used. This arg must be an integer representing
the field width.

An integer specifying
precision.

d, f, s format codes

The precision string consists of a string of
decimal digits. A . (decimal point) must prefix
the precision string. The precision string
specifies the following:

a. The minimum number of digits to appear
for the @1, @H, @Q, and @B flags and
the i, o, u, x, and X format codes.

b. The maximum number of digits after the
decimal point in case of f format codes.

¢. The maximum numbers of characters for
the string (s) specifier.

d. Maximum significant digits for g format
code.

An asterisk (*) may be present in lieu of a
precision modifier, in which case an extra arg
is used. This arg must be an integer represent-
ing the precision of a numeric field.

Tektronix Version 1.1 TekVISA Programmer Manual

2-49

Operations

Enhanced Modifiers to
ANSI C Standards

2-50

Table 2-75: ANSI C Standard Modifiers used with viPrintf() (Cont.)

Modifier

Supported with
Format Code

Description

An argument length
modifier.

h, I, L, z, and Z are
legal values. (z and Z
are not ANSI C stan-
dard modifiers.)

h (d, b, B format
codes)

I(d, f, b, B format
codes)

L (f format code)
z (b, B format codes)

Z (b, B format codes)

The argument length modifiers specify one of
the following:

a. The h modifier promotes the argument to
a short or unsigned short, depending on
the format code type.

b. The I modifier promotes the argument to a
long or unsigned long.

¢. The L modifier promotes the argument to
a long double parameter.

d. The z modifier promotes the argument to
an array of floats.

e. The Z modifier promotes the argument to
an array of doubles.

Table 2-76: Enhanced Modifiers to ANSI C Standards used with viPrintf()

Modifier

Supported with
Format Code

Description

A comma (,) followed
by an integer n,
where n represents
the array size.

%d and %f only

The corresponding argument is interpreted as
a reference to the first element of an array of
size n.

The first n elements of this list are printed in
the format specified by the format code.

An asterisk (*) may be present after the
comma (,) modifier, in which case an extra arg
is used. This arg must be an integer represent-
ing the array size of the given type.

@1

%d and %f only

Converts to an IEEE 488.2 defined NR1
compatible number, which is an integer
without any decimal point (for example, 123).

@2

%d and %f only

Converts to an IEEE 488.2 defined NR2
compatible number. The NR2 number has at
least one digit after the decimal point (for
example, 123.45).

@3

%d and %f only

Converts to an IEEE 488.2 defined NR3
compatible number. An NR3 number is a
floating point number represented in an
exponential form (for example, 1.2345E-67).

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-76: Enhanced Modifiers to ANSI C Standards used with viPrintf() (Cont.)

Modifier

Supported with

Format Code Description

@H

Converts to an IEEE 488.2 defined <HEXADE-
CIMAL NUMERIC RESPONSE DATA>. The
number is represented in a base of sixteen
form. Only capital letters should represent
numbers. The number is of form #HXXX..,
where XXX.. is a hexadecimal number (for
example, #HAF35B)

%d and %f only

@Q

Converts to an IEEE 488.2 defined <OCTAL
NUMERIC RESPONSE DATA>. The number
is represented in a base of eight form. The
number is of the form #QYYY.., where YYY.. is
an octal number (for example, #Q71234).

%d and %f only

@B

Converts to an IEEE 488.2 defined <BINARY
NUMERIC RESPONSE DATA>. The number
is represented in a base two form. The number
is of the form #BZZZ.., where ZZZ.. is a binary
number (for example, #8011101001).

%d and %f only

The following are the alowed format code characters. A format specifier
seguence should include one and only one format code.

Standard ANSI C Format Codes

% Send the ASCII percent (%) character.
¢ Argument type: A character to be sent.
d Argument type: An integer.

Table 2-77: Modifiers used with Argument Types %, ¢, and d with viPrintf()

Modifier

Interpretation

Default function-

ality

Print an integer in NR1 format (an integer without a decimal point).

@2 or @3

The integer is converted into a floating point number and output in the
correct format.

field width

Minimum field width of the output number. Any of the six IEEE 488.2
modifiers can also be specified with field width.

Length modifier |

arg is a long integer.

Length modifier h

arg is a short integer.

, array size

arg points to an array of integers (or long or short integers, depending on the
length modifier) of size array size. The elements of this array are separated
by array size - 1 commas and output in the specified format.

Tektronix Version 1.1 TekVISA Programmer Manual 2-51

Operations

2-52

f Argument type: A floating point number.

Table 2-78: Modifiers used with Argument Type f with viPrintf()

Modifier Interpretation

Default function- | Print a floating point number in NR2 format (a number with at least one digit

ality after the decimal point).

@1 Print an integer in NR1 format. The number is truncated.

@3 Print a floating point number in NR3 format (scientific notation). Precision
can also be specified.

field width Minimum field width of the output number. Any of the six IEEE 488.2

modifiers can also be specified with field width.

Length modifier |

arg is a double float.

Length modifier L

arg is a long double.

, array size

arg points to an array of floats (or doubles or long doubles, depending on
the length modifier) of size array size. The elements of this array are
separated by array size - 1 commas and output in the specified format.

s Argument type: A reference to a NULL-terminated string that is sent to the
device without change.

Enhanced Format Codes
b Argument type: A location of ablock of data.

Table 2-79: Modifiers used with Argument Types s and b with viPrintf()

Modifier Interpretation
Default function- | The data block is sent as an IEEE 488.2 <DEFINITE LENGTH ARBITRARY
ality BLOCK RESPONSE DATA>. A count (long integer) must appear as a flag

that specifies the number of elements (by default, bytes) in the block. A field
width or precision modifier is not allowed with this format code.

* (asterisk)

An asterisk may be present instead of the count. In such a case, two args
are used, the first of which is a long integer specifying the count of the
number of elements in the data block. The second arg is a reference to the
data block. The size of an element is determined by the optional length
modifier (see below), and the default is byte width.

Length modifier h

arg points to an array of unsigned short integers (16 bits). The count
corresponds to the number of words rather than bytes. The data is swapped
and padded into standard IEEE 488.2 format, if native computer representa-
tion is different.

Length modifier |

arg points to an array of unsigned long integers. The count specifies the
number of longwords (32 bits). Each longword data is swapped and padded
into standard IEEE 488.2 format, if native computer representation is
different.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-79: Modifiers used with Argument Types s and b with viPrintf() (Cont.)

Modifier

Interpretation

Length modifier z

arg points to an array of floats. The count specifies the number of floating
point numbers (32 bits). The numbers are represented in IEEE 754 format, if
native computer representation is different.

Length modifier
z

arg points to an array of doubles. The count specifies the number of double
floats (64 bits). The numbers will be represented in IEEE 754 format, if
native computer representation is different.

B Argument type: A location of ablock of data. The functionality is similar to b,
except the data block is sent as an |IEEE 488.2 <INDEFINITE LENGTH
ARBITRARY BLOCK RESPONSE DATA>. This format involves sending an
ASCII LF character with the END indicator set after the last byte of the block.

y Argument type: A location of ablock of binary data.

Table 2-80: Modifiers used with Argument Types B and y with viPrintf()

Modifier

Interpretation

Default function-
ality

The data block is sent as raw binary data. A count (long integer) must
appear as a flag that specifies the number of elements (by default, bytes) in
the block. A field width or precision modifier is not allowed with this format
code.

* (asterisk)

An asterisk may be present instead of the count. In such a case, two args
are used, the first of which is a long integer specifying the count of the
number of elements in the data block. The second arg is a reference to the
data block. The size of an element is determined by the optional length
modifier (see below), and the default is byte width.

Length modifier h

arg points to an array of unsigned short integers (16 bits). The count
corresponds to the number of words rather than bytes. If the optional 'ol
byte order modifier is present, the data is sent in little endian format;
otherwise, the data is sent in standard IEEE 488.2 format. The data will be
byte swapped and padded as appropriate if native computer representation
is different.

Length modifier |

arg points to an array of unsigned long integers (32 bits). The count
specifies the number of longwords rather than bytes. If the optional ol byte
order modifier is present, the data is sent in little endian format; otherwise,
the data is sent in standard IEEE 488.2 format. The data will be byte
swapped and padded as appropriate if native computer representation is
different.

Byte order modi-
fier lob

Data is sent in standard IEEE 488.2 (big endian) format. This is the default
behavior if neither ob nor ol is present.

Byte order modi-
fier lol

Data is sent in little endian format.

Tektronix Version 1.1 TekVISA Programmer Manual 2-53

Operations

H The END indicator is not appended when LF(\n) is part of a binary data
block, as with %b or %B.

H For ANSI C compatibility, VISA also supports the following conversion
codes for output codes: ‘i,” ‘o,” ‘u,” ‘n,” ‘'x;” ‘X, ‘e’ ‘E; ‘g, ‘G, and ‘p.]
For further explanation of these conversion codes, see the ANSI C Standard.

See Also Reading and Writing Formatted Data
viScanf (vi, readFmt, <argl, arg2, ...>)
viQueryf (vi, writeFmt, readFmt, <argl, arg2, ...>)

viQueryf (vi, writeFmt, readFmt, <argl, arg2,...>)

NOTE. Inversion 1.1 and earlier versions of TekVISA, this operation returns the
value NOT IMPLEMENTED.

Usage Writes and reads formatted data to and from a device using the optional
variable-length argument list.

C Format ViStatus viQueryf (ViSession vi, ViString writeFmt, ViString
readFmt, ...)

Visual Basic Format Not Applicable

Parameters Table 2-81: viQueryf() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

writeFmt IN ViString describing the format of write arguments.

readFmt IN ViString describing the format of read arguments.

<argl, IN OUT Optional argument(s) on which write and read format strings
arg2,...> are applied.

Return Values Table 2-82: viQueryf() Completion Codes

Completion Codes Description

VI_SUCCESS Successfully completed the Query operation.

2-54 Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-83: viQueryf() Error Codes

Error Codes Description

VI_ERROR_INV_SESSION | The given session or object reference is invalid (both are the
VI_ERROR_INV_OBJECT same value).

VI_ERROR_RSRC_LOCKED | Specified operation could not be performed because the
resource identified by vi has been locked for this kind of

access.
VI_ERROR_IO Could not perform read/write operation because of I/O error.
VI_ERROR_TMO Timeout occurred before read/write operation completed.
VI_ERROR_INV_FMT A format specifier in the writeFmt or readFmt string is invalid.
VI_ERROR_NSUP_FMT A format specifier is not supported for current argument type.
VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because

of insufficient system resources.

C Example // Get the yoffset to help calculate the vertical values.
status = viQueryf(vi, “WFMOUTPRE:YOFF?\n”, “%f’, &yoffset);
if (status < VI_SUCCESS) goto error;

// Get the ymult to help calculate the vertical values.
status = viQueryf(vi, “WFMOutpre:YMULT?\n”, “%f”, &ymult);
if (status < VI_SUCCESS) goto error;

Comments This operation provides a mechanism of “Send, then Receive” typica to a
command sequence from a commander device. In this manner, the response
generated from the command can be read immediately.

H Thisoperation is a combination of the viPrintf() and viScanf() operations.

H Thefirst n arguments corresponding to the first format string are formatted
by using the writeFmt string, then sent to the device. The write buffer is
flushed immediately after the write portion of the operation completes. After
these actions, the response data is read from the device into the remaining
parameters (starting from parameter n+1) using the readFnt string.

NOTE. Because the prototype for this function cannot provide complete
type-checking, remember that all output parameters must be passed by reference.

See Also Reading and Writing Formatted Data
viPrintf (vi, writeFmt, <argl, arg2, ...>)
viScanf (vi, readFmt, <argl, arg2, ...>)

Tektronix Version 1.1 TekVISA Programmer Manual 2-55

Operations

viRead (vi, buf, count, retCount)

Usage

C Format

Visual Basic Format

Parameters

Return Values

2-56

Reads data synchronously from a device into the specified buffer.

ViStatus viRead (ViSession vi, ViPBuf buf, ViUInt32 count,

ViPUINt32 retCount)

viRead (ByvVal vi As Long, ByVal buf As String, ByVal count
As Long, ByVal retCount As Long) As Long

Table 2-84: viRead() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

buf ouTt Represents the location of a buffer to receive data from device.

count IN Number of bytes to be read.

retCount ouTt Represents the location of an integer that will be set to the
number of bytes actually transferred.

Table 2-85: viRead() Completion Codes

Completion Codes

Description

VI_SUCCESS

The operation completed successfully and the END indicator
was received (for interfaces that have END indicators).

VI_SUCCESS_TERM_CHAR

The specified termination character was read.

VI_SUCCESS_MAX_CNT

The number of bytes read is equal to count.

Table 2-86: viRead() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_OPER

The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO

Timeout expired before operation completed

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

C Example

Comments

Table 2-86: viRead() Error Codes (Cont.)

Error Codes

Description

VI_ER- Violation of raw write protocol occurred during transfer.
ROR_RAW_WR_PROT_VIOL
VI_ER- Violation of raw read protocol occurred during transfer.

ROR_RAW_RD_PROT _VIOL

VI_ERROR_OUTP_PROT_
vIOL

Device reported an output protocol error during transfer.

VI_ERROR_BERRt

Bus error occurred during transfer.

VI_ERROR_INV_SETUP

Unable to start read operation because setup is invalid (due to
attributes being set to an inconsistent state).

VI_ERROR_NCIC

The interface associated with the given vi is not currently the
controller in charge.

VI_ERROR_NLISTENERS

No Listeners condition is detected (both NRFD and NDAC are
deasserted).

VI_ERROR_ASRL_PARITY

A parity error occurred during transfer.

VI_ERROR_ASRL_FRAMING

A framing error occurred during transfer.

VI_ERROR_ASRL_OVER-
RUN

An overrun error occurred during transfer. A character was not
read from the hardware before the next character arrived.

VI_ERROR_IO

An unknown 1/O error occurred during transfer.

if (viWrite(vi, (ViBuf) “*idn?*, 5, VI_NULL) < VI_SUCCESS)

return;

if (viRead(vi, (ViBuf), buffer, sizeof(buffer)-1, &retCnt)
< VI_SUCCESS) return;
buffer[retCnt] = °\0”; // ensures null terminator in string

The viRead() operation synchronously transfers data. The dataread isto be
stored in the buffer represented by buf. This operation returns only when the
transfer terminates. Only one synchronous read operation can occur at any one

time.

H A viRead() operation can complete successfully if one or more of the
following conditions were met (it is possible to have one, two, or all three of
these conditions satisfied at the same time):

H END indicator received.

H Termination character read.

H Number of bytesread is equal to count.

Tektronix Version 1.1 TekVISA Programmer Manual

2-57

Operations

2-58

Condition 1: End Indicator Received

H

If the following conditions are met, viRead() returns VI_SUCCESS
regardless of whether the termination character is received or the number of
bytes read is equal to count.

H If an END indicator is received, and
H VI _ATTR_SUPPRESS END ENisVI_FALSE.

If either of the following conditions are met, viRead() will not terminate
because of an END condition (and therefore will not return VI_SUCCESS).
The operation can still complete successfully due to atermination character
or reading the maximum number of bytes requested.

H 1If VI_ATTR_SUPPRESS END_EN isVI_TRUE

H If viisasessionto an ASRL INSTR resource, and
VI_ATTR_ASRL _END INisVI_ASRL_END_NONE.

Condition 2: Termination Character Read

H

If the following conditions are met, viRead() returns VI_SUC-
CESS_TERM_CHAR regardless of whether the number of bytesread is
equal to count.

H If no END indicator isrecelved, and
H thetermination character isread, and
H VI _ATTR_ TERMCHAR ENisVI_TRUE.

Under the following condition, viRead() will not terminate because of
reading a termination character (and therefore will not return VI_SUC-
CESS TERM_CHAR). The operation can still complete successfully dueto
reading the maximum number of bytes requested.

H 1f VI_ATTR_TERMCHAR_EN isVI_FALSE.

If the following conditions are met, viRead() treats the value stored in
VI_ATTR_TERMCHAR as an END indicator regardless of the value of
VI_ATTR_TERMCHAR_EN.

H If viisasessiontoan ASRL INSTR resource, and

H VI_ATTR ASRL_END INisVI_ASRL_END TERMCHAR.

Condition 3: Number of Bytes Read Equals Count

H

If the following conditions are met, viRead() returns VI_SUC-
CESS MAX_CNT.

H If no END indicator is received, and

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

H no termination character isread, and
H the number of bytes read is equal to count.

H If you pass VI_NULL as the retCount parameter to the viRead() operation,
the number of bytes transferred will not be returned. This may be useful if it
isonly important to know whether the operation succeeded or failed.

Table 2-87: Success Code Conditions for GPIB Interfaces with ViRead()

TRUE FALSE Success Code
END received VI_ATTR_SUPPRESS END |VI_SUCCESS
_EN
VI_ATTR_TERM_CHAR_EN | END received VI_SUCCESS_TERM_CHAR
max bytes requested received | END received VI_SUCCESS_MAX_CNT

See Also Reading and Writing Data
viWrite (vi, buf, count, retCount)

viReadAsync (vi, buf, count, jobld)
Usage Readsdataasynchronously from adevice into the specified buffer.

C Format ViStatus viReadAsync (ViSession vi, ViPBuf buf, ViUlnt32
count, ViPJobld jobld)

Visual Basic Format Not Applicable

Parameters Table 2-88: viReadAsync() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

buf ouTt Represents the location of a buffer to receive data from device.

count IN Number of bytes to be read.

jobld ouTt Represents the location of a variable that will be set to the job
identifier of this asynchronous read operation.

Tektronix Version 1.1 TekVISA Programmer Manual 2-59

Operations

2-60

Return Values

C Example

Table 2-89: viReadAsync() Completion Codes

Completion Codes

Description

VI_SUCCESS

Asynchronous read operation successfully queued.

VI_SUCCESS_SYNC

Read operation performed synchronously.

Table 2-90: viReadAsync() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_QUEUE_ERROR

Unable to queue read operation.

// rwwait.cpp
//

#include
#include
#include
#include

<stdio.h>
<string.h>
<windows.h>
”visa.h*

// viReadAsync/viWriteAsync example —
// These commands can potentially decrease test time by

allowing

// several read or write commands to happen in parallel.
int main(int argc, char* argv[])

{
ViSession rm, vi[2];
ViJobld jobid[2];
ViStatus status;
char string[2][256];
ViEventType eventType[2];
ViEvent event[2];
int i;
// clear strings
for (i =0; i <2; i++) {

memset(string[i], 0, 256);

}

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

// Open the default RM
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;

// Open multiple devices

status = viOpen(rm, ”GPIBO:z:1::INSTR*, NULL, NULL,

&vi[0]1);
if (status < VI_SUCCESS) goto error;

status = viOpen(rm, ”GPIB8::1::INSTR*, NULL, NULL,

&vi[llD);
if (status < VI_SUCCESS) goto error;

// Enable waiting on the events
for (i =0; i <2; i++) {
status = viEnableEvent(vi[i],
VI_EVENT_10_COMPLETION,

VI_QUEUE, VI_NULL);

if (status < VI_SUCCESS) goto error;
}

// Write commands to several devices (this all
// several writes to be done in parallel)
for (i =0; i <2; i++) {

ows

status = viWriteAsync(vi[i],(ViBuf) 7*idn?*“,

5, &jobid[i]);
if (status < VI_SUCCESS) goto error;
}

// Wait for completion on all of the devices
for (i 0; 1 <2; i++) {

INFINITE, &eventType[i],
&event[i]);

}

Tektronix Version 1.1 TekVISA Programmer Manual

viWaitOnEvent(vi[i], VI_EVENT_10_COMPLETION,

2-61

Operations

2-62

Comments

// Queue the read for all the devices (this allows
// several reads to be done im parallel)
for (i = 0; i <2; i++) {
status = viReadAsync(vi[i1], (ViBuf) string[i],
256, &jobid[i]);
if (status < VI_SUCCESS) goto error;
}

// Wait for all the reads to complete

for (i =0; i <2; i++) {

viWaitOnEvent(vi[i], VI_EVENT_10_COMPLETION,
INFINITE, &eventType[i],

&event[i]);

}

// Write out the *idn? strings.
for (i =0; i <2; i++) {

printf(C’%d: %s\n“, i1, string[i]);
}

// Cleanup and exit
for (i = 0; i <2; i++) {
status = viDisableEvent(vi[i],
VI_EVENT_10_COMPLETION,

VI_QUEUE);
if (status < VI_SUCCESS) goto error;
}
viClose(rm);
return O;
error:

viStatusDesc(rm, status, string[0]);
fprintf(stderr, “Error: %s\n“, (ViBuf) string[0]);
return O;

The viReadAsync() operation asynchronously transfers data. The dataread isto
be stored in the buffer represented by buf. This operation normally returns before
the transfer terminates.

H Before calling this operation, you should enable the session for receiving 1/0
completion events. After the transfer has completed, an 1/0 completion event
iS posted.

H The operation returns jobld, which you can use either
H with viTerminate() to abort the operation, or

H with an I/O completion event to identify which asynchronous read
operation completed.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-91: Special Value for jobld Parameter with viReadAsync()

Value

Description

VI_NULL

Do not return a job identifier. This option may be useful if only one

asynchronous operation will be pending at a given time.

Since an asynchronous 1/0 request could complete before viReadAsync()
returns, and the I/O completion event can be distinguished based on the job
identifier, an application must be made aware of the job ID before the first
moment that the 1/O completion event could possibly occur. Setting jobld
before the data transfer even begins ensures that an application can always
match the jobld with the VI_ATTR_JOB_ID attribute of the I/O completion
event.

If multiple jobs are queued at the same time on the same session, an
application can use the jobld to distinguish the jobs, as they are unique
within a session.

The viReadA sync() operation may be implemented synchronously, which
could be done by using the viRead() operation. This means that an applica-
tion can use the asynchronous operations transparently, even if alow-level
driver supports only synchronous data transfers. If viReadAsync() is
implemented synchronously and a given invocation isvalid, it returns
VI_SUCCESS SYNC and dl status information isreturned in a
VI_EVENT_10_COMPLETION. Status codes are the same as those listed
for viRead().

The status code VI_ ERROR_RSRC_LOCKED can be returned either
immediately or from the VI_EVENT_IO_COMPLETION event.

The contents of the output buffer pointed to by buf are not guaranteed to be
valid until the VI_EVENT _|O_COMPLETION event occurs.

For each successful call to viReadAsync(), thereis one and only one
VI_EVENT _10_COMPLETION event occurrence.

If the jobld parameter returned from viReadAsync() is passed to viTermi-
nate() and aVI_EVENT_IO_COMPLETION event has not yet occurred for
the specified jobld, the viTerminate() operation raises a
VI_EVENT_IO_COMPLETION event on the given vi, and the
VI_ATTR_STATUSfield of that event is set to VI_ERROR_ABORT.

See Also Asynchronous Read/Write
viwriteAsync (vi, buf, count, jobl d)
viTerminate (vi, degree, jobld)

Tektronix Version 1.1 TekVISA Programmer Manual 2-63

Operations

viReadSTB (vi, status)

Usage

C Format

Visual Basic Format

Parameters

Return Values

2-64

Reads a status byte of the service request.

ViStatus viReadSTB (ViSession vi, ViPUINntl6 status)

viReadSTB (ByVal vi As Long, ByVal status As Integer) As

Long

Table 2-92: viReadSTB() Parameters

Name Direction Description
Vi IN Unique logical identifier to the session.
status ouTt Service request status byte.

Table 2-93: viReadSTB() Completion Codes

Completion Codes

Description

VI_SUCCESS

Operation completed successfully.

Table 2-94: viReadSTB() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_OPER

The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_SRQ _ Service request has not been received for the session.
NOCCURRED

VI_ERROR_TMO Timeout expired before operation completed

VI_ER- Violation of raw write protocol occurred during transfer.
ROR_RAW_WR_PROT_VIOL

VI_ER- Violation of raw read protocol occurred during transfer.

ROR_RAW_RD_PROT _VIOL

VI_ERROR_BERR

Bus error occurred during transfer.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-94: viReadSTB() Error Codes (Cont.)

Error Codes

Description

VI_ERROR_NCIC

The interface associated with the given vi is not currently the
controller in charge.

VI_ERROR_NLISTENERS

No Listeners condition is detected (both NRFD and NDAC are
deasserted).

VI_ERROR_INV_SETUP

Unable to start read operation because setup is invalid (due to
attributes being set to an inconsistent state).

CExample ViUIntl6 stb;

VviReadSTB(vi, &stb);

Comments The viReadSTB() operation reads a service request status from a service
requester (the message-based device). For example, on the IEEE 488.2 interface,
the message is read by polling devices; for other types of interfaces, amessage is
sent in response to a service request to retrieve status information.

H For aseria device, if VI_ATTR IO _PROT isVI_ASRLA488, the deviceis
sent the string “*STBAn”, and then the device's status byte is read.

H Thisoperation is not valid for aseria deviceif VI_ATTR_IO_PROT is
VI_NORMAL. In that case, viReadSTB() returns VI_ERROR_INV_SETUP.

H If the statusinformation is only one byte long, the most significant byteis
returned with the zero value.

H If the service requester does not respond in the actual timeout period,
VI_ERROR_TMO isreturned.

See Also Status/Service Request

VI_ATTR_IO_PROT

Tektronix Version 1.1 TekVISA Programmer Manual

2-65

Operations

viScanf (vi, readFmt, <argl, arg2,...>)

NOTE. Inversion 1.1 and earlier versions of TekVISA, this operation returns the
value NOT IMPLEMENTED.

Usage Readsand formats data from adevice using the optional variable-length
argument list.

C Format ViStatus viScanft (ViSession vi, ViString readFmt, ...)
Visual Basic Format Not Applicable

Parameters Table 2-95: viScanf() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

readFmt IN String describing the format for arguments.

<argl, ouTt Optional argument(s) into which the data is read and the format
arg2,...> string is applied.

Return Values Table 2-96: viScanf() Completion Codes

Completion Codes Description

VI_SUCCESS Data was successfully read and formatted into arg parame-
ter(s)

Table 2-97: viScanf() Error Codes

Error Codes Description

VI_ERROR_INV_SESSION | The given session or object reference is invalid (both are the
VI_ERROR_INV_OBJECT same value).

VI_ERROR_RSRC_LOCKED | Specified operation could not be performed because the
resource identified by vi has been locked for this kind of

access.
VI_ERROR_IO Could not perform read operation because of I/O error.
VI_ERROR_TMO Timeout expired before read operation completed.

2-66 Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-97: viScanf() Error Codes (Cont.)

Error Codes Description

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.

VI_ ERROR_ALLOC The system could not allocate a formatted I/O buffer because
of insufficient system resources.

CExample 7/ Get first char and validate
status = viScanf(vi, “%c”, &c);
if (status < VI_SUCCESS) goto error;
assert(c == *#7);

// Get width of element field.

status = viScanf(vi, “%c”, &c);

if (status < VI_SUCCESS) goto error;
assert(c >= 0”7 && c <= 797);

// Read element characters

count = ¢c — ’07;

for (i = 0; 1 < count; i++) {
status = viScanf(vi, “%c”, &c);
if (status < VI_SUCCESS) goto error;
assert(c >= 0”7 && c <= 797);

}

// Read waveform into allocated storage
ptr = (double*) malloc(*elements*sizeof(double));

for (i = 0; 1 < *elements; i++) {
status = viScanf(vi, “%c”, &c);
if (status < VI_SUCCESS) goto error;
ptr[i] = (((double) c) — yoffset) * ymult;
}

return ptr;

Comments The viScanf() operation receives data from a device, formatsit by using the
format string, and stores the resulting data in the arg parameter list.

H TheviRead() operation is used for the actual low-level read from the device.
Asaresult, you should not use the viRead() and viScanf() operationsin the
same session.

Tektronix Version 1.1 TekVISA Programmer Manual 2-67

Operations

NOTE. Because the prototype for this function cannot provide complete
type-checking, remember that all output parameters must be passed by reference.

H Theformat string can have format specifier sequences, white characters, and
ordinary characters.

H Thewhite characters—blank, vertical tabs, horizontal tabs, form feeds,
new line/linefeed, and carriage return—are ignored except in the case of
%c and %].

H All other ordinary characters except % should match the next character
read from the device.

H Theformat string consists of a %, followed by optional modifier flags,
followed by one of the format codes in that sequence. It is of the form

%[modifier]format code
H where the optional modifier describes the data format,
H while format code indicates the nature of data (data type).

H One and only one format code should be performed at the specifier sequence.
A format specification directs the conversion to the next input arg. The
results of the conversion are placed in the variable that the corresponding
argument points to, unless the * assignment-suppressing character is given.
In such acase, no arg is used and the results are ignored.

H The viScanf() operation accepts input until an END indicator is read or all
the format specifiersin the readFmt string are satisfied. Thus, detecting an
END indicator before the readFmt string is fully consumed will result in
ignoring the rest of the format string. Also, if some dataremainsin the
buffer after all format specifiersin the readFmt string are satisfied, the data
will be kept in the buffer and will be used by the next viScanf() operation.

H When viScanf() times out, the next call to viScanf() will read from an empty
buffer and force aread from the device. Notice that when an END indicator
isreceived, not al argumentsin the format string may be consumed.
However, the operation still returns a successful completion code. The
following two tables describe optional modifiers that can be used in aformat
specifier sequence.

2-68 Tektronix Version 1.1 TekVISA Programmer Manual

Operations

ANSI C Standard
Modifiers

Enhanced Modifiers to
ANSI C Standards

Table 2-98: ANSI C Standard Modifiers used with viScanf()

Modifier

Supported with For-
mat Code

Description

An integer specifying
field width.

%s, %c, %[] format
codes

It specifies the maximum field width that the
argument will take. A ‘# may also appear
instead of the integer field width, in which case
the next arg is a reference to the field width.
This arg is a reference to an integer for %c
and %s. The field width is not allowed for %d
or %f.

A length modifier (‘h,’
1L 'z, or'Z). z
and Z are not ANSI C
standard modifiers.

h (d, b format codes) |
(d, f, b format codes)
L (f format code) z (b
format code) Z (b

format code)

The argument length modifiers specify one of
the following:

a. The h modifier promotes the argument to
be a reference to a short integer or
unsigned short integer, depending on the
format code.

b. The I modifier promotes the argument to
point to a long integer or unsigned long
integer.

¢. The L modifier promotes the argument to
point to a long double floats parameter.

d. The z modifier promotes the argument to
point to an array of floats.

e. The Z modifier promotes the argument to
point to an array of double floats.

All format codes

An asterisk (*) acts as the assignment
suppression character. The input is not
assigned to any parameters and is discarded.

Table 2-99: Enhanced Modifiers to ANSI C Standards used with viScanf()

Modifier

Supported with For-
mat Code

Description

A comma (,) followed
by an integer n,
where n represents
the array size.

%d and %f only

The corresponding argument is interpreted as
a reference to the first element of an array of
size n. The first n elements of this list are
printed in the format specified by the format
code. A number sign (#) may be present after
the comma (,) modifier, in which case an extra
arg is used. This arg must be an integer
representing the array size of the given type.

Tektronix Version 1.1 TekVISA Programmer Manual

2-69

Operations

Format Codes ~ ANSI C Format Codes
¢ Argument type: A reference to a character.

Table 2- 100: Modifiers used with Argument Type ¢ with viScanf()

Modifier Interpretation

Default function- | A character is read from the device and stored in the parameter. field width

ality field width number of characters are read and stored at the reference
location (the default field width is 1). No NULL character is added at the end
of the data block.

NOTE. This format code does not ignore white space in the device input stream.

d Argument type: A reference to an integer.

Table 2-101: Modifiers used with Argument Type d with viScanf()

Modifier Interpretation
Default function- | Characters are read from the device until an entire number is read. The
ality number read may be in either IEEE 488.2 formats <DECIMAL NUMERIC

PROGRAM DATA>, also known as NRf; flexible numeric representation
(NR1, NR2, NR3...); or <NON-DECIMAL NUMERIC PROGRAM DATA>
(#H, #Q, and #B).

field width The input number will be stored in a field at least this wide.

Length modifier | | arg is a reference to a long integer.

Length modifier h | arg is a reference to a short integer. Rounding is performed according to
IEEE 488.2 rules (0.5 and up).

, array size arg points to an array of integers (or long or short integers, depending on
the length modifier) of size array size. The elements of this array should be
separated by commas. Elements will be read until either array size number
of elements are consumed or they are no longer separated by commas.

f Argument type: A reference to afloating point number.

Table 2- 102: Modifiers used with Argument Type f with viScanf()

Modifier Interpretation
Default function- | Characters are read from the device until an entire number is read. The
ality number read may be in either IEEE 488.2 formats <DECIMAL NUMERIC

PROGRAM DATA> (NRY) or <NON-DECIMAL NUMERIC PROGRAM
DATA> (#H, #Q, and #B)

field width The input number will be stored in a field at least this wide.

2-70 Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-102: Modifiers used with Argument Type f with viScanf() (Cont.)

Modifier

Interpretation

Length modifier |

arg is a reference to a double floating point number.

Length modifier L

arg is a reference to a long double number.

, array size

arg points to an array of floats (or double or long double, depending on the
length modifier) of size array size. The elements of this array should be
separated by commas. Elements will be read until either array size number
of elements are consumed or they are no longer separated by commas.

s Argument type: A reference to a string.

Table 2- 103: Modifiers used with Argument Type s with viScanf()

Modifier

Interpretation

Default function-
ality

All leading white space characters are ignored. Characters are read from the
device into the string until a white space character is read.

field width

This flag gives the maximum string size. If the field width contains a number
sign (#), two arguments are used. The first argument read is a pointer to an
integer specifying the maximum array size. The second should be a
reference to an array. In case of field width characters already read before
encountering a white space, additional characters are read and discarded
until a white space character is found. In case of # field width, the actual
number of characters read are stored back in the integer pointed to by the
first argument.

Enhanced Format Codes
b Argument type: A reference to a data array.

Tektronix Version 1.1 TekVISA Programmer Manual 2-71

Operations

Table 2- 104: Modifiers used with Argument Type b with viScanf()

Modifier Interpretation
Default function- | The data must be in IEEE 488.2 <ARBITRARY BLOCK PROGRAM DATA>
ality format. The format specifier sequence should have a flag describing the

field width, which will give a maximum count of the number of bytes (or
words or longwords, depending on length modifiers) to be read from the
device. If the field width contains a # sign, two arguments are used. The first
arg read is a pointer to a long integer specifying the maximum number of
elements that the array can hold. The second arg should be a reference to
an array. Also, the actual number of elements read is stored back in the first
argument. In the absence of length modifiers, the data is assumed to be of
byte-size elements. In some cases, data might be read until an END
indicator is read.

Length modifier h | arg points to an array of 16-bit words, and count specifies the number of
words. Data that is read is assumed to be in IEEE 488.2 byte ordering. It will
be byte swapped and padded as appropriate to native computer format.

Length modifier | | arg points to an array of 32-bit longwords, and count specifies the number
of longwords. Data that is read is assumed to be in IEEE 488.2 byte
ordering. It will be byte swapped and padded as appropriate to native
computer format.

Length modifier z | arg points to an array of floats, and count specifies the number of floating
point numbers. Data that is read is an array of 32-bit IEEE 754 format
floating point numbers.

Length modifier | arg is a reference to a long double number.
z

, array size arg points to an array of doubles, and the count specifies the number of
floating point numbers. Data that is read is an array of 64-bit IEEE 754
format floating point numbers.

t Argument type: A reference to astring.

Table 2-105: Modifiers used with Argument Type t with viScanf()

Modifier Interpretation

Default function- | Characters are read from the device until the first END indicator is received.

ality The character on which the END indicator was received is included in the
buffer.

field width This flag gives the maximum string size. If an END indicator is not received

before field width number of characters, additional characters are read and
discarded until an END indicator arrives. #field width has the same meaning
as in %es.

T Argument type: A reference to astring.

2-72 Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-106: Modifiers used with Argument Type T with viScanf()

Modifier Interpretation

Default function- | Characters are read from the device until the first linefeed character (\n) is
ality received. The linefeed character is included in the buffer.

field width This flag gives the maximum string size. If a linefeed character is not

received before field width number of characters, additional characters are
read and discarded until a linefeed character arrives. #field width has the
same meaning as in %s.

y Argument type: A location of ablock of binary data.

Table 2- 107: Modifiers used with Argument Type y with viScanf()

Modifier

Interpretation

Default function-
ality

The data block is read as raw binary data. The format specifier sequence
should have a flag describing the array size, which will give a maximum
count of the number of bytes (or words or longwords, depending on length
modifiers) to be read from the device. If the array size contains a # sign, two
arguments are used. The first argument read is a pointer to a long integer
that specifies the maximum number of elements that the array can hold. The
second argument should be a reference to an array. Also, the actual number
of elements read is stored back in the first argument. In the absence of
length modifiers, the data is assumed to be byte-size elements. In some
cases, data might be read until an END indicator is read.

Length modifier h

The data block is assumed to be a reference to an array of unsigned short
integers (16 bits). The count corresponds to the number of words rather than
bytes. If the optional “!ol” modifier is present, the data read is assumed to be
in little endian format; otherwise, the data read is assumed to be in standard
IEEE 488.2 format. The data will be byte swapped and padded as
appropriate to native computer format.

Length modifier |

The data block is assumed to be a reference to an array of unsigned long
integers (32 bits). The count corresponds to the number of longwords rather
than bytes. If the optional “lol” modifier is present, the data read is assumed
to be in little endian format; otherwise, the data read is assumed to be in
standard IEEE 488.2 format. The data will be byte swapped and padded as
appropriate to native computer format.

Byte order modi- | The data being read is assumed to be in standard IEEE 488.2 (big endian)
fier lob format. This is the default behavior if neither !ob nor lol is present.

Byte order modi- | The data being read is assumed to be in little endian format.

fier lol

H For ANSI C compatibility, VISA also supports the following conversion

codes for input codes: ’i,” "0, ’

U,’ 1n’1 ,X,, ,X,, 1e’1 ,E,, 1g’1 ,G,, 1p’1 1[".]’1

and'[*...]." For further explanation of these conversion codes, see the ANSI

C Standard.

Tektronix Version 1.1 TekVISA Programmer Manual

2-73

Operations

See Also Reading and Writing Formatted Data
viPrintf (vi, writeFmt, <argl, arg2, ...>)
viQueryf (vi, writeFmt, readFmt, <argl, arg2, ...>)
VI_ATTR_RD BUF OPER_MODE

viSetAttribute (vi, attribute, attrState)

2-74

Usage Sets the state of an attribute for the specified session, event, or find list.

C Format ViStatus viSetAttribute(ViObject vi, ViAttr attribute,
ViAttrState attrState)

Visual Basic Format ~ viSetAttribute (Byval vi As Long, Byval attribute As Long,
Byval attrState As Long) As Long

Parameters Table 2- 108: viSetAttribute() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

attribute IN Attribute for which the state is to be modified.

attrState IN The state of the attribute to be set for the specified resource.

The interpretation of the individual attribute value is defined by
the resource.

Return Values Table 2- 109: viSetAttribute() Completion Codes

Completion Codes

Description

VI_SUCCESS

Attribute value set successfully

VI WARN_NSUP_ATTR_

STATE

Although the specified attribute state is valid, it is not
supported by this implementation.

Table 2- 110: viSetAttribute() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_ATTR

The specified attribute is not defined by the referenced
session, event, or find list.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-110: viSetAttribute() Error Codes (Cont.)

Error Codes

Description

VI_ERROR_NSUP_ATTR_
STATE

The specified state of the attribute is not valid, or is not
supported as defined by the session, event, or find list.

VI_ERROR_ATTR_READON-
LY

The specified attribute is read-only.

CExample 7/ Set timeout to 5 seconds
status = viSetAttribute(vi, VI_ATTR_TMO_VALUE, 5000);
if (status < VI_SUCCESS) goto error;

Comments The viSetAttribute() operation is used to modify the state of an attribute for the

specified object.

H BothVI_WARN_NSUP _ATTR_STATE and VI_ER-
ROR_NSUP_ATTR_STATE indicate that the specified attribute state is not

supported.

H A resource normally returns the error code VI_ER-
ROR_NSUP_ATTR_STATE when it cannot set a specified attribute

state.

H Thecompletion code VI_WARN_NSUP_ATTR_STATE isintended to
alert the application that although the specified optiona attribute state is
not supported, the application should not fail. One example is attempting
to set an attribute value that would increase performance speeds. Thisis
different from attempting to set an attribute value that specifies required
but nonexistent hardware, or a value that would change assumptions a
resource might make about the way datais stored or formatted (such as

byte order).

See Also Setting and Retrieving Attributes
viGetAttribute (vi, attribute, attr State)

viSetBuf (vi, mask, size)

NOTE. Inversion 1.1 and earlier versions of TekVISA, this operation returns the
value NOT IMPLEMENTED.

Usage Setsthesize of the formatted 1/O and/or seria buffer(s).

Tektronix Version 1.1 TekVISA Programmer Manual

2-75

Operations

2-76

C Format

Visual Basic Format

Parameters

Return Values

C Example

Comments

ViStatus viSetBuf(ViSession vi, ViUlntl6 mask,

Viulnt32 size)

viSetBuf (Byval vi As Long, ByVal mask
As Integer, ByVal size As Long) As Long

Table 2- 111: viSetBuf() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

mask IN Specifies the type of buffer.

size IN The size to be set for the specified buffer(s)

Table 2-112: viSetBuf() Completion Codes

Completion Codes

Description

VI_SUCCESS

Buffer size set successfully.

VI_WARN_NSUP_BUF

The specified buffer is not supported.

Table 2- 113: viSetBuf() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_ALLOC

The system could not allocate the buffer(s) of the specified size
because of insufficient system resources.

VI_ERROR_INV_MASK

The system cannot set the buffer for the given mask.

viSetBuf(vi, VI_READ_BUF, 1024*10); // set buffer to 10K

The viSetBuf() operation changes the buffer size of the read and/or write buffer
for formatted 1/0O and/or serial communication. The mask parameter specifies the
buffer for which to set the size. The mask parameter can specify multiple buffers
by bit-ORing any of the following values together.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2- 114: Flags used with Mask Parameter with viSetBuf()

Flag Interpretation

VI_READ_BUF Formatted 1/0 read buffer.
VI_WRITE_BUF Formatted 1/0 write buffer.
VI_ASRL_IN_BUF Serial communication receive buffer.
VI_ASRL_OUT_BUF Serial communication transmit buffer.

H A call to viSetBuf() flushes the session’s rel ated read/write buffer(s).
Although you can explicitly flush the buffers by making a call to viFlush(),
the buffers are flushed implicitly under some conditions. These conditions
vary for the viPrintf() and viScanf() operations.

H Sincenot al seria drivers support user-defined buffer sizes, VISA may not
be able to control this feature. If an application requires a specific buffer size
for performance reasons, but VISA cannot guarantee that size, we recom-
mend you use some form of handshaking to prevent overflow conditions.

See Also Reading and Writing Formatted Data
ViFlush (vi, mask)

VviSPrintf (vi, buf, writeFmt, <argl, arg2,...>)

NOTE. Inversion 1.1 and earlier versions of TekVISA, this operation returns the
value NOT IMPLEMENTED.

Usage Formatsand writes datato a user-specified buffer using an optional variable-
length argument list.

CFormat ViStatus viSPrintf (ViSession vi, ViPBuf buf,
ViString writeFmt, ...)

Visual Basic Format Not Applicable

Tektronix Version 1.1 TekVISA Programmer Manual 2-77

Operations

2-78

Parameters

Return Values

C Example

Table 2- 115: viSPrintf() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

buf ouT Buffer where data is to be written.

writeFmt IN The format string to apply to arguments.

<argl, IN Optional argument(s) on which the format string is applied. The
arg2,...> formatted data is written to the specified buffer.

Table 2- 116: viSPrintf() Completion Codes

Completion Codes

Description

VI_SUCCESS

Parameters were successfully formatted.

Table 2- 117: viSPrintf() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_INV_FMT

A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT

A format specifier in the writeFmt string is not supported.

VI_ERROR_ALLOC

The system could not allocate a formatted I/O buffer because
of insufficient system resources.

#include
#include
#include
#include

<stdio.h>
<string.h>
<visa.h>
<stdarg.h>

// This example opens a specific GPIB device, sets the data

start

// and stop locations and logs the command sent to c:\log—

file.txt

int main(int argc, char* argv[])

{

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

ViSession rm = VI_NULL, vi = VI _NULL;

ViStatus status;

ViChar buffer[256];

const long start = 1;

const long stop = 500;

FILE* log = fopen(’C:\\logfile._txt*“, ~w*“);

// Open a default Session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;

// Open the gpib device at primary address 1, gpib

board 8
status = viOpen(rm, ”GPIBO::1::INSTR*“, VI_NULL,
V1 _NULL,

&vi);
if (status < VI_SUCCESS) goto error;

status = ViSPrintf(vi, (ViBuf) buffer, “data:start %d;
data:stop %d”’, start, stop);
if (status < VI_SUCCESS) goto error;

if (log = NULL)
fprintf(log, 7%s’n“, buffer);

status = viWrite(vi, (ViBuf) buffer, strlen(buffer),
VI_NULL);
if (status < VI_SUCCESS) goto error;

// Clean up
if (log = NULL)
fclose(log);
viClose(vi); // Not needed, but makes things a bit
more
// understandable
viClose(rm);
return O;
error:
// Report error and clean up
viStatusDesc(vi, status, buffer);
fprintf(stderr, “failure: %s\n*“, buffer);
it (rm = VI_NULL) {
viClose(rm);
}
return 1;
}

Tektronix Version 1.1 TekVISA Programmer Manual 2-79

Operations

Comments

See Also

The viSPrintf() operation is similar to viPrintf(), except that the output is not
written to the device; it is written to the user-specified buffer. This output buffer
will be NULL terminated.

H If this operation outputs an END indicator before al the arguments are
satisfied, the rest of the writeFmt string is ignored and the buffer string is
still terminated by a NULL.

Reading and Writing Formatted Data
viSScanf (vi, readFmt, <argl, arg2,...>)

viSScanf (vi, buf, readFmt, <argl, arg2,...>)

Usage

C Format

Visual Basic Format

Parameters

Return Values

2-80

NOTE. Inversion 1.1 and earlier versions of TekVISA, this operation returns the
value NOT IMPLEMENTED.

Reads and formats data from a user-specified buffer using an optional variable-
length argument list.

ViStatus viSScanf (ViSession vi, ViPBuf buf,
ViString readFmt, ...)

Not Applicable

Table 2-118: viSScanf() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

readFmt IN String describing the format for arguments.

<argl, ouTt Optional argument(s) into which the data is read and to which
arg2,...> the format string is applied.

Table 2-119: viSScanf() Completion Codes

Completion Codes Description

VI_SUCCESS Data was successfully read and formatted into arg parame-
ter(s).

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

C Example

Table 2-120: viSScanf() Error Codes

Error Codes Description

VI_ERROR_INV_SESSION | The given session or object reference is invalid (both are the
VI_ERROR_INV_OBJECT same value).

VI_ERROR_RSRC_LOCKED | Specified operation could not be performed because the

resource identified by vi has been locked for this kind of

access.

VI_ERROR_IO Could not perform read operation because of I/0 error.
VI_ERROR_TMO Timeout expired before read operation completed.
VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.
VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.
VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because

of insufficient system resources.

#include <stdio.h>
#include <string.h>
#include <visa.h>

#include <stdarg.h>

// This example opens a specific GPIB device, and scans
// 10 comma—separated integers into a long array

int main(int argc, char* argv[])

{

ViSession rm = VI_NULL, vi = VI _NULL;
ViStatus status;

char buffer[256];

long scanArray[10];

ViChar *scanStr =

”0,1,2,3,4,5,6,7,8,9%;

int i;
// Open a default Session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;

// Open the gpib device at primary address 1, gpib

board 8

status = viOpen(rm, ”GPIBO::1::INSTR*“, VI_NULL,

VI_NULL,

&vi);
if (status < VI_SUCCESS) goto error;

// Read a 10-element comma—separated array into a long

Tektronix Version 1.1 TekVISA Programmer Manual 2-81

Operations

Comments

See Also

array
status = viSScanf(vi, (ViBuf) scanStr, “%,10d”,
scanArray);
if (status < VI_SUCCESS) goto error;

for (i = 0; 1 < 10; 1++) {
printf(C’%d *““, scanArray[i]);
}

printf(C’\n*);

viClose(vi); // Not needed, but makes things a bit

more
// understandable
viClose(rm);
return O;
error:
// Report error and clean up
viStatusDesc(vi, status, buffer);
fprintf(stderr, “failure: %s\n*“, buffer);
it (rm = VI_NULL) {
viClose(rm);
}
return 1;
}

The viSScanf() operation is similar to viScanf(), except that the datais read from
a user-specified buffer rather than from a device.

Reading and Writing Formatted Data
viSPrintf (vi, writeFmt, <argl, arg2,...>)

viStatusDesc (vi, status, desc)

2-82

Usage

C Format

Visual Basic Format

Retrieves a user-readabl e description of the specified status code.

ViStatus viStatusDesc (ViObject vi, ViStatus status,
ViString desc)

viStatusDesc (ByVval vi As Long, ByVal status
As Long, ByVal desc As String) As Long

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Parameters Table 2-121: viStatusDesc() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session, event, or find list.

status IN Status code to interpret.

desc ouTt The user-readable string interpretation of the status code
passed to the operation.

Return Values Table 2-122: viStatusDesc() Completion Codes

Completion Codes Description

VI_SUCCESS Description successfully returned.
VI_WARN_UNKNOWN_ The status code passed to the operation could not be
STATUS interpreted.

C Example 7/ Report error
viStatusDesc(vi, status, buffer);
fprintf(stderr, “failure: %s\n*“, buffer);

Comments The viStatusDesc() operation is used to retrieve a user-readable string that
describes the status code presented.

H If the string cannot be interpreted, the operation returns the warning code
VI_WARN_UNKNOWN_STATUS. However, the output string desc is valid
regardless of the status return value.

NOTE. The size of the desc parameter should be at least 256 bytes.

See Also Appendix B: Completion and Error Codes

viTerminate (vi, degree, jobld)
Usage Terminates normal execution of an asynchronous read or write operation.

C Format ViStatus viTerminate(ViObject vi, ViUIntl6 degree,
ViJobld jobld)

Tektronix Version 1.1 TekVISA Programmer Manual 2-83

Operations

2-84

Visual Basic Format

Parameters

Return Values

C Example

Comments

Not Applicable

Table 2- 123: viTerminate() Parameters

Name Direction Description

Vi IN Unique logical identifier to an object.
degree IN VI_NULL

jobld IN Specifies an operation identifier.

Table 2- 124: viTerminate() Completion Codes

Completion Codes

Description

VI_SUCCESS

Request serviced successfully.

Table 2- 125: viTerminate() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_INV_JOB_ID

Specified job identifier is invalid.

This message is returned If the operation associated with the
specified jobld has already completed.

VI_ERROR_INV_DEGREE

Specified degree is invalid.

viTerminate(vi, VI_NULL, jobid);

The vi Terminate() operation is used to request a session to terminate normal
execution of an operation, as specified by the jobld parameter.

H Thejobld parameter is a unique value generated from each call to an
asynchronous operation.

H If auser passes VI_NULL asthejobld valueto viTerminate(), VISA aborts
the specified asynchronous operation and the resulting 1/0 compl etion event
contains the status code VI_ERROR_ABORT.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

See Also Asynchronous Read/Write
viReadAsync (vi, buf, count, jobl d)
viwriteAsync (vi, buf, count, jobl d)

viUninstallHandler (vi, eventType, handler, userHandle)

Usage Uninstals callback handler(s) for the specified event .

C Format ViStatus viUninstallHandler (ViSession vi, ViEventType

eventType,

ViHndlr handler, ViAddr userHandle)

Visual Basic Format Not Applicable

Parameters Table 2- 126: viUninstallHandler() Parameters

Description

Unique logical identifier to a session.

Logical event identifier.

Interpreted as a valid reference to a handler to be uninstalled
by a client application.

Name Direction
vi IN
eventType IN
handler IN
userHandle IN

A value specified by an application that can be used for
identifying handlers uniquely in a session for an event.

Return Values Table 2- 127: viUninstallHandler() Completion Codes

Completion Codes

Description

VI_SUCCESS

Event handler successfully uninstalled.

Table 2- 128: viUninstallHandler() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_INV_EVENT

Specified event type is not supported by the resource.

Tektronix Version 1.1 TekVISA Programmer Manual

2-85

Operations

C Example

Comments

viUnlock (vi)

2-86

See Also

Usage

C Format

Table 2- 128: viUninstallHandler() Error Codes (Cont.)

Error Codes Description

VI_ERROR_INV_HNDLR _ Either the specified handler reference or the user context value
REF (or both) does not match any installed handler.
VI_ERROR_HNDLR _ A handler is not currently installed for the specified event.
NINSTALLED

// Cleanup and exit

status = viDisableEvent(vi, VI_EVENT_SERVICE_REQ, VI_HNDLR);

if (status < VI_SUCCESS) goto error;

status = viUninstallHandler(vi, VI_EVENT_SERVICE_REQ,
ServiceRegEventHandler, NULL);

if (status < VI_SUCCESS) goto error;

viClose(vi);

viClose(rm);

The viUninstallHandler() operation allows applications to uninstall handlers for
events on sessions.

H Applications should also specify the value in the userHandle parameter that
was passed while installing the handler. VISA identifies handlers uniquely
using the handler reference and this value.

H All the handlers, for which the handler reference and the userhandle value
matches, are uninstalled.

Table 2- 129: Special Values for handler Parameter with viUninstallHandler()

Value Description

VI_ANY_HNDLR Causes the operation to uninstall all the handlers with the
matching value in the userHandle parameter.

Handling Events
vilnstallHandler (vi, eventType, handler, userHandle)

Relinquish alock on the specified resource.

ViStatus viUnlock (ViSession vi)

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Visual Basic Format

viUnlock (Byval vi As Long) As Long

Description

Parameters Table 2-130: viUnlock() Parameters
Name Direction
vi IN

Unique logical identifier to a session.

Return Values

Table 2- 131: viUnlock() Completion Codes

Completion Codes

Description

VI_SUCCESS

Lock successfully relinquished.

VI_SUCCESS_NESTED_
EXCLUSIVE

Call succeeded, but this session still has nested exclusive
locks.

VI_SuC-
CESS_NESTED_SHARED

Call succeeded, but this session still has nested shared locks.

Table 2- 132: viUnlock() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION

VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_SESN_
NLOCKED

The current session did not have any lock on the resource.

Tektronix Version 1.1 TekVISA Programmer Manual

2-87

Operations

2-88

C Example

Comments

See Also

ViSession rm, vi;

char string[256];
Viulnt32 retCnt;
int i =0;

iT (viOpenDefaultRM(&rm) < VI_SUCCESS) return;
if (viOpen(rm, ”GPIB8::1::INSTR*“, NULL, NULL, &vi) <

VI_SUCCESS)
return;
for (i 1; 1 <100; 1++) {

viLock(vi, VI_EXCLUSIVE_LOCK, VI_TMO_INFINITE, NULL,
NULL);
if (viWrite(vi, (ViBuf) ”chl:scale?*, 10, &retCnt)
< VI_SUCCESS) return;
if (viRead(vi, (ViBuf) string, 256, &retCnt)
< VI_SUCCESS) return;
printf(C’%d: scale %s*“, i, string);

viunlock(vi);

This operation is used to relinquish the lock previously obtained using the
viLock() operation.

L ocking and Unlocking Resources
viLock (vi, lockType, timeout, requestedKey, accessKey)

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

viVPrintf (vi, writeFmt, params)

Usage

C Format

Visual Basic Format

Parameters

Return Values

NOTE. Inversion 1.1 and earlier versions of TekVISA, this operation returns the
value NOT IMPLEMENTED.

Formats and writes data to a device using a pointer to a variable-length argument

list.

ViStatus viVPrintf (ViSession vi, ViString writeFmt,
ViVALIst params)

viVPrintf (ByVal vi As Long, ByVal writeFmt As String, ByVal
params As Any) As Long

Table 2- 133: viVPrintf() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

writeFmt IN The format string to apply to parameters in ViVAList

params IN A pointer to a variable argument list containing the variable
number of parameters on which the format string is applied.
The formatted data is written to the specified device.

Table 2- 134: viVPrintf() Completion Codes

Completion Codes

Description

VI_SUCCESS

Parameters were successfully formatted.

Table 2- 135: viVPrintf() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the

same value).

VI_ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_IO

Could not perform write operation because of /O error.

Tektronix Version 1.1 TekVISA Programmer Manual

2-89

Operations

Table 2- 135: viVPrintf() Error Codes (Cont.)

Error Codes Description

VI_ERROR_TMO Timeout expired before write operation completed.

VI_ERROR_INV_FMT A format specifier in thewriteFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not supported.

VI_ ERROR_ALLOC The system could not allocate a formatted I/O buffer because
of insufficient system resources.

CExample #include <stdio.h>
#include <string.h>
#include <visa.h>
#include <stdarg.h>

// My printf which always prepends the command with a header

off
ViStatus MyPrintf(ViSession vi, ViString fmt, ...)
{
ViStatus retval;
ViVALiIst args;
viBufWrite(vi, (ViBuf) ’header off*“, 10, VI_NULL);
va_start(args, fmt);
retval = viVPrintf(vi, fmt, args);
va_end(args);
return retval;
}
int main(int argc, char* argv[])
{
ViSession rm = VI_NULL, vi = VI _NULL;
ViStatus status;
char buffer[256];
long const start = 1;
long const stop = 500;
// Open a default Session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;
// Open the gpib device at primary address 1, gpib
board 8
status = viOpen(rm, “GPIBO::1::INSTR*“, VI_NULL,
VI_NULL,

2-90 Tektronix Version 1.1 TekVISA Programmer Manual

Operations

&vi);
if (status < VI_SUCCESS) goto error;

status = MyPrintf(vi, “data:start %d;data:stop %d*,
start,
stop);
if (status < VI_SUCCESS) goto error;

viClose(vi); // Not needed, but makes things a bit

more
// understandable
viClose(rm);
return O;
error:
// Report error and clean up
viStatusDesc(vi, status, buffer);
fprintf(stderr, “failure: %s\n*“, buffer);
it (rm = VI_NULL) {
viClose(rm);
}
return 1;
}

Comments Thisoperation is similar to viPrintf() except that params provides a pointer to a
variable argument list rather than the variable argument list itself (with separate
arg parameters).

See Also Reading and Writing Formatted Data
viV Scanf (vi, readFmt, params)
viVQueryf(vi, writeFmt, readFmt, params)

viVQueryf (vi, writeFmt, readFmt, params)

NOTE. Inversion 1.1 and earlier versions of TekVISA, this operation returns the
value NOT IMPLEMENTED.

Usage Writes and reads formatted data to and from a device using a pointer to a
variable-length argument list.

C Format ViStatus viVQueryf (ViSession vi, ViString writeFmt,
ViString readFmt,ViVAList params)

Tektronix Version 1.1 TekVISA Programmer Manual 2-91

Operations

Visual Basic Format ~ viVvQueryf (Byval vi As Long, ByVal writeFmt As String, ByVal
readFmt As String, ByVal params As Any) As Long

Parameters Table 2-136: vivQueryf() Parameters

Description

Unique logical identifier to a session.

The format string to apply to write parameters in ViVAList

The format string to apply to read parameters in ViVAList

Name Direction
Vi IN
writeFmt IN
readFmt IN
params IN OUT

A pointer to a variable argument list containing the variable
number of write and read parameters. The write parameters
are formatted and written to the specified device. The read
parameters store the data read from the device after the format
string is applied to the data.

Return Values Table 2- 137: vivVQueryf() Completion Codes

Completion Codes

Description

VI_SUCCESS

Successfully completed the Query operation.

Table 2-138: vivVQueryf() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_IO

Could not perform read/write operation because of I/O error.

VI_ERROR_TMO

Timeout expired before read/write operation completed.

VI_ERROR_INV_FMT

A format specifier in the writeFmt or readFmt string is invalid.

VI_ERROR_NSUP_FMT

A format specifier in the writeFmt or readFmt string is not
supported.

VI_ERROR_ALLOC

The system could not allocate a formatted I/O buffer because
of insufficient system resources.

2-92

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

CExample #include <stdio.h>
#include <visa.h>
#include <stdarg.h>

// My own Queryf that flushes the write buffer before doing

a query.
ViStatus MyQueryf(ViSession vi, ViString writeFmt, ViString
readFmt, ...)
{
ViStatus retval ;
ViVALiIst args;

// Make sure pending writes are written
retval = viFlush(vi, VI_WRITE_BUF | VI_READ_BUF);
if (retval < VI_SUCCESS) return retval;

// Pass Query on to VISA

va_start(args, readFmt);

retval = viVQueryf(vi, writeFmt, readFmt, args);
va_end(args);

return retval;

Comments Thisoperation is similar to viQueryf() except that params provides a pointer to a
variable argument list rather than the variable argument list itself (with separate
arg parameters).

NOTE. Because the prototype for this function cannot provide complete
type-checking, remember that all output parameters must be passed by reference.

See Also Reading and Writing Formatted Data
viV Scanf (vi, readFmt, params)
viVPrintf(vi, writeFmt, params)

Tektronix Version 1.1 TekVISA Programmer Manual 2-93

Operations

viVScanf (vi, readFmt, params)

NOTE. Inversion 1.1 and earlier versions of TekVISA, this operation returns the
value NOT IMPLEMENTED.

Usage Readsand formats datafrom adevice using a pointer to a variable-length
argument list.

C Format ViStatus viVScanft (ViSession vi, ViString readFmt,ViVALiIst
params)

Visual Basic Format viVvScanf (Byval vi As Long, Byval readFmt As String, ByVval
params As Any) As Long

Parameters Table 2-139: vivScanf() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

readFmt IN The format string to apply to read parameters in ViVAList

params ouTt A pointer to a variable argument list containing the variable
number of parameters into which the data is read and the
format string is applied.

Return Values Table 2-140: vivScanf() Completion Codes

Completion Codes Description

VI_SUCCESS Data was successfully read and formatted into arg parame-
ter(s).

Table 2- 141: viVScanf() Error Codes

Error Codes Description

VI_ERROR_INV_SESSION | The given session or object reference is invalid (both are the
VI_ERROR_INV_OBJECT same value).

VI_ERROR_RSRC_LOCKED | Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_IO Could not perform read operation because of I/0 error.

2-94 Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2- 141: viVScanf() Error Codes (Cont.)

Error Codes Description

VI_ERROR_TMO Timeout expired before read operation completed.

VI_ERROR_INV_FMT A format specifier in thereadFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because
of insufficient system resources.

CExample #include <stdio.h>
#include <visa.h>
#include <stdarg.h>

// My own Scan that flushes the write buffer before doing a

query.
ViStatus MyScanf(ViSession vi, ViString readFmt, ...)
{

ViStatus retval;

ViVALiIst args;

// Make sure pending writes are written
retval = viFlush(vi, VI_WRITE_BUF);
if (retval < VI_SUCCESS) return retval;

// Pass Query on to VISA
va_start(args, readFmt);

retval = viVScanf(vi, readFmt, args);
va_end(args);

return retval;

Comments Thisoperation is similar to viScanf() except that params provides a pointer to a
variable argument list rather than the variable argument list itself (with separate
arg parameters).

NOTE. Because the prototype for this function cannot provide complete
type-checking, remember that all output parameters must be passed by reference.

See Also Reading and Writing Formatted Data
viVQueryf (vi, writeFmt, readFmt, params)
viVPrintf(vi, writeFmt, params)

Tektronix Version 1.1 TekVISA Programmer Manual 2-95

Operations

viVSPrintf (vi, buf, writeFmt, params)

2-96

Usage

C Format

Visual Basic Format

Parameters

Return Values

NOTE. Inversion 1.1 and earlier versions of TekVISA, this operation returns the
value NOT IMPLEMENTED.

Formats and writes data to a user-specified buffer using a pointer to a variable-

length argument list.

ViStatus viVSPrintf (ViSession vi, ViPBuf buf, ViString
writeFmt, ViVALIst params)

VviVSPrintf (Byval vi As Long, Byval buf As String, ByVval
writeFmt As String, ByVal params As Any) As Long

Table 2-142: viVSPrintf() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

buf ouT Buffer where data is to be written.

writeFmt IN The format string to apply to parameters in ViVAList.

params IN A pointer to a variable argument list containing the variable
number of parameters on which the format string is applied.
The formatted data is written to the specified buffer.

Table 2-143: viVSPrintf() Completion Codes

Completion Codes

Description

VI_SUCCESS

Parameters were successfully formatted.

Table 2-144: viVSPrintf() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-144: viVSPrintf() Error Codes (Cont.)

Error Codes Description

VI_ERROR_INV_FMT A format specifier in the writeFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the writeFmt string is not supported.

VI_ ERROR_ALLOC The system could not allocate a formatted I/O buffer because
of insufficient system resources.

CExample #include <stdio.h>
#include <string.h>
#include <visa.h>
#include <stdarg.h>

// My printf writes directly to the device (no buffering)
ViStatus MyPrintf(ViSession vi, ViString fmt, ...)

{
ViStatus retval;
ViVALiIst args;
ViChar buffer[256];
va_start(args, fmt);
retval = VviIVSPrintf(vi, (ViBuf) buffer, fmt, args);
va_end(args);
if (retval >= VI_SUCCESS) {
retval = viWrite(vi, (ViBuf) buffer,
strien(buffer),
VI_NULL);
}
return retval;
}

Comments Thisoperation is similar to viVPrintf() except that the output is not written to the
device; it iswritten to the user-specified buffer. This output buffer is NULL
terminated.

H If this operation outputs an END indicator before al the arguments are
satisfied, the rest of the writeFmt string is ignored and the buffer string is
still terminated by a NULL.

See Also Reading and Writing Formatted Data
viV SScanf (vi, buf, readFmt, params)

Tektronix Version 1.1 TekVISA Programmer Manual 2-97

Operations

viVSScanf (vi, buf, readFmt, params)

NOTE. Inversion 1.1 and earlier versions of TekVISA, this operation returns the
value NOT IMPLEMENTED.

Usage Readsand formats data from a user-specified buffer using a pointer to a
variable-length argument list.

C Format ViStatus viVSScanft (ViSession vi, ViPBuf buf, ViString
readFmt, ViVAList params)

Visual Basic Format ~ vivSScanf (ByVval vi As Long, ByVal buf As String, Byval
readFmt As String, ByVal params As Any) As Long

Parameters Table 2- 145: vivSScanf() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

buf IN Buffer from which data is read and formatted.

readFmt IN The format string to apply to parameters in ViVAList.

params ouTt A pointer to a variable argument list with the variable number
of parameters into which the data is read and to which the
format string is applied.

Return Values Table 2- 146: vivSScanf() Completion Codes

Completion Codes Description
VI_SUCCESS Data was successfully read and formatted into arg
parameter(s).

Table 2- 147: vivSScanf() Error Codes

Error Codes Description

VI_ERROR_INV_SESSION | The given session or object reference is invalid (both are the
VI_ERROR_INV_OBJECT same value).

VI_ERROR_RSRC_LOCKED | Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

2-98 Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2-147: vivSScanf() Error Codes (Cont.)

Error Codes Description

VI_ERROR_INV_FMT A format specifier in the readFmt string is invalid.

VI_ERROR_NSUP_FMT A format specifier in the readFmt string is not supported.

VI_ERROR_ALLOC The system could not allocate a formatted I/O buffer because
of insufficient system resources.

CExample #include <stdio.h>
#include <string.h>
#include <visa.h>
#include <stdarg.h>

// My scanf reads directly from the device (no buffering).
// The unscanned portions of the buffer will be lost.
ViStatus MyScanf(ViSession vi, ViString fmt, ...)

{
ViStatus retval ;
ViVALiIst args;
ViChar buffer[1024];

retval = viRead(vi, (ViBuf) buffer, sizeof(buffer),
VI_NULL);
if (retval >= VI_SUCCESS) {
va_start(args, fmt);
retval = viVSScanf(vi, (ViBuf) buffer, fmt,
args);
va_end(args);

}

return retval;

Comments TheviVSScanf() operation is similar to viV Scanf() except that the datais read
from a user-specified buffer rather than a device.

NOTE. Because the prototype for this function cannot provide complete
type-checking, remember that all output parameters must be passed by reference.

See Also Reading and Writing Formatted Data
viVSPrintf (vi, buf, writeFmt, params)

Tektronix Version 1.1 TekVISA Programmer Manual 2-99

Operations

viwaitOnEvent (vi, inEventType, timeout, outEventType, outContext)

Usage

C Format

Visual Basic Format

Parameters

Return Values

2-100

Waits for an occurrence of the specified event for a given session.

ViStatus viWaitOnEvent(ViSession vi, ViEventType inEvent-

Type,

Viulnt32 timeout, ViPEventType outEventType,ViPEvent
outContext)

viWaitOnEvent (ByvVal vi As Long, ByVval

inEventType As Long,

Byval timeout As Long, ByVal outEventType As Long, ByVal
outcontext As Long) As Long

Table 2- 148: viWaitOnEvent() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

inEventType | IN Logical identifier of the event(s) to wait for.

timeout IN Absolute time period in time units that the resource shall wait
for a specified event to occur before returning the time elapsed
error. The time unit is in milliseconds.

outEventType | OUT Logical identifier of the event actually received.

outContext ouTt A handle specifying the unique occurrence of an event.

Table 2- 149: viwaitOnEvent() Completion Codes

Completion Codes

Description

VI_SUCCESS

Wait terminated successfully on receipt of an event occurrence.
The queue is empty.

VI_SUCCESS_QUEUE_

NEMPTY

Wait terminated successfully on receipt of an event notification.
There is still at least one more event occurrence of the type
specified by inEventType available for this session.

Table 2- 150: viWaitOnEvent() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_INV_EVENT

Specified event type is not supported by the resource.

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2- 150: viwaitOnEvent() Error Codes (Cont.)

Error Codes Description

VI_ERROR_TMO Specified event did not occur within the specified time period.

VI_ERROR_NENABLED The session must be enabled for events of the specified type in
order to receive them.

viWrite(vi, (ViBuf) ”*CLS*“, 4, VI_NULL);

viWrite(vi, (ViBuf) ":ACQUIRE:STATE 1*, 16, VI_NULL);
viwrite(vi, (ViBuf) ”*0PC*“, 4, VI_NULL);
viWaitOnEvent(vi, VI_EVENT_SERVICE_REQ, 5000, &eventType,
&context)

VviReadSTB(vi, &stb)

Comments The viWaitOnEvent() operation suspends the execution of athread of an
application and waits for an event of the type specified by inEventType for atime
period specified by timeout.

H You can only wait for events that have been enabled with the
viEnableEvent() operation. Refer to individual event descriptions for context
definitions.

H viWaitOnEvent() removes the specified event from the event queueif one
that matches the type is available. The process of dequeuing makes an
additiona space available in the queue for events of the same type.

H When the outContext handle returned from a successful invocation of
viWaitOnEvent() is no longer needed, it should be passed to viClos().

H If asession’s event queue becomes full and anew event arrives, the new
event is discarded.

H Thedefault vaue of VI_ATTR_MAX_QUEUE_LENGTH is 50.

Table 2- 151: Special Values for inEventType Parameter with

viWaitOnEvents()

Value Description

VI_ALL_ENABLED_EVENTS | The operation waits for any event that is enabled for the given
session.

Tektronix Version 1.1 TekVISA Programmer Manual 2-101

Operations

Table 2- 152: Special Values for timeout Parameter with viwaitOnEvents()

Value Description

VI_TMO_INFINITE The operation is suspended indefinitely.

VI_TMO_IMMEDIATE The operation is not suspended; therefore, this value can be
used to dequeue events from an event queue.

H The outEventType and outContext parameters are optiona and can be
VI_NULL.

Table 2- 153: Special Values for outEventType Parameter with

viWaitOnEvents()
Value Description
VI_NULL Used if the event type is known from the inEventType parameter.

Table 2- 154: Special Values for outContext Parameter with

viWaitOnEvents()

Value Description

VI_NULL Used if the outContext handle is not needed to retrieve additional
information. If that case, VISA will automatically close the event context.

See Also Handling Events
viDiscar dEvents (vi, event, mechanism)

viWrite (vi, buf, count, retCount)
Usage Writes data synchronously to a device from the specified buffer.

C Format ViStatus viWrite (ViSession vi, ViBuf buf, ViUInt32 count,
ViPUINt32 retCount)

Visual Basic Format viwrite (Byval vi As Long, ByVal buf As String, Byval count
As Long, ByVal retCount As Long) As Long

2-102 Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Parameters

Return Values

Table 2- 155: viWrite() Parameters

Name Direction Description

Vi IN Unique logical identifier to a session.

buf IN Represents the location of a data block to be sent to device.

count IN Number of bytes to be written.

retCount ouTt Represents the location of an integer that will be set to the
number of bytes actually transferred.

Table 2- 156: viWrite() Completion Codes

Completion Codes

Description

VI_SUCCESS

Transfer completed.

Table 2- 157: viWrite() Error Codes

Error Codes

Description

VI_ERROR_INV_SESSION
VI_ERROR_INV_OBJECT

The given session or object reference is invalid (both are the
same value).

VI_ERROR_NSUP_OPER

The given vi does not support this operation.

VI_ERROR_RSRC_LOCKED

Specified operation could not be performed because the
resource identified by vi has been locked for this kind of
access.

VI_ERROR_TMO Timeout expired before operation completed.

VI_ER- Violation of raw write protocol occurred during transfer.
ROR_RAW_WR_PROT_VIOL

VI_ER- Violation of raw read protocol occurred during transfer.

ROR_RAW_RD_PROT VIOL

VI_ERROR_INP_PROT VIOL

Device reported an input protocol error during transfer.

VI_ERROR_BERR

Bus error occurred during transfer.

VI_ERROR_INV_SETUP

Unable to start write operation because setup is invalid (due to
attributes being set to an inconsistent state).

VI_ERROR_NCIC

The interface associated with the given vi is not currently the
controller in charge.

VI_ERROR_NLISTENERS

No Listeners condition is detected (both NRFD and NDAC are
deasserted).

VI_ERROR_IO

An unknown 1/O error occurred during transfer.

Tektronix Version 1.1 TekVISA Programmer Manual

2-103

Operations

C Example

Comments

See Also

if (viwrite(vi, (ViBuf) “*idn?”, 5, VI_NULL) < VI_SUCCESS)

return;

if (viRead(vi, (ViBuf) buffer, sizeof(buffer)-1, &retCnt)
< VI_SUCCESS) return;

buffer[retCnt] = °\0”; // ensure the string is null termi—

nated

printf(C’id: %s\n*, buffer);

The viWrite() operation synchronously transfers data. The data to be writtenisin
the buffer represented by buf.

H This operation returns only when the transfer terminates.

H Only one synchronous write operation can occur at any onetime.

Table 2- 158: Special Value for retCount Parameter with viWrite()

Value Description

VI_NULL Do not return the number of bytes transferred. This may be useful if it is only
important to know whether the operation succeeded or failed.

Reading and Writing Data
viRead (vi, buf, count, retCount)

viwriteAsync (vi, buf, count, jobld)

Usage

C Format

Visual Basic Format

Parameters

2-104

Writes data asynchronously to a device from the specified buffer.

ViStatus viWriteAsync (ViSession vi, ViBuf buf, ViUInt32
count, ViPJobld retCount)

Not Applicable

Table 2- 159: viWriteAsync() Parameters

Name Direction Description
Vi IN Unique logical identifier to a session.
buf IN Represents the location of a data block to be sent to device..

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

Table 2- 159: viWriteAsync() Parameters (Cont.)

Name Direction Description

count IN Number of bytes to be written.

jobld ouTt Represents the location of a variable that will be set to the job
identifier of this asynchronous write operation.

Return Values Table 2-160: viwriteAsync() Completion Codes

Completion Codes Description
VI_SUCCESS Asynchronous write operation successfully queued.
VI_SUCCESS_SYNC Write operation performed synchronously.

Table 2- 161: viWriteAsync() Error Codes

Error Codes Description
VI_ERROR_INV_SESSION | The given session or object reference is invalid (both are the
VI_ERROR_INV_OBJECT same value).

VI_ERROR_RSRC_LOCKED | Specified operation could not be performed because the
resource identified by vi has been locked for this kind of

access.
VI_ERROR_QUEUE_ERROR | Unable to queue write operation.

Tektronix Version 1.1 TekVISA Programmer Manual 2-105

Operations

2-106

C Example

// rwwait.cpp

/7/

#include <stdio.h>
#include <string.h>
#include <windows.h>
#include visa.h*

// viReadAsync/viWriteAsync example —
// These commands can potentially decrease test time by
allowing
// several read or write commands to happen in parallel.
int main(int argc, char* argv[])

{

ViSession rm, vi[2];

ViJobld jobid[2];

ViStatus status;

char string[2][256];

ViEventType eventType[2];

ViEvent event[2];

int i;

// clear strings

for (i =0; 1 <2; i++) {

memset(string[i], 0, 256);

}

// Open the default RM

status = viOpenDefaultRM(&rm);

if (status < VI_SUCCESS) goto error;

// Open multiple devices

status = viOpen(rm, ”GPIBO::1::INSTR*, NULL,
&vi[0]);

if (status < VI_SUCCESS) goto error;

status = viOpen(rm, ”GPIB8::1::INSTR*, NULL,
&vi[ll);

if (status < VI_SUCCESS) goto error;

// Enable waiting on the events
for (i =0; i <2; i++) {
status = viEnableEvent(vi[i],

VI_EVENT_10_COMPLETION,

VI_QUEUE, VI_

if (status < VI_SUCCESS) goto error;
¥

NULL,

NULL,

NULL);

// Write commands to several devices (this allows

Tektronix Version 1.1 TekVISA Programmer Manual

Operations

// several writes to be done in parallel)
for (i =0; i <2; i++) {
status = viWriteAsync(vi[i], (ViBuf) “*idn?”,
5, &jobid[i]);
if (status < VI_SUCCESS) goto error;
}

// Wait for completion on all of the devices
for (i =0; i <2; i++) {
viWaitOnEvent(vi[i], VI_EVENT_10_COMPLETION,
INFINITE, &eventType[i],
&event[i]);
}

// Queue the read for all the devices (this allows
// several reads to be done im parallel)
for (i =0; i <2; i++) {

status = viReadAsync(vi[i], (ViBuf) string[i],

256,
&jobid[i]);
if (status < VI_SUCCESS) goto error;
}
// Wait for all the reads to complete
for (i =0; i <2; i++) {
viWaitOnEvent(vi[i], VI_EVENT_10_COMPLETION,
INFINITE, &eventType[i],
&event[i]);

}

// Write out the *idn? strings.
for (i = 0; i <2; i++) {

printf(C’%d: %s\n“, i1, string[i]);
}

// Cleanup and exit
for (i =0; i <2; i++) {
status = viDisableEvent(vi[i],
VI_EVENT_10_COMPLETION,

V1_QUEUE);
if (status < VI_SUCCESS) goto error;
3
viClose(rm);
return O;

error:
viStatusDesc(rm, status, string[0]);
fprintf(stderr, “Error: %s\n“, (ViBuf) string[0]);
return O;

Tektronix Version 1.1 TekVISA Programmer Manual 2-107

Operations

Comments The viWriteAsync() operation asynchronously transfers data.
The data to be written is iIn the buffer represented by buf.

H This operation normally returns before the transfer terminates.

H Before calling this operation, you should enable the session for receiving 1/0
completion events. After the transfer has completed, an 1/0 completion event
iS posted.

H The operation returns a job identifier that you can use with either viTermi-
nate() to abort the operation or with an 1/0 completion event to identify
which asynchronous write operation compl eted.

H Since an asynchronous I/O request could complete before the vWriteAsync()
operation returns, and the I/O completion event can be distinguished based
on the job identifier, an application must be made aware of the job identifier
before the first moment that the 1/0O completion event could possibly occur.
Setting the output parameter jobld before the data transfer even begins
ensures that an application can aways match the jobld parameter with the
VI_ATTR_JOB_ID attribute of the 1/O completion event.

H If multiple jobs are queued at the same time on the same session, an
application can use the jobld to distinguish the jobs, as they are unique
within a session.

H TheviWriteAsync() operation MAY be implemented synchronously, which
could be done by using the viWrite() operation. This means that an applica-
tion can use the asynchronous operations transparently even if alow-level
driver only supports synchronous data transfers. If the viwriteAsync()
operation is implemented synchronously and a given invocation of the
operation is valid, the operation returns VI_SUCCESS_SYNC AND all
status information isreturned inaVl_EVENT _|IO_COMPLETION.

H The status code VI_ERROR_RSRC L OCKED can be returned either
immediately or from the VI_EVENT_IO_COMPLETION event.

H For each successful call to viwriteAsync(), thereis one and only one
VI_EVENT _10_COMPLETION event occurrence.

Table 2- 162: Special Value for jobld Parameter with viwriteAsync()

Value Description

VI_NULL Do not return a job identifier. This option may be useful if only one
asynchronous operation will be pending at a given time.

See Also Asychronous Read/Write
viReadAsync (vi, buf, count, jobl d)
ViTerminate (vi, degree, jobl d)

2-108 Tektronix Version 1.1 TekVISA Programmer Manual

Y A
Attributes

-/ |
Attributes Summary

The following table summarizes Tektronix VISA attributes by category. Within
categories, attributes appear in aphabetical order.

Table 3-1: Table of VISA Attributes by Category

Attribute Description Page

Resource Attributes

VI_ATTR_MAX_QUEUE_LENGTH | Specifies the maximum number of eventsthat | 3-20
can be queued at any time on the given ses-
sion.

VI_ATTR_RM_SESSION Specifies the session of the Resource Man- | 3-22
ager that was used to open this session.

VI_ATTR_RSRC_IMPL_VERSION | Resource version that uniquely identifies | 3-22
each of the different revisions or implementa-
tions of a resource.

VI_ATTR_RSRC_LOCK_STATE The current locking state of the resource on | 3-23
the given session.

VI_ATTR_RSRC_MANF _ID Avalue that corresponds to the VXI manufac- | 3-23
turer ID of the manufacturer that created the
VISA implementation.

VI_ATTR_RSRC_MANF NAME A string that corresponds to the VXI manufac- | 3-24
turer name of the manufacturer that created
the VISA implementation.

VI_ATTR_RSRC_NAME The unique identifier for a resource. 3-24

VI_ATTR_RSRC_SPEC_VERSION | Resource version that uniquely identifies the | 3-25
version of the VISA specification to which the
implementation is compliant.

VI_ATTR_USER_DATA Data used privately by the application for a | 3-29
particular session.

Interface Attributes

VI_ATTR_INTF_INST_NAME Human-readable text describing the givenin- | 3-17
terface.

VI_ATTR_INTF_NUM Board number for the given interface. 3-18

VI_ATTR_INTF_TYPE Specifies the interface type of the given 3-18
session.

VI_ATTR_IO_PROT Specifies which protocol to use, depending | 3-19
on the type of interface.

Serial Device Attributes

VI_ATTR_ASRL_AVAIL_NUM Shows the number of bytes available in the | 3-5
global receive buffer.

VI_ATTR_ASRL_BAUD The baud rate of the interface. 3-5

3-1

Tektronix Version 1.1 TekVISA Programmer Manual

Attributes Summary

3-2

Table 3- 1: Table of VISA Attributes by Category (Cont.)

Attribute Description Page

Serial Device Attributes

VI_ATTR_ASRL_CTS_STATE Shows the current state of the Clear-to- 3-6
Send (CTS) input signal.

VI_ATTR_ASRL_DATA BITS The number of data bits contained in each | 3-6
frame (5 to 8).

VI_ATTR_ASRL DCD_STATE Shows the current state of the Data Carrier | 3-7
Detect (DCD) input signal.

VI_ATTR_ASRL_DSR_STATE Shows the current state of the Data Set 3-7
Ready (DSR) input signal.

VI_ATTR_ASRL DTR_STATE Used to manually assert or unassert the 3-8
Data Terminal Ready (DTR) output signal.

VI_ATTR_ASRL _END _IN Indicates the method used to terminate read | 3-8
operations.

VI_ATTR_ASRL _END_OUT Indicates the method used to terminate 3-9
write operations.

VI_ATTR_ASRL_FLOW_CNTRL Indicates the type of flow control used by 3-10
the transfer mechanism.

VI_ATTR_ASRL_PARITY The parity used with every frame trans- 3-11
mitted and received.

VI_ATTR_ASRL_REPLACE_CHAR | Specifies the character to be used to 3-11
replace incoming characters that arrive with
errors (such as parity error).

VI_ATTR_ASRL _RI_STATE Shows the current state of the Ring 3-12
Indicator (RI) input signal.

VI_ATTR_ASRL_RTS STATE Used to manually assert or unassert the 3-12
Request To Send (RTS) output signal.

VI_ATTR_ASRL_STOP_BITS The number of stop bits used to indicate the | 3-13
end of a frame.

VI_ATTR_ASRL XOFF _CHAR Specifies the value of the XOFF character | 3-13
used for XON/XOFF flow control (both
directions).

VI_ATTR_ASRL_XON_CHAR Specifies the value of the XON character 3-14
used for XON/XOFF flow control (both
directions).

GPIB Device Attributes

VI_ATTR_GPIB_PRIMARY_ADDR | Primary address of the GPIB device used by | 3-15
the given session.

VI_ATTR_GPIB_READDR_EN Specifies whether to use repeat addressing | 3-16
before each read or write operation.

VI_ATTR_GPIB_SECONDARY _ Secondary address of the GPIB device 3-16

ADDR

used by the given session.

Tektronix Version 1.1 TekVISA Programmer Manual

Attributes Summary

Table 3-1: Table of VISA Attributes by Category (Cont.)

Attribute Description Page

GPIB Device Attributes

VI_ATTR_GPIB_UNADDR_EN Specifies whether to unaddress the device | 3-17
(UNT and UNL) after each read or write
operation.

Read/Write Attributes

VI_ATTR_RD_BUF_OPER_MODE | Determines the operational mode of the read | 3-21
buffer.

VI_ATTR_SEND END _EN Specifies whether to assert END during the | 3-26
transfer of the last byte of the buffer.

VI_ATTR_SUPPRESS END EN Specifies whether to suppress the END 3-27
indicator termination.

VI_ATTR_TERMCHAR Termination character. 3-27

VI_ATTR_TERMCHAR_EN Flag that determines whether the read 3-28
operation should terminate when a termina-
tion character is received.

VI_ATTR_WR_BUF_OPER_MODE | Determines the operational mode of the write | 3-21
buffer.

Event Attributes

VI_ATTR_BUFFER Contains the address of a buffer that was | 3-14
used in an asynchronous operation.

VI_ATTR_EVENT _TYPE Unique logical identifier of the event. 3-15

VI_ATTR_JOB_ID Contains the job ID of the asynchronous op- | 3-19
eration that has completed.

VI_ATTR_OPER_NAME The name of the operation generating the | 3-20
event.

VI_ATTR_RET_COUNT Contains the actual number of elements that | 3-21
were asynchronously transferred.

VI_ATTR_STATUS Contains the return code of the asynchronous | 3-26
I/O operation that has completed or status
code returned by an operation generating an
error.

Miscellaneous Attributes

VI_ATTR_TMO_VALUE Minimum timeout value to use, in millisec- | 3-28
onds.

VI_ATTR_TRIG_ID Identifier for the current triggering mecha- 3-29
nism.

3-3

Tektronix Version 1.1 TekVISA Programmer Manual

Attributes Summary

3-4 Tektronix Version 1.1 TekVISA Programmer Manual

Y A
Attributes

The following Tektronix VISA attributes are presented in aphabetical order.

VI_ATTR_ASRL_AVAIL_NUM

Usage Shows the number of bytes available in the global receive buffer.

Table 3-2: VI_ATTR_ASRL_AVAIL_NUM Attribute

Data Type Range of Values Default Access Privilege

ViUlnt32 0 to FFFFFFFFh 0 Read Only Global

Comments Applicable to serid devices.

See Also Controalling the Serial 1/0 Buffers
Setting and Retrieving Attributes

VI_ATTR_ASRL_BAUD

Usage Thebaud rate of the interface.

Table 3-3: VI_ATTR_ASRL_BAUD Attribute

Data Type Range of Values Default Access Privilege

ViuInt32 0 to FFFFFFFFh 9600 Read/Write Global

Comments Applicableto serid devices. Although represented as an unsigned 32-bit integer
so that any baud rate can be used, it usually requires acommonly used rate such
as 300, 1200, 2400, or 9600 baud.

See Also Setting and Retrieving Attributes

Tektronix Version 1.1 TekVISA Programmer Manual 3-5

Attributes

VI_ATTR_ASRL_CTS_STATE

Usage Shows the current state of the Clear-to-Send (CTS) input signal.

Table 3-4: VI_ATTR_ASRL_CTS_STATE Attribute

Data Type Range of Values Default Access Privilege

Vilnt16 VI_STATE_ASSERTED N/A Read Only Global
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

Comments Applicable to serid devices.

See Also Setting and Retrieving Attributes
VI_ATTR_ASRL_FLOW_CNTRL
VI_ATTR_ASRL_RTS STATE

VI_ATTR_ASRL_DATA BITS

Usage Thenumber of databits contained in each frame (5 to 8).

Table 3-5: VI_ATTR_ASRL_DATA_BITS Attribute

Data Type Range of Values Default Access Privilege
Vilint16 5t08 8 Read/Write Global

Comments tApplicableto serial devices. The data bits for each frame are located in the
low-order bits of every byte stored in memory.

See Also Setting and Retrieving Attributes

3-6 Tektronix Version 1.1 TekVISA Programmer Manual

Attributes

VI_ATTR_ASRL_DCD STATE

Usage Showsthe current state of the Data Carrier Detect (DCD) input signal.

Table 3-6: VI_ATTR_ASRL_DCD_STATE Attribute

Data Type

Range of Values

Default

Access Privilege

Vilnt16

VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

Read Only Global

Comments tApplicableto seria devices. The DCD signal is often used by modems to
indicate the detection of a carrier (remote modem) on the telephone line. The
DCD signal is aso known as Receive Line Sgnal Detect (RLSD).

See Also Setting and Retrieving Attributes

VI_ATTR_ASRL_DSR_STATE

Usage Showsthe current state of the Data Set Ready (DSR) input signdl.

Table 3-7: VI_ATTR_ASRL_DSR_STATE Attribute

Data Type

Range of Values

Default

Access Privilege

Vilnt16

VI_STATE_ASSERTED
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

N/A

Read Only Global

Comments tApplicableto serid devices.

See Also Setting and Retrieving Attributes
VI_ATTR_ASRL_FLOW_CNTRL
VI_ATTR_ASRL_DTR _STATE

Tektronix Version 1.1 TekVISA Programmer Manual

3-7

Attributes

VI_ATTR_ASRL_DTR_STATE

Usage Used to manually assert or unassert the Data Terminal Ready (DTR) output
signal.

Table 3-8: VI_ATTR_ASRL_DTR_STATE Attribute

Data Type Range of Values Default Access Privilege

Vilnt16 VI_STATE_ASSERTED N/A Read/Write Global
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

Comments Applicable to serid devices.

See Also Setting and Retrieving Attributes
VI_ATTR_ASRL_FLOW_CNTRL
VI_ATTR_ASRL_DSR_STATE

VI_ATTR_ASRL_END_IN

Usage Indicates the method used to terminate read operations.

Table 3-9: VI_ATTR_ASRL_END_IN Attribute

Data Type Range of Values Default Access Privilege
Vilint16 VI_ASRL_END_NONE |VI_ASRL_END_ Read/Write Local
VI_ASRL_END_LAST_ | TERMCHAR
BIT
VI_ASRL_END_
TERMCHAR

Comments Applicableto serid devices.

H If settoVI_ASRL_END_NONE, the read will not terminate until all of the
requested datais received (or an error occurs).

H IfsettoVI_ASRL_END_LAST BIT, theread will terminate as soon as a
character arrives with its last bit set. For example, if
VI_ATTR_ASRL_DATA_ BITSis st to 8, theread will terminate when a
character arrives with the 8th bit set.

3-8 Tektronix Version 1.1 TekVISA Programmer Manual

Attributes

See Also

H

If setto VI_ASRL_END_TERMCHAR, the read will terminate as soon as

the character in VI_ATTR_TERMCHAR isreceived.

Setting and Retrieving Attributes
VI_ATTR_TERMCHAR

VI_ATTR_ASRL_END OUT

Usage

Comments

See Also

Indicates the method used to terminate write operations.

Table 3- 10 VI_ATTR_ASRL_END_OUT Attribute

Data Type Range of Values Default Access Privilege

Viulnt16 VI_ASRL_END_NONE |VI_ASRL_END_NONE | Read/Write Local

VI_ASRL_END_LAST
BIT

VI_ASRL_END_
TERMCHAR
VI_ASRL_END_BREAK

Applicableto serial devices.

H

If set to VI_ASRL_END_NONE, the write will not append anything to the
data being written.

If setto VI_ASRL_END_BREAK, the write will transmit a break after all
the characters for the write have been sent.

If settoVI_ASRL_END LAST BIT, thewrite will send al but the last
character with the last bit clear, then transmit the last character with the last
bit set. For example, if VI_ATTR_ASRL_DATA_BITS s st to 8, the write
will clear the 8th bit for al but the last character, then transmit the last
character with the 8th bit set.

If setto VI_ASRL_END_TERMCHAR, the write will send the character in
VI_ATTR_TERMCHAR é&fter the data being transmitted.

Setting and Retrieving Attributes
VI_ATTR_TERMCHAR

Tektronix Version 1.1 TekVISA Programmer Manual 3-9

Attributes

VI_ATTR_ASRL_FLOW_CNTRL

Usage Indicates the type of flow control used by the transfer mechanism.

Table 3-11: VI_ATTR_ASRL_FLOW_CNTRL Attribute

Data Type Range of Values Default Access Privilege

Viulnt16 VI_ASRL_FLOW_NONE |VI_ASRL_FLOW _NONE |Read/Write Global
VI_ASRL_FLOW_XON_
XOFF
VI_ASRL_FLOW_RTS_
CTS
VI_ASRL_FLOW_DTR_
DSR

Comments Applicable to serid devices.

H If settoVI_ASRL_FLOW_NONE, the transfer mechanism does not use
flow control, and buffers on both sides of the connection are assumed to be
large enough to hold all data transferred.

H If settoVI_ASRL_FLOW_XON_XOFF, the transfer mechanism uses the
XON and XOFF characters to perform flow control. It

H controlsinput flow by sending XOFF when the receive buffer is nearly
full.

H controls the output flow by suspending transmission when XOFF is
received.

H IfsettoVI_ASRL_FLOW_RTS _CTS, the transfer mechanism usesthe RTS
output signal and the CTS input signal to perform flow control. It

H controlsinput flow by unasserting the RTS signal when the receive
buffer is nearly full.

H controls output flow by suspending the transmission when the CTS
signa is unasserted.

H Inthiscase theVI_ATTR_ASRL_RTS_STATE attributeisignored
when changed, but can be read to determine whether the background
flow control is asserting or unasserting the signal.

H IfsettoVI_ASRL_FLOW_DTR_DSR, the transfer mechanism uses the
DTR output signal and the DSR input signal to perform flow control. It

H controlsinput flow by unasserting the DTR signal when the receive
buffer is nearly full, and it

3-10 Tektronix Version 1.1 TekVISA Programmer Manual

Attributes

H controls output flow by suspending the transmission when the DSR
signal is unasserted.

H Thisattribute can specify multiple flow control mechanisms by bit-ORing
multiple values together. However, certain combinations may not be
supported by all seria ports and/or operating systems.

See Also Setting and Retrieving Attributes

VI_ATTR_ASRL_PARITY

Usage The parity used with every frame transmitted and received.

Table 3-12: VI_ATTR_ASRL_PARITY Attribute

Data Type Range of Values Default Access Privilege

Viulnt16 VI_ASRL_PAR_NONE |VI_ASRL_PAR_NONE | Read/Write Global
VI_ASRL_PAR_ODD
VI_ASRL_PAR_EVEN
VI_ASRL_PAR_MARK
VI_ASRL_PAR_SPACE

Comments Applicable to serid devices.
H VI_ASRL_PAR_MARK meansthat the parity bit exists and is always 1.
H VI_ASRL_PAR_SPACE means that the parity bit exists and is aways 0.

See Also Setting and Retrieving Attributes

VI_ATTR_ASRL_REPLACE_CHAR

Usage Specifiesthe character to be used to replace incoming characters that arrive with
errors (such as parity error).

Table 3-13: VI_ATTR_ASRL_REPLACE_CHAR Attribute

Data Type Range of Values Default Access Privilege
Vilint8 0to FFh 0 Read/Write Local

Tektronix Version 1.1 TekVISA Programmer Manual 3-11

Attributes

Comments Applicableto serid devices.

See Also Setting and Retrieving Attributes

VI_ATTR_ASRL_R|_STATE

Usage Shows the current state of the Ring Indicator (RI) input signal.

Table 3- 14: VI_ATTR_ASRL_RI_STATE Attribute

Data Type Range of Values Default Access Privilege

Vilnt16 VI_STATE_ASSERTED N/A Read Only Global
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

Comments Applicableto seriad devices. The RI signa is often used by modems to indicate
that the telephone line is ringing.

See Also Setting and Retrieving Attributes

VI_ATTR_ASRL_RTS_STATE

Usage Used to manually assert or unassert the Request To Send (RTS) output signal.

Table 3- 15 VI_ATTR_ASRL_RTS_STATE Attribute

Data Type Range of Values Default Access Privilege

Vilnt16 VI_STATE_ASSERTED N/A Read/Write Global
VI_STATE_UNASSERTED
VI_STATE_UNKNOWN

Comments Applicable to serid devices.

H WhentheVI_ATTR_ASRL_FLOW_CNTRL attributeis set to
VI_ASRL_FLOW_RTS_CTS, this attribute is ignored when changed, but
can be read to determine whether the background flow control is asserting or
unasserting the signal.

3-12 Tektronix Version 1.1 TekVISA Programmer Manual

Attributes

See Also Setting and Retrieving Attributes
VI_ATTR_ASRL_FLOW_CNTRL
VI_ATTR_ASRL_CTS STATE

VI_ATTR_ASRL_STOP_BITS

Usage Thenumber of stop bits used to indicate the end of aframe.

Table 3-16: VI_ATTR_ASRL_STOP_BITS Attribute

Data Type Range of Values Default Access Privilege

Viulnt16 VI_ASRL_STOP ONE |VI_ASRL_STOP_ONE | Read/Write Global
VI_ASRL_STOP_ONE5
VI_ASRL_STOP_TWO

Comments Applicable to serial devices. Thevalue VI_ASRL_STOP_ONES5 indicates
one-and-one-half (1.5) stop bits.

See Also Setting and Retrieving Attributes

VI_ATTR_ASRL_XOFF_CHAR

Usage Specifiesthe value of the XOFF character used for XON/XOFF flow control
(both directions).

Table 3-17: VI_ATTR_ASRL_XOFF_CHAR Attribute

Data Type Range of Values Default Access Privilege
VilInt8 0to FFh <Ctrl-S> (13h) Read/Write Local

Comments Applicableto seria devices. If XON/XOFF flow control (software handshaking)
isnot being used, the value of this attribute is ignored.

See Also Setting and Retrieving Attributes
VI_ATTR_ASRL_FLOW_CNTRL
VI_ATTR_ASRL_XON_CHAR

Tektronix Version 1.1 TekVISA Programmer Manual 3-13

Attributes

VI_ATTR_ASRL_XON_CHAR

Usage

Comments

See Also

VI_ATTR_BUFFER

Usage

Comments

See Also

3-14

Specifies the value of the XON character used for XON/XOFF flow control
(both directions).

Table 3-18: VI_ATTR_ ASRL_XON_CHAR Attribute

Data Type Range of Values Default Access Privilege

VilInt8 0to FFh <Ctrl-Q> (11h) Read/Write Local

Applicable to serial devices. If XON/XOFF flow control (software handshaking)
isnot being used, the value of this attribute is ignored.

Setting and Retrieving Attributes
VI_ATTR_ASRL_FLOW_CNTRL
VI_ATTR_ASRL_XOFF_CHAR

Contains the address of a buffer that was used in an asynchronous operation.

Table 3-19: VI_ATTR_BUFFER Attribute

Data Type Range of Values Default Access Privilege

ViBuf N/A N/A Read Only

This attribute is used to check the buffer after event 1/0 completion.

Setting and Retrieving Attributes
Events
VI_EVENT_IO_COMPLETION

Tektronix Version 1.1 TekVISA Programmer Manual

Attributes

VI_ATTR_EVENT TYPE

Usage Uniquelogical identifier of the event.

Table 3-20: VI_ATTR_EVENT_TYPE Attribute

Data Type Range of Values Default Access Privilege
ViEventType 0 to FFFFFFFFh N/A Read Only

Comments .Thisattribute is used to identify one of the event types listed in the section on
Events.

See Also Setting and Retrieving Attributes
Events

VI_ATTR_GPIB_PRIMARY ADDR

Usage Primary address of the GPIB device used by the given session.

Table 3-21: VI_ATTR_GPIB_PRIMARY_ADDR Attribute

Data Type Range of Values Default Access Privilege
Vilint16 0to 30 N/A Read Only Global

Comments Applicable to GPIB devices. See the viOpen() operation for more information
about the format for addressing GPIB devices.

See Also Setting and Retrieving Attributes
VI_ATTR_RSRC_NAME
viOpen()

Tektronix Version 1.1 TekVISA Programmer Manual 3-15

Attributes

VI_ATTR_GPIB_READDR_EN

Usage Specifies whether to use repeat addressing before each read or write operation.

Table 3-22: VI_ATTR_GPIB_READDR_EN Attribute

Data Type Range of Values Default Access Privilege
Boolean VI_TRUE VI_TRUE Read/Write Local
VI_FALSE

Comments Applicableto GPIB devices.

See Also Setting and Retrieving Attributes
VI_ATTR_GPIB_UNADDR_EN

VI_ATTR_GPIB_SECONDARY_ADDR

Usage Secondary address of the GPIB device used by the given session.

Table 3-23: VI_ATTR_GPIB_SECONDARY_ADDR Attribute

Data Type Range of Values Default Access Privilege

Viulnt16 0to 30 VI_NO_SEC_ADDR Read Only Global
VI_NO_SEC_ADDR

Comments Applicable to GPIB devices. See the viOpen() operation for more information
about the format for addressing GPIB devices.

See Also Setting and Retrieving Attributes
VI_ATTR_RSRC_NAME
viOpen()

3-16 Tektronix Version 1.1 TekVISA Programmer Manual

Attributes

VI_ATTR_GPIB_UNADDR_EN

Usage Specifies whether to unaddress the device (UNT and UNL) after each read or
write operation.

Table 3-24: VI_ATTR_GPIB_UNADDR_EN Attribute

Data Type Range of Values Default Access Privilege
ViBoolean VI_TRUE VI_FALSE Read/Write Local
VI_FALSE

Comments Applicableto GPIB devices.

See Also Setting and Retrieving Attributes
VI_ATTR_GPIB_READDR_EN

VI_ATTR_INTF_INST_NAME

Usage Human-readable text describing the given interface.

Table 3-25: VI_ATTR_INTF_INST_NAME Attribute

Data Type Range of Values Default Access Privilege
ViString N/A N/A Read Only Global

Comments Applicable to GPIB and seria interfaces.

See Also Setting and Retrieving Attributes
VI_ATTR_INTF_NUM

Tektronix Version 1.1 TekVISA Programmer Manual 3-17

Attributes

VI_ATTR_INTF_NUM

Usage Board number for the given interface.

Table 3-26: VI_ATTR_INTF_NUM Attribute

Data Type Range of Values Default Access Privilege

Vilint16 0 to FFFFh 0 Read Only Global

Comments Applicableto GPIB and seria interfaces.

See Also Setting and Retrieving Attributes
VI_ATTR_INTF_NAME

VI_ATTR_INTF_TYPE

Usage Specifiesthe interface type of the given session.

Table 3-27: VI_ATTR_INTF_TYPE Attribute

Data Type Range of Values Default Access Privilege
Vilint16 VI_INTF_GPIB N/A Read Only Global
VI_INTF_ASRL

Comments Applicableto GPIB and seria interfaces.

See Also Setting and Retrieving Attributes

3-18 Tektronix Version 1.1 TekVISA Programmer Manual

Attributes

VI_ATTR_IO_PROT

Usage

Comments

See Also

VI_ATTR_JOB_ID

Usage

Comments

See Also

Specifies which protocol to use, depending on the type of interface.

Table 3-28: VI_ATTR_IO_PROT Attribute

Data Type Range of Values Default Access Privilege
Vilint16 VI_NORMAL VI_NORMAL Read/Write Local
VI_HS488
VI_ASRL488

Choices depend of interface type:

H With GPIB interfaces, you can choose between normal and high-speed
(HSA88) data transfers.

H With serial interfaces, you can choose between normal and ASRL488-style
transfers, in which case the viAssertTrigger(), viReadSTB(), and viClear()
operations send 488.2-defined strings.

Setting and Retrieving Attributes
Controlling the Serial I/0O Buffers
viAssertTrigger ()

viReadSTB()

viClear()

Containsthejob ID of the asynchronous operation that has completed.

Table 3-29: VI_ATTR_Job_ID Attribute

Data Type Range of Values Default Access Privilege
ViJobID N/A NA Read Only

This attribute is used to check the job ID after event 1/O completion

Setting and Retrieving Attributes
Events
VI_EVENT_IO_COMPLETION

Tektronix Version 1.1 TekVISA Programmer Manual 3-19

Attributes

VI_ATTR_MAX_QUEUE_LENGTH

Usage

Comments

See Also

Specifies the maximum number of events that can be queued at any time on the
given session.

Table 3-30: VI_ATTR_MAX_QUEUE_LENGTH Attribute

Data Type Range of Values Default Access Privilege
Vilint32 1h to FFFFFFFFh 50 Read/Write Local

If the number of pending occurrences exceeds the value specified in this
attribute, the lowest-priority events are discarded. This attributeis

H Read/Write until viEnableEvent() is called for the first time on a session
H Read Only after viEnableEvent() is called for the first time on a session

Setting and Retrieving Attributes
viEnableEvent()

VI_ATTR_OPER_NAME

Usage

Comments

See Also

3-20

The name of the operation generating the event.

Table 3-31: VI_ATTR_OPER_NAME Attribute

Data Type Range of Values Default Access Privilege
ViString N/A N/A Read Only

This attribute is used to check the operation name that generated an event,
typically an exception. For example, for an exception generated from the
viLock() operation, VI_ATTR_OPER_NAME would contain the string
“viLock”.

Setting and Retrieving Attributes
Events
VI_EVENT_EXCEPTION

Tektronix Version 1.1 TekVISA Programmer Manual

Attributes

VI_ATTR_RD_BUF_OPER_MODE

Usage Determines the operational mode of the read buffer.

Table 3-32: VI_ATTR_RD_BUF_OPER_MODE Attribute

Data Type

Range of Values

Default

Access Privilege

Vilint16

VI_FLUSH_ON_ACCESS
VI_FLUSH_DISABLE

VI_FLUSH_DISABLE

Read/Write Local

Comments When the operational modeis set to

H VI_FLUSH_DISABLE (default), the buffer is flushed only on explicit calls

to viFlush().

H VI_FLUSH_ON_ACCESS, the buffer is flushed every time a viScanf()
operation compl etes.

See Also Setting and Retrieving Attributes

viScanf()

VI_ATTR_RET_COUNT

Usage Containsthe actua number of elements that were asynchronously transferred.

Table 3-33: VI_ATTR_RET_COUNT Attribute

Data Type

Range of Values

Default

Access Privilege

Vilint32

0 to FFFFFFFFh

N/A

Read Only

Comments Thisattributeis used to check the return count after event I/O completion.

See Also Setting and Retrieving Attributes
VI_EVENT 10 COMPLETION

Tektronix Version 1.1 TekVISA Programmer Manual

3-21

Attributes

VI_ATTR_RM_SESSION

Usage Specifiesthe session of the Resource Manager that was used to open this session.

Table 3-34: VI_ATTR_RM_SESSION Attribute

Data Type Range of Values Default Access Privilege
ViSession N/A N/A Read Only Local

Comments The vaue of this attribute for the Default Resource Manager isVI_NULL.

See Also Setting and Retrieving Attributes

VI_ATTR_RSRC_IMPL_VERSION

Usage Resource version that uniquely identifies each of the different revisions or
implementations of aresource.

Table 3-35: VI_ATTR_RSRC_IMPL_VERSION Attribute

Data Type Range of Values Default Access Privilege
ViVersion 0 to FFFFFFFFh N/A Read Only Global

Comments TThevalue of this atribute is defined by the individual manufacturer and
increments the total version value on subsequent revisions. The value of
sub-minor versions is non-zero only for pre-release versions (beta). All
officially released products have a sub-minor value of zero.

Table 3- 36: ViVersion Description for VI_ATTR_RSRC_IMPL_VERSION

Bits 31 t0 20 Bits 19to 8 BitsOto 7
Major Number Minor Number Sub-minor Number

See Also Setting and Retrieving Attributes

3-22 Tektronix Version 1.1 TekVISA Programmer Manual

Attributes

VI_ATTR_RSRC_LOCK_STATE

Usage Thecurrent locking state of the resource on the given session.

Table 3-37: VI_ATTR_RSRC_LOCK_STATE Attribute

Data Type Range of Values Default Access Privilege

ViAccessMode VI_NO_LOCK VI_NO_LOCK Read Only Global
VI_EXCLUSIVE_LOCK
VI_SHARED_LOCK

Comments The resource can be unlocked, locked with an exclusive lock, or locked with a
shared lock.

See Also Setting and Retrieving Attributes
L ocking and Unlocking Resources

VI_ATTR_RSRC_MANF _ID

Usage A valuethat corresponds to the VXI manufacturer ID of the manufacturer that
created the VISA implementation.

Table 3-38: VI_ATTR_RSRC_MANF_ID Attribute

Data Type Range of Values Default Access Privilege
Vilint16 0 to 3FFFh N/A Read Only Global

Comments The manufacturer of TekVISA is Tektronix.

See Also Setting and Retrieving Attributes

Tektronix Version 1.1 TekVISA Programmer Manual 3-23

Attributes

VI_ATTR_RSRC_MANF_NAME

Usage A string that corresponds to the VX1 manufacturer name of the manufacturer that
created the VISA implementation.

Table 3-39: VI_ATTR_RSRC_MANF_NAME Attribute

Data Type Range of Values Default Access Privilege

ViString N/A N/A Read Only Global

Comments The manufacturer of TekVISA is Tektronix.

See Also Setting and Retrieving Attributes

VI_ATTR_RSRC_NAME

Usage Theuniqueidentifier for aresource.

Table 3-40: VI_ATTR_RSRC_NAME Attribute

Data Type Range of Values Default Access Privilege
ViRsrc N/A N/A Read Only Global

Comments For the Default Resource Manager, the value of this attributeis “”, the empty
string.

H Thevalue of this attribute must be compliant with the address structure
presented in the following table. See the viOpen() description for examples.

H Optiona string segments are shown in square brackets ([]).
H The default value for the optional string segment board is 0.

H The default value for the optional string segment secondary addressis
none.

H Address strings are not case sensitive.

3-24 Tektronix Version 1.1 TekVISA Programmer Manual

Attributes

Table 3-41: Resource Address String Grammar

Interface Syntax
ASRL ASRL][board][::INSTR]
GPIB GPIBJ[board]:: primary address][:: secondary address][::INSTR]

See Also Setting and Retrieving Attributes
viOpen()

VI_ATTR_RSRC_SPEC_VERSION

Usage Resource version that uniquely identifies the version of the VISA specification to
which the implementation is compliant.

Table 3-42: VI_ATTR_RSRC_SPEC_VERSION Attribute

Data Type Range of Values Default Access Privilege
ViVersion 0 to FFFFFFFFh 00200000h Read Only Global

Comments This current implementation is compliant with Version 2.0 of the VISA
Specification.

Table 3-43: ViVersion Description for VI_ATTR_RSRC_SPEC_VERSION

Bits 31 t0 20 Bits 19to 8 BitsOto 7
Major Number Minor Number Sub-minor Number

See Also Setting and Retrieving Attributes

Tektronix Version 1.1 TekVISA Programmer Manual 3-25

Attributes

VI_ATTR_SEND_END_EN

Usage

Comments

See Also

VI_ATTR_STATUS

Usage

Comments

See Also

3-26

Specifies whether to assert END during the transfer of the last byte of the buffer.

Table 3-44: VI_ATTR_SEND_END_EN Attribute

Data Type Range of Values Default Access Privilege
Vi Boolean VI_TRUE VI_TRUE Read/Write Local
VI_FALSE

tApplicable to GPIB and serial devices.

Setting and Retrieving Attributes
Basic I nput/Output
Reading and Writing Formatted Data

Contains the return code of the asynchronous 1/0O operation that has completed or
status code returned by an operation generating an error.

Table 3-45: VI_ATTR_STATUS Attribute

Data Type Range of Values Default Access Privilege
ViStatus N/A N/A Read Only

This attribute is used to check the return code after event 1/O completion or the
status code after an exception event.

Setting and Retrieving Attributes
Handling Events
VI_EVENT_IO_COMPLETION
VI_EVENT_EXCEPTION

Tektronix Version 1.1 TekVISA Programmer Manual

Attributes

VI_ATTR_SUPPRESS_END _EN

Usage

Comments

See Also

VI_ATTR_TERMCHAR

Usage

Comments

See Also

Specifies whether to suppress the END indicator termination.

Table 3-46: VI_ATTR_SUPPRESS_END_EN Attribute

Data Type Range of Values Default Access Privilege
ViBoolean VI_TRUE VI_FALSE Read/Write Local
VI_FALSE

If this attribute is set to
H VI_TRUE, the END indicator does not terminate read operations.
H VI_FALSE, the END indicator terminates read operations.

Setting and Retrieving Attributes
viRead()

Termination character.

Table 3-47: VI_ATTR_TERMCHAR Attribute

Data Type Range of Values Default Access Privilege
VilInt8 0to FFh 0Ah (linefeed) Read/Write Local

When the termination character isread and VI_ATTR_TERMCHAR_EN is
enabled during a read operation, the read operation terminates.

Setting and Retrieving Attributes
Basic I nput/Output

Reading and Writing Formatted Data
VI_ATTR_TERMCHAR_EN
VI_ATTR_ASRL_END_IN
VI_ATTR_ASRL_END_OUT
viRead()

Tektronix Version 1.1 TekVISA Programmer Manual 3-27

Attributes

VI_ATTR_TERMCHAR_EN

Usage Flag that determines whether the read operation should terminate when a
termination character is received.

Table 3-48: VI_ATTR_TERMCHAR_EN Attribute

Data Type Range of Values Default Access Privilege
ViBoolean VI_TRUE VI_FALSE Read/Write Local
VI_FALSE

Comments When the termination character isread and VI_ATTR_TERMCHAR_EN is
enabled during a read operation, the read operation terminates.

See Also Setting and Retrieving Attributes
Basic I nput/Output
Reading and Writing Formatted Data
VI_ATTR_TERMCHAR
viRead()

VI_ATTR_TMO_VALUE

Usage Minimum timeout value to use, in milliseconds.

Table 3-49: VI_ATTR_TMO_VALUE Attribute

Data Type Range of Values Default Access Privilege
Vilint32 VI_TMO_IMMEDIATE 2000 Read/Write Local
1to FFFFFFFER
VI_TMO_INFINITE

Comments A timeout value of

H VI_TMO_IMMEDIATE means that operations should never wait for the
deviceto respond.
H VI_TMO_INFINITE disables the timeout mechanism.

See Also Setting and Retrieving Attributes

3-28 Tektronix Version 1.1 TekVISA Programmer Manual

Attributes

VI_ATTR_TRIG_ID

Usage Identifier for the current triggering mechanism.

Table 3-50: VI_ATTR_TRIG_ID Attribute

Data Type Range of Values Default Access Privilege
Vilnt16 VI_TRIG_SW VI_TRIG_SW Read/Write Local

Comments Applicable to GPIB and seria devices.

See Also Setting and Retrieving Attributes
viAssertTrigger ()

VI_ATTR_USER_DATA

Usage Dataused privately by the application for a particular session.

Table 3-51: VI_ATTR_USER_DATA Attribute

Data Type Range of Values Default Access Privilege
ViAddr N/A N/A Read/Write Local

Comments Thisdatais not used by VISA for any purposes and is provided to the applica
tion for its own use.

See Also Setting and Retrieving Attributes

Tektronix Version 1.1 TekVISA Programmer Manual 3-29

Attributes

VI_ATTR_WR_BUF OPER_MODE

3-30

Usage

Comments

See Also

Determines the operational mode of the write buffer.

Table 3-52: VI_ATTR_WR_BUF_OPER_MODE Attribute

Access Privi-
Data Type Range of Values Default lege
Vilint16 VI_FLUSH_ON_ACCESS |VI_FLUSH_WHEN_FULL | Read/Write Local

VI_FLUSH_WHEN_FULL

When the operational mode is set to

H VI_FLUSH WHEN_FULL (default), the buffer is flushed when an END
indicator is written to the buffer, or when the buffer fills up.

H VI_FLUSH_ON_ACCESS, the write buffer is flushed under the same
conditions, and also every time a viPrintf() operation completes.

Setting and Retrieving Attributes
Basic I nput/Output

Reading and Writing Formatted Data
viPrintf()

Tektronix Version 1.1 TekVISA Programmer Manual

Y A
Events

Events
The following event types are presented in alphabetical order.

VI_EVENT_EXCEPTION

Usage Notification that an error condition has occurred during an operation invocation.

Table 4-1: VI_EVENT_EXCEPTION Related Attributes

Event Attribute Description
VI_ATTR_EVENT _TYPE Unique logical identifier of the event.
Value = VI_EVENT_EXCEPTION.
VI_ATTR_STATUS Status code returned by the operation generating the error.
VI_ATTR_OPER_NAME The name of the operation generating the event.

See Also Exception Handling
Generating an Error Condition

VI_EVENT 10_COMPLETION

Usage Notification that an asynchronous operation has completed.

Table 4-2: VI_EVENT_IO_COMPLETION Related Attributes

Event Attribute Description

VI_ATTR_EVENT _TYPE Unique logical identifier of the event.
Value = VI_EVENT_|O_COMPLETION.

VI_ATTR_STATUS Return code of the asynchronous I/O operation that has
completed.

VI_ATTR_JOB_ID The job ID of the asynchronous operation that has completed.

VI_ATTR_BUFFER The address of a buffer that was used in an asynchronous
operation.

VI_ATTR_RET_COUNT The actual number of elements that were asynchronously
transferred.

VI_ATTR_OPER_NAME The name of the operation generating the event.

Tektronix Version 1.1 TekVISA Programmer Manual 4-1

Events

See Also Asynchronous Read/Write
viReadAsync()
viwriteAsync

VI_EVENT SERVICE_REQ

Usage Notification that a service request was received from the device.

Table 4-3: VI_EVENT_SERVICE_REQ Related Attributes

Event Attribute Description

VI_ATTR_EVENT _TYPE Unique logical identifier of the event.
Value = VI_EVENT_SERVICE_REQ.

See Also Status/Service Request

4-2 Tektronix Version 1.1 TekVISA Programmer Manual

-/ |
Examples

-/ |
Programming Examples

Introduction

The programming examples discussed here illustrate methods you can use to
control the oscilloscope using VISA. All the program examples assume that the
device descriptor is GPIB8::1::INSTR. The sample programs include:

NOTE. Inversion 1.1 and earlier versions of TekVISA, some operations return
the value NOT IMPLEMENTED. These include the the formatted 1/0O
operations described in FORMATIO.CPP and BUFFERIO.CPP.

SIMPLE.CPP — illustrates opening and closing a session

SIMPLEFINDRSRC.CPP — illustrates finding resources using regular
expressions

FINDRSRCATTRMATCH.CPP — illustrates finding resources using attribute
matching

ATTRACCESS.CPP — illustrates getting and setting attributes
RWEXAM.CPP — illustrates basic input/output
FORMATIO.CPP — illustrates formatted input/output

BUFFERIO.CPP — demonstrates the performance effect of resizing the
formatted 1/O buffers

SRQWAIT.CPP — illustrates event handling using the queuing mechanism
SRQ.CPP — illustrates event handling using the callback mechanism
EXLOCKEXAM.CPP — illustrates exclusive locking of resources
SHAREDL OCK.CPP — illustrates shared locking of resources

The sample programs were written in Microsoft Visual C ** 6.0. If you wish to
develop code, you will need to compile and link using two Visua C** files:
visa32.lib and visa.h. If you have TekVISA (or any version of VISA) installed
on your computer, these files can be found in the C:\vxipnp\win95 directory,
regardless of whether you are using Windows 95 or a later version of Windows
(such as Windows 98 or ME). If you are using Windows NT or 2000, thefiles
can be found in the C:\vxipnp\winnt directory.

Tektronix Version 1.1 TekVISA Programmer Manual 5-1

Programming Examples

H Thevisa32.lib fileislocated in the \lib\Msc subdirectory of the
C:\vxipnp\win95 or C:\vxipnp\winnt directory.

H Thevisa.hfileislocated in the\include subdirectory of the C:\vxipnp\win95
or C:\vxipnp\winnt directory.

For more information about TekVISA installation and packaging, refer to the
Getting Started chapter of this book, and the README.HTML file that
accompanies the TekVISA installation software on the Product Software CD for
your Series of Tektronix Oscill oscope.

Compiling and Linking Examples

5-2

NOTE. Some project examples in this chapter have already been configured and
compiled on the accompanying CD.

To make an executable for any of the files (for example, a project named
SIMPLE), perform the following steps:

1. Instal TekVISA if necessary.
2. Install Visua C**if necessary.
3. If necessary, copy the programming example files to your hard disk.

4. Set up aproject for each example. The example below creates a new project
for the SAMPLE example program.

a. Invoke Visual C**
b. From the File menu, select New.
c. From the Projects tab, Choose Win32 Console Application.

d. Select the directory where you want to store the project, give the project
aname, for example, Smple, and click OK.

e. Select An Empty Project, click Finish and OK.

f. From the Project menu, select Add to Project > Files... , navigate to the
folder where you stored the Smple.cpp sourcefile, select it, and click
OK.

5. From the Project menu, select Settings.
6. Select All Configurationsin the Settings for combo box.
7. From the C/C++ tab:

Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

a. Choose the Precompiled Headers category and select Not using precom-
piled headers.

b. Choose the Preprocessor category and under the heading Additional
Include directories, type c:\vxipnp\win95\include (or
c:\vxipnp\winNT\include if you are running under Windows NT)

8. From theLink tab:

a. Choose the General category and under the heading Object/library
modules, add visa32.lib to the list of filesin the text entry box.

b. Choosethe Input category and under the heading Additional library path,
type c:\vxipnp\win95\lib\msc and click OK.

9. To compile and link your sample program, choose Build from the Build menu
or press F7.

10. To run the sample program, choose Execute from the Build menu or press
Ctrl+F7.

Opening and Closing Sessions

The VISA Resource Manager assigns unique resource addresses and |Ds and
provides access to resources registered with it. Currently, one such manager is
available by default to a VISA application after initialization—the Default
Resource Manager. The Default Resource Manager is used when finding
available resources, opening resources, and performing other operations at the
resource level.

H Applications use the viOpenDefaultRM () function to get access to the
Default Resource Manager. This function must be called before any VISA
operations can be invoked.

H Thefirst cal to this function initializes the VISA system, including the
Default Resource Manager resource, and returns a session to that
resource.

H Subsequent calls to this function return unique sessions to the same
Default Resource Manager resource.

H After opening the Default Resource Manager, applications use the viOpen()
operation to get access to a particular instrument resource. This operation
opens a session to adevice resource that is uniquely identified by an address
string. TekVISA supports the following address string grammar syntax for
GPIB and serial devices:

H GPIB[board]::primaryaddress| ::secondaryaddress|[::INSTR]
H ASRL[board][::INSTR]

Tektronix Version 1.1 TekVISA Programmer Manual 5-3

Programming Examples

5-4

SIMPLE.CPP Example

where brackets [] enclose optional fields, the default board is 0, and the
default secondary addressis None. For example, GPIBS refers to the GPIB
INSTR device on board O at primary address 8.

H Once an application has opened a session to a VISA resource using some of
the servicesin the VISA Resource Manager, it can use viClose() to close that
session and free up al the system resources associated with it. The VISA
system is also responsible for freeing up al associated system resources
whenever an application becomes dysfunctional.

H IF theviClose() operation isinvoked on a session returned from viOpenDe-
faultRM (), al VISA sessions opened with the corresponding Default
Resource Manager session are also closed.

The following C++ example, SIMPL E.CPP, opens the Default Resource
Manager, opens a session to a GPIB device, queries the device, and then closes
the session to the GPIB device and closes the session to the Default Resource
Manager. Note that the first Close() operation is optiona and not really
necessary, since closing the Default Resource Manager also closes any sessions
opened with it.

#include <visa.h>
#include <stdio.h>
#include <memory.h>

// This example opens a specific GPIB device, does an *idn
query
// and prints the result.

int main(int argc, char* argv[])

{
ViSession rm = VI_NULL, vi = VI _NULL;
ViStatus status;
ViChar

buffer[256];

Viulnt32 retCnt;

// Open a default session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;

// Open the GPIB device at primary address 1, GPIB
board 8
status = viOpen(rm, “GPIB8::1::INSTR”, VI_NULL,
VI_NULL,
&vi);
if (status < VI_SUCCESS) goto error;

// Send an ID query.

Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

status = viWrite(vi, (ViBuf) 7*idn?*“, 5, &retCnt);
if (status < VI_SUCCESS) goto error;

// Clear the buffer and read the response

memset(buffer, 0, sizeof(buffer));

status = viRead(vi, (ViBuf) buffer, sizeof(buffer),
&retCnt);

if (status < VI_SUCCESS) goto error;

// Print the response
printf(C’id: %s\n*, buffer);

// Clean up

viClose(vi); // Not needed, but makes things a bit
more

// understandable

viClose(rm); // Closes resource manager and any
sessions

// opened with it
return O;

error:
// Report error and clean up
viStatusDesc(vi, status, buffer);
fprintf(stderr, “failure: %s\n*“, buffer);
if (rm = VI_NULL) {
viClose(rm);

}

return 1;

}
Figure 5-1: SIMPLE.CPP Example

Finding Resources

The VISA Resource Manager resource gives applications the ability to search a
VISA system for aresource in order to establish acommunication link to it.
Applications can request this service by using the viFindRsrc() and viFind-
Next() operations.

H TheviFindRsrc() operation matches an expression against the resources
available for a particular interface. The search is based on aresource address
string that uniquely identifies a given resource in the system. Search criteria
can include aregular expression matched against the address strings of
available resources, and an optional attribute expression involving logical
comparisons of attribute values. If the match is successful, viFindRsrc()
returns ahandle to afind list as well as the first resource found in thelist,
along with a count to indicate if more matching resources were found for the

Tektronix Version 1.1 TekVISA Programmer Manual 5-5

Programming Examples

designated interface. The find list handle must be used as an input to
viFindNext().

H TheviFindNext () operation receives the find list handle created by
viFindRsr¢() and returns the next device resource found in the list.

H When thefind list handleis no longer needed, it should be passed to
viClose(). The viClose() operation is used not only to close sessions, but
also to free find lists returned from the viFindRsrc() operation, as well as
events returned from the viwaitOnEvent() operation.

Using Regular A regular expression is astring used for pattern matching against the resource
Expressions address strings known to the VISA Resource Manager. The expression can
include regular characters as well as wildcard characterssuchas 2. Givena
regular expression as input, the viFindRsrc() operation comparesitto a
resource string or list of strings, and returns alist of one or more strings that
match the regular expression.

SIMPLEFINDRSRC.CPP Thefollowing C++ example, SIMPL EFINDRSRC.CPP, opens the Default
Example Resource Manager, finds all available GPIB devices, opens a session to the first
one, printsits response to an ID query, closes the session, finds the next one, and
so on for al GPIB devices found. At the end of the example, the program closes
the session to the Default Resource Manager.

#include <visa.h>
#include <stdio.h>
#include <memory.h>

// This example cycles through all GPIB devices and prints
out
// each instrument’s response to an *idn? query.

int main(int argc, char* argv[])

{
ViSession rm = VI_NULL, vi = VI _NULL;
ViStatus status;
ViChar

desc[256], 1d[256], buffer[256];
Viulnt32 retCnt, itemCnt;
ViFindList list;
Viulnt32 i;

// Open a default session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;

// Find all GPIB devices
status = viFindRsrc(rm, “GPIB?*INSTR”, &list,

5-6 Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

&itemCnt,
desc);
if (status < VI_SUCCESS) goto error;

for (i = 0; i < itemCnt; i++) {
// Open resource found iIn rsrc list
status = viOpen(rm, desc, VI_NULL, VI_NULL,

&vi);
if (status < VI_SUCCESS) goto error;
// Send an ID query.
status = viWrite(vi, (ViBuf) ’*idn?“, 5,
&retCnt);
if (status < VI_SUCCESS) goto error;
// Clear the buffer and read the response
memset(id, 0, sizeof(id));
status = viRead(vi, (ViBuf) id, sizeof(id),
&retCnt);
if (status < VI_SUCCESS) goto error;
// Print the response
printf(C’id: %s: %s\n*“, desc, id);
// We’re done with this device so close it
viClose(vi);
// Get the next i1tem
viFindNext(list, desc);
}
// Clean up
viClose(rm);
return O;
error:
// Report error and clean up
viStatusDesc(vi, status, buffer);
fprintf(stderr, “failure: %s\n*“, buffer);
it (rm = VI_NULL) {
viClose(rm);
}
return 1;
}

Figure 5-2: SIMPLEFINDRSRC.CPP Example

Tektronix Version 1.1 TekVISA Programmer Manual 5-7

Programming Examples

Using Attribute Matching

If the resource string matches the regular expression, the attribute values of the
resource are then matched against an optional attribute expression if one exists.

This expresson can include the use of logical ANDs, ORs and NOTs. Equa (==
and unegual (=) comparators can be used to compare attributes of any type, and

FINDRSRCATTRMATCH.

5-8

CPP Example

other inequality comparators (>, <, >=, <=) can be used to compare attributes of
numeric type. If the attribute type is ViString, aregular expression can be used
in matching the attribute. Only global attributes can be used in the attribute
expression.

The following C++ example, FINDRSRCATTRMATCH.CPP, opensthe
Default Resource Manager, finds all GPIB devices with primary addresses
between 1 and 5, then cycles through the find list and, for each found device,
opens a session, print its responseto an ID query, and closesthe session. At the
end of the example, the program closes the session to the Default Resource
Manager.

#include <visa.h>
#include <stdio.h>
#include <memory.h>

// This example cycles through all GPIB devices with primary
address

// between 1 and 5 and prints out each Instrument’s response
to an

// *idn? query.

int main(int argc, char* argv[])

{
ViSession rm = VI_NULL, vi = VI _NULL;
ViStatus status;
ViChar

desc[256], 1d[256], buffer[256];
Viulnt32 retCnt, itemCnt;
ViFindList list;
Viulnt32 i;

// Open a default session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;

// Find all GPIB devices

status = viFindRsrc(rm, “GPIB?*INSTR\
{VI_ATTR_GPIB_PRIMARY_ADDR >= 1\
&& VI_ATTR_GPIB_PRIMARY_ADDR <= 5},

&list, &itemCnt, desc);
if (status < VI_SUCCESS) goto error;

Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

for (i = 0; i < itemCnt; i++) {
// Open resource found iIn rsrc list
status = viOpen(rm, desc, VI_NULL, VI_NULL,

&vi);
if (status < VI_SUCCESS) goto error;
// Send an ID query.
status = viWrite(vi, (ViBuf) 7*idn?*“, 5,
&retCnt);
if (status < VI_SUCCESS) goto error;
// Clear the buffer and read the response
memset(id, 0, sizeof(id));
status = viRead(vi, (ViBuf) id, sizeof(id),
&retCnt);
if (status < VI_SUCCESS) goto error;
// Print the response
printf(C’id: %s: %s\n*“, desc, id);
// We’re done with this device so close it
viClose(vi);
// Get the next item
viFindNext(list, desc);
}
// Clean up
viClose(rm);
return O;
error:
// Report error and clean up
viStatusDesc(vi, status, buffer);
fprintf(stderr, “failure: %s\n*“, buffer);
it (rm = VI_NULL) {
viClose(rm);
}
return 1;
}

Figure 5-3: FINDRSRCATTRMATCH.CPP Example

Tektronix Version 1.1 TekVISA Programmer Manual 5-9

Programming Examples

Setting and Retrieving Attributes

5-10

Retrieving Attributes

Setting Attributes

ATTRACCESS.CPP
Example

Resources have attributes associated with them. Some attributes depict the
instantaneous state of the resource and some define changeable parameters that
can be used to modify the behavior of the resources. VISA defines operations for
retrieving and modifying the value of individual resource attributes.

The VISA operation for retrieving the value of an attribute is viGetAttribute().

The VISA operation for modifying the value of an attribute is viSetAttribute().

The following C++ example, ATTRACCESS.CPP, opens the Default Resource
Manager, gets some information about the VISA implementation, then opens a
session to a particular GPIB device (the GPIB INSTR device on board 8 at
primary address 1), sets the timeout to 5 seconds, queries the device ID, and
prints the results. At the end of the example, the program closes the sessions to
the device and to the Default Resource Manager.

In this example, the program uses the viGetAttribute() operation to retrieve
VISA implementation information. Specifically, the program consults the
VI_ATTR_RSRC_MANF_NAME, VI_ATTR_RSRC_SPEC_VERSION, and
VI_ATTR_RSRC_IMPL_VERSION attribute values to obtain the VISA
Manufacturer name, the VISA specification version it supports, and the VISA
implementation version.

In thisexample, the program uses the viSetAttribute() operation to set the
timeout to 5 seconds. Specifically, the program sets the
VI_ATTR_TMO_VALUE to 5000 milliseconds, which corresponds to 5
seconds.

#include <visa.h>
#include <stdio.h>
#include <memory.h>

// This example gets some info about the VISA
implementation,

// opens a specific GPIB device, sets the timeout to 5
seconds, and

// does an *idn query then prints the result.

int main(int argc, char* argv[])

{
ViSession rm = VI_NULL, vi = VI _NULL;
ViStatus status;
ViChar

buffer[256];

Viulnt32 retCnt;

Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

ViVersion version = 0, impl = O;

// Open a default session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;

// Get and print VISA’s vendors name, VISA
Specification
// Version, and implementation version.
status = viGetAttribute(rm, VI_ATTR_RSRC_MANF_NAME,
buffer);
if (status < VI_SUCCESS) goto error;
status = viGetAttribute(rm, VI_ATTR_RSRC_SPEC VERSION,
&version);
if (status < VI_SUCCESS) goto error;
status = viGetAttribute(rm, VI_ATTR_RSRC_IMPL_VERSION,
&impl);
if (status < VI_SUCCESS) goto error;
printfF(’VISA Manufacturer Name: %s, supports %X spec,
%x implementation version\n‘“, buffer, version,

impl);

// Open the GPIB device at primary address 1, GPIB
board 8

status = viOpen(rm, “GPIB8::1::INSTR*“, VI_NULL,
VI_NULL,

&vi);
if (status < VI_SUCCESS) goto error;

// Set timeout to 5 seconds
status = viSetAttribute(vi, VI_ATTR_TMO_VALUE, 5000);
if (status < VI_SUCCESS) goto error;

// Send an ID query.
status = viWrite(vi, (ViBuf) 7*idn?*“, 5, &retCnt);
if (status < VI_SUCCESS) goto error;

// Clear the buffer and read the response

memset(buffer, 0, sizeof(buffer));

status = viRead(vi, (ViBuf) buffer, sizeof(buffer),
&retCnt);

if (status < VI_SUCCESS) goto error;

// Print the response
printf(C’id: %s\n*“, buffer);

// Clean up
viClose(vi); // Not needed, but makes things a bit
more
// understandable
viClose(rm);

Tektronix Version 1.1 TekVISA Programmer Manual 5-11

Programming Examples

Basic Input/Output

Reading and Writing Data

return O;
error:
// Report error and clean up
viStatusDesc(vi, status, buffer);
fprintf(stderr, “failure: %s\n*“, buffer);
it (rm = VI_NULL) {
viClose(rm);
}
return 1;
}

Figure 5-4: ATTRACCESS.CPP Example

The VISA INSTR resource provides a program with Basic Input/Output services
to

Send blocks of datato a device
Request blocks of data from a device
Send the device clear command to a device

Trigger adevice

I I T I I

Find information about a device's status

The Basic Input/Output Services allow devices associated with an INSTR

resource to read and write data synchronously or asynchronously. The resource
can recelve and send data in the native mode of the associated interface, or in any

5-12

alternate mode supported by the interface.

The VISA Write Service lets a program send blocks of data from an explicit
user -specified buffer to the device. The device can interpret the data as
necessary—for example, as messages, commands, or binary encoded data.
Setting the appropriate attribute modifies the data transmittal method and other
features such as whether to send an END indicator with each block of data.

The VISA Read Service lets a program request blocks of data from the device.
The dataiis returned in an explicit, user-specified buffer. How the returned datais
interpreted depends on how the device has been programmed. For example, the
information could be messages, commands, or binary encoded data. Setting the
appropriate attribute modifies the data transmittal method and other features such
as the termination character.

Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

Synchronous Read/Write The basic synchronous I/O operations are viRead() and viWrite().

Extract from SIMPLE.CPP ~ Thefollowing extract from the SIM PL E.CPP example highlights the synchro-
Example nous read/write portions of that example. Here, the program sends a 5-byte ID
query (*idn?) to a GPIB device using a user-specified buffer, then clears the
buffer for readability and reads the device's ID response from the same buffer.

// Send an ID query.
status = viWrite(vi, (ViBuf) “*idn?”, 5, &retCnt);
if (status < VI_SUCCESS) goto error;

// Clear the buffer and read the response

memset(buffer, 0, sizeof(buffer));

status = viRead(vi, (ViBuf) buffer, sizeof(buffer),
&retCnt);

if (status < VI_SUCCESS) goto error;

// Print the response
printf(C’id: %s\n*, buffer);

Figure 5-5: Read/Write Extract from SIMPLE.CPP Example

RWEXAM.CPP Example Inthe following RWEXAM .CPP example, the program sends a 5-byte ID query
(*idn?) to a GPIB device using a user-specified buffer, then reads the device's ID
response from the same buffer. In this case, unlike the previous example the
buffer is not cleared beforeit is read.

#include <stdio.h>
#include ’visa.h*

int main(int argc, char* argv[])

{

ViSession rm, Vvi;

ViStatus status;

char string[256];

Viulnt32 retCnt;

status = viOpenDefaultRM(&rm);

if (status < VI_SUCCESS) goto error;

status = viOpen(rm, “GPIB8::1::INSTR*“, NULL, NULL,
&vi);

if (status < VI_SUCCESS) goto error;

status = viWrite(vi, (ViBuf) “*idn?”, 5, &retCnt);
if (status < VI_SUCCESS) goto error;

status = viRead(vi, (ViBuf) string, 256, &retCnt);
if (status < VI_SUCCESS) goto error;

Tektronix Version 1.1 TekVISA Programmer Manual 5-13

Programming Examples

Asynchronous Read/Write

5-14

Clear

Trigger

printfF(’*idn response %s\n‘“, string);

viClose(vi);
viClose(rm);

return O;

error:
viStatusDesc(rm, status, string);
fprintf(stderr, “Error: %s\n“, (ViBuf) string);
return O;

}

Figure 5-6: RWEXAM.CPP Example

Any INSTR resources can have asynchronous, non-blocking operations
associated with them. The basic asynchronous 1/0O operations are viReadA-
sync() and viwriteAsync(). These operations are invoked just like other
operations. However, instead of waiting for the actua job to be done, they
simply register the job to be done and return immediately. When 1/0 is compl ete,
an event is generated to indicate the completion status.

Before beginning an asynchronous transfer, you must enable the session for the
I/0 completion event using the viEnableEvent() operation. After the transfer,
you can use the viWwaitOnEvent() operation to wait for the
VI_EVENT_IO_COMPLETION event.

If you want to abort such an asynchronous operation after a specified time
period, use viTer minate() with the unique job 1D returned from the session of
the operation to be aborted. If aVI_EVENT_IO_COMPLETION event has not
yet occurred for the specified jobld, the viTerminate() operation raises a
VI_EVENT_IO_COMPLETION event.

The VISA Clear Service lets a program send the device clear command to the
deviceit is associated with. The action that the device takes depends on the
interface to which it is connected. For a GPIB device, this amounts to sending
the IEEE 488.1 SDC (04h) command. For a serial device, the string “*CLS\n” is
sent if 488-style protocoal is being used.

Invoking aviClear () operation on a device resource not only resets the hardware,
it also flushes the formatted /O read buffer (appliesit to the hardware) and
discards the contents of the formatted 1/O write buffer used by the Formatted I/O
Services for that session.

The VISA Trigger Service provides monitoring and control access to the trigger
of the device associated with the resource. Specifically, the viAssertTrigger ()
operation handles assertion of software triggers for GPIB and serial devices.

Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

Status/Service Request ~ The VISA Satus/Service Request Service allows a program to service requests
made by other requestersin a system, and can procure device status information.

Your program can determine if an event is a service request by using the
viGetAttribute() operation to get the value of the VI_ATTR_EVENT_TYPE
atribute. A related activity isto use the viwaitOnEvent() operation to wait on
the VI_EVENT_SERVICE_REQUEST event. You can then use the vi-
ReadSTB() operation to manually obtain device status information by reading
the status byte of the service request. For example, you might read this byte to
determine which GPIB device among severa possibilities is making the request.
If the resource cannot obtain the status information from the requester in the
timeout period, it returns atimeout.

Reading and Writing Formatted Data

NOTE. Inversion 1.1 and earlier versions of TekVISA, the operations described
in this section return the value NOT IMPLEMENTED.

Buffering can improve performance and throughput by making it possible to
transfer large blocks of datato and from devices at certain times. The For-
matted |/O Services support formatting and intermediate buffering in two ways:

NOTE. These distinctions are analogous to the differences in syntax between the
formatted 1/0O operation fprint() (implicit buffering held by afile pointer) and
buffered 1/0O operation sprint() (explicit user-specified buffering) in the ANSI C
/C++ languages.

H The TekVISA formatted I/O operations write to an implicit write buffer and
read from an implicit read buffer associated with avirtual instrument. These
operations include viPrintf(), viScanf(), viQueryf(), and the related variable
list operations (viVPrintf(), vivVScanf(), and ViVQueryf()). Inthis
document, these implicit buffers that are held by afile pointer are called the
formatted 1/O buffers.

The related operations viSetBuf(), viBufRead(), viBufWrite(), and
viFlush() can also act on these implicit buffers to set the buffer size, read
and write segments of the buffer, and flush the contents (by applying them to
the hardware in the case of the read buffer, or discarding them in the case of
the write buffer).

Invoking aviClear () operation on a device resource not only resets the
hardware, it also flushes the formatted 1/O read buffer (appliesit to the
hardware) and discards the contents of the formatted I/O write buffer used by
the formatted 1/0O operations for that session.

Tektronix Version 1.1 TekVISA Programmer Manual 5-15

Programming Examples

H The TekVISA buffered 1/O operations write formatted information to and
read it from explicit user-supplied buffersthat you provide. These
operations include viSPrintf(), viSScanf() and the related variable list
operations (viVSPrintf(), and viV SScanf()).

The related operations viBufRead() and viBufWrite() can aso act on these
explicit buffers to read data segments from a device into a user-supplied
buffer, and write data segments from a user-supplied buffer to a device.

Since all of these operations actually use the viwrite() and viRead() operations
to perform low-level I/O to and from the device, you are discouraged from
mixing the viwrite() and viRead() basic I/O operations with formatted 1/0
and/or buffered I/O operationsin the same session. If you do mix these
operations, you must be careful to flush buffers correctly when moving between
operations. Figure 5-7 illustrates the various types of formatted read/write
operations supported by VISA.

5-16 Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

Formatted I/O Operations

FORMATIO.CPP Example

viPrintf, viScanf viBufRead
y (’Queryf Formatted 1/O viBufWrite
o Operations viSetBuf
viVPrintf,vivVScanf]
) ViFlush
vivQueryf viClear
operate on Impﬁcﬂ Read/ operated on by
Write Buffers
Explicit User Pointer to Variable
Supplied Buffers Argument List
ViSPrintf, viVPrintf,viVScanf
viSScanf viVQueryf
—— operate on
viVSPrintf P ViVSPrintf operate on
viVSScanf viVSScanf
Buffered I/0 Variable List
Operations Operations

Figure 5-7: Types of Formatted Read/Write Operations

The TekVISA formatted I/O operations write to an implicit write buffer and read
from an implicit read buffer associated with avirtual instrument. Usage of these
operationsisillustrated in the following example.

The following C++ example, FORMATIO.CPP, includes a main program that
opens the Default Resource Manager, opens a session to the GPIB device with

primary address 1 on board 8, calls the ReadWaveform() function to get header
and waveform data from a Tektronix TDS scope, then writes the response to the
standard output, and closes the session. At the end of the example, the program
closes the session to the Default Resource Manager.

To review the use of Tektronix TDS scope commands and formatted 1/0
operations in more detail:

1. Theheader off command sent using the viPrintf() operation causes the
oscilloscope to omit headers on query responses, so that only the argument is
returned. The\n format string sends the ASCII LF character and END

identifier.

Tektronix Version 1.1 TekVISA Programmer Manual

5-17

Programming Examples

5-18

Thehor : reco? query sent using the viQueryf() operation asks the oscillo-
scope for the current horizontal record length and receives the response. The
\n format string sends the ASCII LF character and END identifier. The % d
modifier and format code specify that the argument is along integer.

Thedat a: start %l; data: st op %\ n commands sent using the viPrintf()
operation set the starting data point to 0 and the ending data point to the
record length - 1 for the waveform transfer that will beinitiated later using a
CURVE? query. The v format codes specify that the arguments are
integers. The\ n format string sends the ASCII LF character and END
identifier.

The WEMOUTPRE: YOFF?\ n query sent using the viQueryf() operation asks the
oscilloscope for the vertical offset (Y OFF) and receives the response. This
information is needed to convert digitizing units to vertical units (typicaly
volts) in order to scalethedata. The % format code specifies that the
argument is afloating point number. The\ n format string sends the ASCI|
LF character and END identifier.

The WMot pre: YMULT?\ n query sent using the viQueryf() operation asks the
oscilloscope for the vertical scale factor (YMULT) per digitizing level (also
caled the Y multiple) vertical multiplier and receives the response. This
information is needed to convert digitizing units to vertical units (typicaly
volts) in order to scalethedata. The % format code specifies that the
argument is afloating point number. The\ n format string sends the ASCI|
LF character and END identifier.

The DATA: ENCDG RI Bl NARY; W DTH 1\ n command sent using the viPrintf()
operation sets the data format for the waveform transfer to binary using
signed integer data-point representation, with the most significant byte
transferred first. The DATA:WIDTH command sets the number of bytes to
transfer to one byte per datapoint. The\n format string sends the ASCI|
LF character and END identifier.

In binary format, the waveform is formatted as:

#<a><bbb><data><newline>

where:

a= the number of b bytes

bbb = the number of bytes to transfer

data = the curve data

newline = a single-byte new-line character at the end

The CURVE?\ n query sent using the viPrintf() operation asks the oscillo-
scope to transfer the waveform. The\n format string sends the ASCII LF
character and END identifier. Since the waveform could easily exceed the
size of the formatted 1/O read buffer, aviQueryf() is not being used here.

Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

Instead, we want to split up the write (viPrintf()) and read (viScanf())
operations, rather than combining them in a single query.

8. TheviFlush(vi, VI_WRITE_BUF | VI_READ BUF_DI SCARD) operation
performs two combined tasks before getting the oscilloscope’s response to
the CURVE? query. It transfers the contents of the formatted 1/0 write
buffer (in this case, the CURVE? query) to the oscilloscope, and discards the
contents of the formatted 1/0 read buffer.This flushing operation should
always be performed before a viScanf() operation that follows aviPrintf() or
viBufWrite() operation, to guarantee that flushing occurs.

9. Thefirstvi Scanf (vi, “%”, &c)operation readsthefirst character of the
waveform response from the oscilloscope. The % format code specifies that
the argument is a character. This character is expected to be #.

10. The second vi Scanf (vi, “%”, &c)operation reads the next character of the
waveform response from the oscilloscope. This character specifies the width
of the next field, which contains the number of bytes of waveform datato
transfer, and is expected to be between 0 and 9.

11. Thethird vi Scanf (vi, “%”, &c)operation reads the characters that
represent the number of bytesto transfer. The result of the previous scan is
used as the counter in the FOR loop. Each character read is expected to be
between 0 and 9.

12. The program uses the results of the previous scan to allocate the right size
for an array of double-word floating-point numbers that will contain the
waveform. Then the fourth vi Scanf (vi, “%”, &c) operation readsthe
waveform itself, using the result of the previous scan as the counter in the
FOR loop. The viScanf() operation accepts input until an END indicator is
read or all the format specifiersin the format string are satisfied.

13. Theptr[i] = (((double) c) - yoffset) * ymult;caculaion converts
the waveform data results from string data into a numerical array of
double-word floating point numbers, and aso converts the data from
digitizing units into vertica units (typicaly voltsin the case of waveform
data).

#include <visa.h>

#include <stdio.h>
#include <stdlib.h>
#include <assert._h>

// This function reads the currently selected waveform and
returns
// it as an array of doubles.
double* ReadWaveform(ViSession vi, long* elements) {
ViStatus status;
float yoffset, ymult;
ViChar

Tektronix Version 1.1 TekVISA Programmer Manual 5-19

Programming Examples

5-20

buffer[256];
ViChar

c;
long count, 1i;
double* ptr = NULL;

assert(elements != NULL);

// Turn headers off, this makes parsing easier
status = viPrintf(vi, “header off\n”);
if (status < VI_SUCCESS) goto error;

// Get record length value
status = viQueryf(vi, “hor:reco?\n”, “%ld”, elements);
if (status < VI_SUCCESS) goto error;

// Make sure start, stop values for curve query match
the

// full record length

status = viPrintf(vi, “data:start %d;data:stop %d\n”,

(*elements)-1);
if (status < VI_SUCCESS) goto error;

// Get the yoffset to help calculate the vertical
values.

status = viQueryf(vi, “WFMOUTPRE:YOFF?\n”, “%f”,
&yoffset);

if (status < VI_SUCCESS) goto error;

// Get the ymult to help calculate the vertical
values.

status = viQueryf(vi, “WFMOutpre:YMULT?\n”’, “%f”,
&ymult);

if (status < VI_SUCCESS) goto error;

// Request 8-bit binary data on the curve query

status = viPrintf(vi, “DATA:ENCDG RIBINARY;WIDTH
I\n);

if (status < VI_SUCCESS) goto error;

// Request the curve
status = viPrintf(vi, “CURVE?\n”);
if (status < VI_SUCCESS) goto error;

// Always Tlush 1f a viScant follows a viPrintf or

// viBufWrite.

status = viFlush(vi, VI_WRITE_BUF |
VI_READ_BUF_DISCARD) ;

if (status < VI_SUCCESS) goto error;

Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

// Get fTirst char and validate
status = viScanf(vi, “%c”, &c);

if (status < VI_SUCCESS) goto error;
assert(c == *#7);

// Get width of element field.
status = viScanf(vi, “%c”, &c);

if (status < VI_SUCCESS) goto error;
assert(c >= 0”7 && c <= 797);

// Read element characters

count = ¢ — ’07;

for (i = 0; 1 < count; i++) {
status = viScanf(vi, “%c”, &c);
if (status < VI_SUCCESS) goto error;
assert(c >= 0”7 && c <= 797);

}

// Read waveform into allocated storage
ptr = (double*) malloc(*elements*sizeof(double));

for (1 = 0; 1 < *elements; i++) {
status = viScanf(vi, “%c”, &c);
if (status < VI_SUCCESS) goto error;
ptr[i] = (((double) c) - yoffset) * ymult;
}

return ptr;

error:
// Report error and clean up
viStatusDesc(vi, status, buffer);
fprintf(stderr, “failure: %s\n*“, buffer);
if (ptr = NULL) free(ptr);
return NULL;

// This program reads a waveform from a Tektronix
// TDS scope and writes the floating point values to

// stdout.
int main(int argc, char* argv[])
{

ViSession rm = VI_NULL, vi = VI _NULL;
ViStatus status;

ViChar
buffer[256];
double*
wfm = NULL;
long elements, 1i;

Tektronix Version 1.1 TekVISA Programmer Manual 5-21

Programming Examples

// Open a default session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;

// Open the GPIB device at primary address 1, GPIB

board 8
status = viOpen(rm, ”GPIB8::1::INSTR*“, VI_NULL,
V1 _NULL,

&vi);
if (status < VI_SUCCESS) goto error;

// Read waveform and write it to stdout
wfm = ReadWaveform(vi, &elements);
if (wfm I= NULL) {
for (1 = 0; 1 < elements; i1++) {
printfFC’%f\n*“, wfm[i]);
}

}

// Clean up
if (wfm = NULL) free(wfm);
viClose(vi); // Not needed, but makes things a bit
more
// understandable
viClose(rm);

return O;

error:
// Report error and clean up
viStatusDesc(vi, status, buffer);
fprintf(stderr, “failure: %s\n*“, buffer);
if (rm = VI_NULL) viClose(rm);
if (wfm = NULL) free(wfm);
return 1;

}
Figure 5-8: FORMATIO.CPP Example

Resizing the FoTihattd&AGystem provides separate formatted 1/0 read and write buffers that you
Buffers can modify using the viSetBuf() operation. Use of these buffersisillustrated in
the following example.

5-22 Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

BUFFERIO.CPP Example The following C++ example, BUFFERIO.CPP, demonstrates the performance
effect of resizing the formatted 1/O buffers. In this example asin the
FORMATIO.CPP example, the main program opens the Default Resource
Manager, opens a session to the GPIB device with primary address 1 on board 8,
and calls the ReadWavefor m() function to get header and waveform datafrom a
Tektronix TDS scope.

In this case, before calling the ReadWavefor m() function, the program starts a
FOR loop that sets the read buffer size to 10, 100, 1000, and 10000 to show the
effect of buffer sizes on performance. Each time through the loop, the program
initializes a benchmark start time, calls the ReadWavefor m() function five times
to read segments of the waveform, and then writes the buffer size and the time
required to read the buffer. After printing all the benchmark numbers for
comparison, the program closes the session to the oscilloscope and closes the
session to the Default Resource Manager.

#include <visa.h>
#include <stdio.h>
#include <stdlib_.h>
#include <assert._h>
#include <time.h>

// This function reads the currently selected waveform and
returns

// it as an array of doubles.

double* ReadWaveform(ViSession vi, long* elements) {

. (same as FORMATIO Example)

return ptr;

error:
// Report error and clean up
viStatusDesc(vi, status, buffer);
fprintf(stderr, “failure: %s\n*“, buffer);
if (ptr = NULL) free(ptr);
return NULL;

// This program shows the performance effect of sizing
buffers

// with buffered 1/0.

int main(int argc, char* argv[])

{
ViSession

rm = VI_NULL, vi = VI _NULL;
ViStatus status;
ViChar

Tektronix Version 1.1 TekVISA Programmer Manual 5-23

Programming Examples

5-24

buffer[256];
double* wfm = NULL;
long elements, 1i;

Viulnt32 bufferSize = 10;
unsigned long
start, total;

// Open a default session
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;

// Open the GPIB device at primary address 1, GPIB
board 8
status = viOpen(rm, “GPIB8::1::INSTR*“, VI_NULL,
VI_NULL,
&vi);
if (status < VI_SUCCESS) goto error;

// Try buffer sizes 10, 100, ..., 10000 to show effect

// of buffer sizes on performance.
for (bufferSize = 10; bufferSize <= 10000; bufferSize
*= 10)
{
// Set new buffer size
viSetBuf(vi, VI_READ BUF, bufferSize);

// Get Start time for benchmark
start = time(NULL);

// Loop several times
for (i = 0; i <5; i++) {
wfm = ReadWaveform(vi, &elements);

}

// Print results

total = time(NULL) — start;

printf(C’bufSize %d, time %3.1fs\n*“, bufferSize,
((double) total)/5.0);

}

// Clean up
if (wfm = NULL) free(wfm);
viClose(vi); // Not needed, but makes things a bit
more
// understandable
viClose(rm);

return O;

error:

Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

// Report error and clean up
viStatusDesc(vi, status, buffer);
fprintf(stderr, “failure: %s\n*“, buffer);
if (rm = VI_NULL) viClose(rm);

if (wfm = NULL) free(wfm);

return 1;

}
Figure 5-9: BUFFERIO.CPP Example

Flushing the Formatted /O The formatted 1/0 write buffer is maintained by the formatted I/O write
Buffer operations—viPrintf(), viVPrintf(), and viBufWrite(). Flushing awrite buffer
immediately sends any queued data to the device. To explicitly flush the write
buffer, you can call the viFlush() operation with awrite flag set.

The formatted 1/O read buffer is maintained by the formatted 1/0 read opera-
tions— viScanf(), viVScanf(), and viBufRead(). Flushing aread buffer
discards the datain the read buffer. This guarantees that the next call to viScanf()
(or arelated buffered read operation) reads data directly from the device rather
than from queued data in the read buffer. To explicitly flush the read buffer, you
can call the viFlush() operation with aread flag set.

Although you can explicitly flush the buffers by calling the viFlush() operation,
the buffers are flushed implicitly under some conditions. These conditions vary
for the viPrintf() and viScanf() operations.

The write buffer is flushed automatically under the following conditions:
H When an END-indicator character is sent.

H When the buffer isfull.

H Inresponseto acal to viSetBuf() with the VI_WRITE_BUF flag set.

Invoking aviClear () operation on a device resource a so flushes the read buffer
and discards the contents of the write buffer used by the formatted 1/0O operations
for that session. At such atime, any ongoing operation through the read/write
port must be aborted.

Refer back to the FORMATIO.CPP example for sample usage of the viPrintf(),
viScanf(), viQueryf(), and viFlush() operations with Tektronix TDS oscillo-
SCopes.

Buffered I/O Operations A buffered I/O write operation writes formatted data to an explicit user-specifed
buffer, while abuffered 1/0O read operation reads formatted data from an explicit
user-specified buffer. These operations include viSPrintf(), viSScanf() and the
related variable list operations (viVSPrintf(), and viV SScanf()).

Tektronix Version 1.1 TekVISA Programmer Manual 5-25

Programming Examples

Variable List Operations

The related operations viBufRead() and viBufWrite() can aso act on these
explicit buffers to read data segments from a device into a user-supplied buffer,
and write data segments from a user-supplied buffer to a device.

The VISA variable list operations use a pointer argument to a variable argument
list, rather than the variable list itself as the argument. The VISA variable list
operations include viVPrintf, viV SPrintf, viV Scanf, viV SScanf, and
viVQueryf. These operations are identical in operation to their ANSI C/C++

counterpart versions of variable list operations. Please refer to a C programming

Controlling the Serial I/0
Buffers

manual for more information.

You can use the viSetBuf() operation to control the sizes of the seriad commu-
nication receive and transmit buffers. By resizing these buffers, you can redlize

performance improvements for serial device communication comparable to those

Handling Events

5-26

derived from resizing the formatted I/O buffers. Refer to the section entitled
Resizing the Formatted 1/O Buffers for an example illustrating buffer resizing.

An event is ameans of communicating between a VISA resource and its
applications. Typically, events occur because a condition requires the attention of
applications.

VISA provides two independent mechanisms for an application to receive
events. queuing and callback handling. The queuing and callback mechanisms
are suitable for different programming styles:

H The queuing mechanism is generally useful for non-critical events that do
not need immediate servicing. To receive events using the queuing mecha
nism, an application must invoke the viwaitOnEvent() operation. All of the
occurrences of a specified event type are placed in a session-based event
gueue. There is one event queue per event type per session. The application
can receive the event occurrences later by dequeuing them with the
viwaitOnEvent() operation.

H The callback mechanism is useful when immediate responses are needed. To
receive events using the callback mechanism, an application must install a
callback handler using the vil nstallHandler () operation. The application is
called directly by invoking a handler function that the application installed
prior to enabling the event. The callback handler isinvoked on every
occurrence of the specified event.

By default, a session is not enabled to receive any events by either mechanism.
Since these mechanisms work independently of each other, both can be enabled
a the same time. An application can enable either or both mechanisms using the
viEnableEvent() operation. The callback handling mechanism can be enabled

Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

for one of two modes: immediate callback or delayed callback queuing. The
viEnableEvent() operation is also used to switch between the two callback
modes. The viDisableEvent() operation is used to disable either or both
mechanisms, regardless of the current state of the other.

When an application receives an event occurrence via either mechanism, it can
determine information about the event by invoking viGetAttribute() on that
event. When the application no longer needs the event information, it must call
viClose() on that event. The viClose() operation is used not only to close
sessions, but also to free events returned from the viWwaitOnEvent() operation.

Queueing Mechanism Applications can use the queuing mechanism in VISA to receive events only
when it requests them. An application retrieves the event information by using
the viwwaitOnEvent() operation. If the specified event(s) exist in the queue,
these operations retrieve the event information and return immediately. Other-
wise, the application thread is blocked until the specified event(s) occur or until
the timeout expires, whichever happens first. When an event occurrence
unblocks athread, the event is not queued for the session on which the wait
operation was invoked.

Once a session is enabled for queuing, all the event occurrences of the specified
event type are queued. When a session is disabled for queuing, any further event
occurrences are not queued, but event occurrences that were already in the event
gueue are retained. The retained events can be dequeued at any time using the
viwaitOnEvent() operation. An application can explicitly clear (flush) the event
gueue for a specified event type using the viDiscar dEvents() operation.

SRQWAIT.CPP Example Thefollowing C++ example, SRQWAIT.CPP, demonstrates event handling
using the queuing mechanism. The program begins by opening the Default
Resource Manager and opening a session to the GPIB device with primary
address 1 on board 8. Next the program enables notification of the
VI_EVENT_SERVICE_REQ event.

The program then uses a series of viWrite() operations to send Tektronix TDS
scope commands to set up the instrument. These commands do the following:

1. The: DATA: ENCDG RI Bl NARY; SOURCE CHL; START 1; STOP 500; W DTH 2
commands do the following:

a. Set the dataformat for the waveform transfer to binary using signed
integer data—point representation, with the most significant byte
transferred first.

b. Set the data source to channd 1.

C. Set the starting data point to O and the ending data point to 500 for the
waveform transfer that will be initiated |ater.

Tektronix Version 1.1 TekVISA Programmer Manual 5-27

Programming Examples

5-28

d.

Set the number of bytes to transfer to two bytes per data point.

The : ACQUI RE: STOPAFTER SEQUENCE; REPET 0; STATE 0; MODE SAMPLE
commands tell the oscill oscope to:

a.

Acquire a single sequence (equivalent to pressing SINGLE from the
front panel).

Disable repetitive mode (equivalent to setting Equivaent Time Auto/Off
in the Acquisition control window).

Stop acquisition (equivalent to pressing STOP from the front panel)

Set the acquisition mode to sample (equivalent to selecting HORIZON-
TAL/ACQUISITION from the HORIZ/ACQ menu and then choosing
SAMPLE from the Acquisition Mode group box.

The DESE 1; *ESE 1;*SRE 32 commands and the*cLs command tell the
oscilloscope to:

a.

b.

C.

Set registers to await an Operation Complete (OPC) event (bit 1) in the
event queue. This event is summarized in the Event Status Bit(ESB) of
the Status Byte Register.

Set the Event Status Bit (bit 5) to await a Service Request (SRQ).

Clear the event registers.

In the For loop, the : ACQUI RE: STATE 1 command starts acquisition and is
equivalent to pressing the front panel RUN button or setting the state to ON.

The*opc command generates the Operation Complete message in the
Standard Event Status Register (SESR) and generates a Service Request
(SRQ) when al pending operations complete. This alows programmers to
synchronize operation of the oscilloscope with their application program.

After using the viwaitOnEvent() operation to wait for an SRQ event to occur,
the program prints a success or faiilure message, uses the viDisableEvent()
operation to disable the VI_EVENT_SERVICE_REQ event, closes the session to
the oscilloscope, and closes the session to the Default Resource Manager.

// srqwait.cpp :Defines the entry point for the console
application.

#include <stdio.h>
#include <string.h>
#include <windows.h>
#include visa.h*

int main(int argc, char* argv[])

ViSession rm, vi;

Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

ViStatus status;

char string[256];
Viulnt32 retCnt;

int i;
Viulntl6 stb;
ViEventType eventType = 0;
ViEvent context = 0;

status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;

status = viOpen(rm, “GPIB8::1::INSTR*“, NULL, NULL,
&vi);
if (status < VI_SUCCESS) goto error;

status = viEnableEvent(vi, VI_EVENT_SERVICE_REQ,
VI_QUEUE,
VI_NULL);
if (status < VI_SUCCESS) goto error;

// Setup instrument
status = viWrite(vi, (ViBuf)
””-DATAZENCDG RIBINARY;SOURCE CH1;START 1;STOP
500;WIDTH 2*,
56, &retCnt);
if (status < VI_SUCCESS) goto error;
status = viWrite(vi, (ViBuf)
”:ACQUIRE:STOPAFTER SEQUENCE;REPET 0;STATE 0;MODE

SAMPLE*,
55, &retCnt);
if (status < VI_SUCCESS) goto error;
status = viWrite(vi, (ViBuf) ”DESE 1;*ESE 1;*SRE
32«, 21,
&retCnt);
if (status < VI_SUCCESS) goto error;
// Do cause some Srgs
for (i = 0; 1 < 100; i++) {
status = viWrite(vi, (ViBuf) ”*CLS*, 4,
&retCnt);
if (status < VI_SUCCESS) goto error;
status = viWrite(vi, (ViBuf) ”:ACQUIRE:STATE
1«“, 16,
&retCnt);
ifT (status < VI_SUCCESS) goto error;
status = viWrite(vi, (ViBuf) “*0OPC*, 4,
&retCnt);

ifT (status < VI_SUCCESS) goto error;
status = viWaitOnEvent(vi,
VI_EVENT_SERVICE_REQ,
5000, &eventType,

Tektronix Version 1.1 TekVISA Programmer Manual 5-29

Programming Examples

5-30

Callback Mechanism

&context);
if (status >= VI_SUCCESS) {
printf(’(%d) Received SRQ\n“, 1);
viClose(context);
} else {
viStatusDesc(vi, status, string);
printf(
”(%d) viWaitOnEvent Failed —
\7%s*“\n“,
string);
}
viReadSTB(vi, &stb);
}

// Cleanup and exit

status = viDisableEvent(vi, VI_EVENT_SERVICE_REQ,
VI_QUEUE);

if (status < VI_SUCCESS) goto error;

viClose(vi);
viClose(rm);

return O;

error:
viStatusDesc(rm, status, string);
fprintf(stderr, “Error: %s\n‘“, (ViBuf) string);
return O;

}

Figure 5-10: SRQWAIT.CPP Example

Applications can use the callback mechanism by installing handler functions that
can be called back when a particular event typeis received. The vilnstallHan-
dler() operation can be used to install handlers to receive specified event types.
The handlers are invoked on every occurrence of the specified event, once the
session is enabled for the callback mechanism. One handler must be installed
before a session can be enabled for sensing using the callback mechanism.

VISA alows applications to install multiple handlers for an event type on the
same session. Multiple handlers can be installed through multiple invocations of
the vil nstallHandler () operation, where each invocation adds to the previous list
of handlers. If more than one handler isinstalled for an event type, each of the
handlersisinvoked on every occurrence of the specified event(s). VISA
specifies that the handlers are invoked in Last In First Out (L1FO) order.

When ahandler isinvoked, the VISA resource provides the event context as a
parameter to the handler. The event context isfilled in by the resource. Applica
tions can retrieve information from the event context object using the viGetAttri-
bute() operation.

Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

An application can supply areference to any application-defined value while
instaling handlers. This reference is passed back to the application as the
userHandle parameter to the callback routine during handler invocation. This
allows applications to install the same handler with different application-defined
event contexts.

For example, an application can:

H instal ahandler with afixed event context value 0x1 on a session for an
event type.

H instal the same handler with a different event context value, for example
0x2, for the same event type.

The two installations of the same handler are different from one another. Both
handlers are invoked when the event of the given type occurs. However, in one
invocation, the value passed to userHandle is Ox1 and in the other it is Ox2.
Thus, event handlers are uniquely identified by a combination of the userHandle
handler address and the user event context. This identification is particularly
useful when different handling methods need to be done depending on the user
context data. Refer to viEventHandler (), an event service handler procedure
prototype, for more information about writing an event handler.

An application may install the same handler on multiple sessions. In this case,
the handler isinvoked in the context of each session for which it was installed.

The callback mechanism of a particular session can be in one of three different
states: handling, or suspended handling, or disabled.

H When a session transitions to the handling state, the callback handler is
invoked for al the occurrences of the specified event type.

H When a session transitions to the suspended handling state, the callback
handler is not invoked for any new event occurrences, but occurrences are
kept in asuspended handler queue. The handler isinvoked later, when a
transition to the handling state occurs.

In the suspended handling state, a maximum of the
VI_ATTR_MAX_QUEUE_LENGTH number of event occurrences are kept
pending. If the number of pending occurrences exceeds the value specified in
this attribute, the lowest-priority events are discarded. An application can
explicitly clear (flush) the callback queue for a specified event type using the
viDiscar dEvents() operation.

H When a session transitions to the disabled state, the session ignores any new
event occurrences, but any pending occurrences are retained in the queue.

Tektronix Version 1.1 TekVISA Programmer Manual 5-31

Programming Examples

5-32

SRQ.CPP Example

The following C++ example, SRQ.CPP, demonstrates event handling using the
callback mechanism. This example first defines a handler function called
ServiceRegEventHandler, which smply prints a message that a service reguest
occurred and returns successfully. The main program begins by opening the
Default Resource Manager and opening a session to the GPIB device with
primary address 1 on board 8. Next the program installs the ServiceReqEven-
tHandler callback handler for the VI_EVENT_SERVICE_REQ event, and then
enables notification of the VI_EVENT _SERVICE_REQ event.

The program then uses a series of viWrite() operations to send Tektronix TDS
scope commands that do the following:

1

The : RECALL: SETUP FACTCRY and : SELECT: CHL 1; CH2 0; CH3 0; CH4 0
commands reset the instrument to factory settings and select four channels.

The : DATA: ENCDG RI Bl NARY; SOURCE CHL; START 1; STOP 500; W DTH 2
commands do the following:

a.

d.

Set the data format for the waveform transfer to binary using signed
integer data—point representation, with the most significant byte
transferred first.

Set the data source to channel 1.

Set the starting data point to O and the ending data point to 500 for the
waveform transfer that will be initiated |ater.

Set the number of bytes to transfer to two bytes per data point.

The : ACQUI RE: STOPAFTER SEQUENCE; REPET 0; STATE 0; MODE SAMPLE
commands tell the oscill oscope to:

a.

Acquire a single sequence (equivalent to pressing SINGLE from the
front panel).

Disable repetitive mode (equivalent to setting Equivaent Time Auto/Off
in the Acquisition control window).

Stop acquisition (equivalent to pressing STOP from the front panel)

Set the acquisition mode to sample (equivalent to selecting HORIZON-
TAL/ACQUISITION from the HORIZ/ACQ menu and then choosing
SAMPLE from the Acquisition Mode group box.

The DESE 1; *ESE 1;*SRE 32 commands and the*cLs command tell the
oscill oscope to:

a.

Set registers to await an Operation Complete (OPC) event (bit 1) in the
event queue. This event is summarized in the Event Status Bit(ESB) of
the Status Byte Register.

Set the Event Status Bit (bit 5) to await a Service Request (SRQ).

Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

c. Clear the event registers.

5. The: ACQUI RE: STATE RUN command starts acquisition and is equivaent to
pressing the front panel RUN button.

6. The*orc command generates the Operation Complete message in the
Standard Event Status Register (SESR) and generates a Service Request
(SRQ) when al pending operations complete. This alows programmers to
synchronize operation of the oscilloscope with their application program.

After waiting long enough for an SRQ event to occur, the program disables the
VI_EVENT_SERVICE_REQ event, uninstalls the ServiceRegEventHandle
handler, closes the session to the oscill oscope, and closes the session to the
Default Resource Manager.

// srq.cpp : Defines the entry point for the console
application.

//

#include <stdio.h>

#include <string.h>

#include <windows.h>

#include visa.h*

ViStatus _VI_FUNCH ServiceRegEventHandler(ViSession vi,
ViEventType eventType, ViEvent event, ViAddr userHandle)

{
printf(’srq occurred\n);
return VI1_SUCCESS;
}
int main(int argc, char* argv[])
{
ViSession rm, Vvi;
ViStatus status;
char string[256];
Viulnt32 retCnt;
status = viOpenDefaultRM(&rm);
if (status < VI_SUCCESS) goto error;
status = viOpen(rm, ”GPIB8::1::INSTR*, NULL, NULL,
&vi);
if (status < VI_SUCCESS) goto error;
// Setup and enable event handler
status = vilnstallHandler(vi, VI_EVENT_SERVICE_REQ,
ServiceRegEventHandler, NULL);
if (status < VI_SUCCESS) goto error;
status = viEnableEvent(vi, VI_EVENT_SERVICE_REQ,
VI_HNDLR,

VI_NULL);

Tektronix Version 1.1 TekVISA Programmer Manual 5-33

Programming Examples

5-34

if (status < VI_SUCCESS) goto error;

// Setup instrument
status = viWrite(vi, (ViBuf) ”:RECALL:SETUP FACTORY*,

21,
&retCnt);
if (status < VI_SUCCESS) goto error;
status = viWrite(vi, (ViBuf) ”:SELECT:CH1 1;CH2 0;CH3
0;CH4

0*, 31, &retCnt);
if (status < VI_SUCCESS) goto error;
status = viWrite(vi, (ViBuf) :DATA:ENCDG
RIBINARY ; SOURCE
CH1;START 1;STOP 500;WIDTH 2*“, 56,
&retCnt);
if (status < VI_SUCCESS) goto error;
status = viWrite(vi, (ViBuf) ”:ACQUIRE:STOPAFTER
SEQUENCE;REPET 0;STATE O;MODE SAMPLE*,

55,
&retCnt);
if (status < VI_SUCCESS) goto error;
status = viWrite(vi, (ViBuf) ”DESE 1;*ESE 1;*SRE 32*,
21,

&retCnt);
if (status < VI_SUCCESS) goto error;

// Do a single acq

status = viWrite(vi, (ViBuf) ”*CLS*“, 4, &retCnt);

if (status < VI_SUCCESS) goto error;

status = viWrite(vi, (ViBuf) ”:ACQUIRE:STATE 1*, 16,
&retCnt);

if (status < VI_SUCCESS) goto error;

status = viWrite(vi, (ViBuf) ”*0PC*“, 4, &retCnt);

if (status < VI_SUCCESS) goto error;

// Wait around long enough for srq event to occur
::Sleep(10000);

// Cleanup and exit

status = viDisableEvent(vi, VI_EVENT_SERVICE_REQ,
VI_HNDLR);

if (status < VI_SUCCESS) goto error;

status = viUninstallHandler(vi, VI_EVENT_SERVICE_REQ,

ServiceRegEventHandler,

NULL);

ifT (status < VI_SUCCESS) goto error;

viClose(Vvi);

viClose(rm);

return O;
error:

viStatusDesc(rm, status, string);

Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

fprintf(stderr, “Error: %s\n‘“, (ViBuf) string);
return O;

}
Figure 5-11: SRQ.CPP Example

Exception Handling

NOTE. Inversion 1.1 and earlier versions of TekVISA, support for exception
handlingisNOT IMPLEMENTED.

In VISA, exceptions are defined as events, and exception handling takes place
using the callback mechanism. Each error condition defined by operations of
resources can cause exception events. When an error occurs, normal execution of
that session operation halts. The operation notifies the application of the error
condition by raising an exception event (event type VI_EVENT_EXCEPTION).
Raising the exception event invokes the application-specified exception callback
routine(s) installed for the particular session, based on whether this exception
event is currently enabled for the given session. The notification includes the
cause of the error. Once notified, the application can tell the VISA system the
action to take, depending on the error’s severity.

Exception handling uses the same operations as those used for general event
handling. Your application can install a callback handler that isinvoked on an
error. Thisinstallation can be done using the vil nstallHandler () operation on a
session. Once a handler isinstalled, a session can be enabled for exception event
using the viEnableEvent() operation. The exception event is like any other
event in VISA, except that the queuing and suspended handling mechanisms are
not allowed.

When an error occurs for a session operation, the exception handler is executed
synchronously; that is, the operation that caused the exception blocks until the
exception handler completes its execution. When invoked, the exception handler
can check the error condition and instruct the exception operation to take a
specific action. For example:

H Thehandler can instruct the exception operation to continue normally
(returning the indicated error code) or to not invoke any additional handlers
(in the case of handler nesting).

H A given implementation may choose to provide implementation-specific
return codes for users exception handlers, and may take alternate actions
based on those codes.

H A vendor-specific return code from an exception handler might cause the
VISA implementation to close al sessions for the given process and exit the
application.

Tektronix Version 1.1 TekVISA Programmer Manual 5-35

Programming Examples

Generating an Error
Condition on

Asynchronous Operations

NOTE. Using vendor-specific return codes makes an application incompatible
with other implementations.

One situation in which an exception event will not be generated is in the case of
asynchronous operations. If the error is detected after the operation is posted
(that is, once the asynchronous portion has begun), the status is returned
normally viathe I/O completion event (type |IO_COMPLETION_EVENT).
However, if an error occurs before the asynchronous portion begins (that is, the
error is returned from the asynchronous operation itself), then the exception
event will still beraised. This deviation is because asynchronous operations
already raise an event when they complete, and this 1/0O completion event may
occur in the context of a separate thread previously unknown to the application.

In summary, asingle application event handler can easily handle error conditions

arising from both exception events and failed asynchronous operations.

Locking and Unlocking Resources

5-36

Locking Types and
Access Privileges

Applications can open multiple sessions to aresource simultaneously and access
the resource through the different sessions concurrently. However, an application
accessing a resource might want to restrict other applications or sessions from
accessing the same resource. For example, an application might need sole access
to aresource in order to perform a sequence of writes. VISA defines alocking
mechanism to restrict resource access in such special circumstances. The

viL ock() operation is used to acquire alock on aresource and the viunlock()
operation is used to relinquish the lock.

The VISA locking mechanism enforces arbitration of access to resources on a
per-session basis. If a session locks a resource, operations invoked on the
resource through other sessions are either serviced or returned with an error,
depending on the operation and the type of lock used.

If aVISA resourceis not locked by any of its sessions, all sessions have full
privilege to invoke any operation and update any global attributes. Sessions are
not required to have locks to invoke operations or update global attributes.
However, if some other session has already locked the resource, attempts to
update global attributes or execute certain operations will fail.

VISA defines two different types of locks: exclusive locks and shared locks.

H If asession has an exclusive lock to aresource, other sessions cannot modify
global attributes or invoke operations, but can still get attributes. Locking a
resource restricts access from other sessions and prevents other sessions from
acquiring an exclusive lock. In the case where an exclusive lock is acquired,

Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

locking a resource guarantees that operations do not fail because other
sessions have acquired alock on that resource.

H Shared locks are similar to exclusive locks in terms of access privileges, but
can still be shared between multiple sessions. If a session has a shared lock
to aresource, it can perform any operation and update any global attribute in
that resource, unless some other session has an exclusive lock. Other
sessions with shared locks can aso modify global attributes and invoke
operations. A session that does not have a shared lock will lack this

capability.

TheVI_ATTR_RSRC_LOCK_STATE attribute specifies the current locking
state of aresource on agiven session.

In TekVISA, only INSTR resource operations are restricted by the locking
scheme. Also, not all operations are restricted by locking. Some operations may
be permitted even when there is an exclusive lock on aresource. Likewise, some
global attributes may not be read when thereis any kind of lock on the resource.
These exceptions, when applicable, are mentioned in the descriptions of
individual operations and attributes in the Reference part of this manual.

EXLOCKEXAM.CPP The following C++ example, EXL OCKEXAM.CPP, demonstrates exclusive
lockiagryfle resource. In this example, if a-1 istyped on the command line when
the executable is invoked, the lockflag is set to TRUE. The program then opens
the Default Resource Manager and opens a session to the GPIB device with
primary address 1 on board 8. Next the program opens a FOR loop that will
iterate 100 times.

Each time through the loop, if lockflag is TRUE, the program uses the vilock ()
operation toset an exclusive lock on the device for an infinite period of time. The
program then uses a series of viWwrite() and viRead() operations to send and
receive Tektronix TDS scope commands and responses as follows:

1. The: chi: scal e? command queries the oscilloscope for the vertical scale of
channel 1. Sending this command is equivalent to selecting Vertical Setup
from the Vertical menu and then viewing the Scale. The program reads the
response from the scope and then prints it, along with the number of times
the program has been through the FOR loop.

2. The: chi: coupl i ng? command queries the oscill oscope for the input
attenuator coupling setting for channel 1. This command is equivaent to
selecting Coupling from the Vertical menu.vertical scale of channel 1. The
program reads the response from the scope and then printsit, along with the
number of times the program has been through the FOR loop.

Each time through the loop, the program unlocks the device using the
viUnlock() operation. Once the program exits the FOR loop, it closes the

Tektronix Version 1.1 TekVISA Programmer Manual 5-37

Programming Examples

5-38

session to the oscilloscope, and closes the session to the Default Resource
Manager.

#include <stdio.h>
#include <stdlib.h>
#include ’visa.h*

int main(int argc, char* argv[])

{

ViSession rm, Vvi;

ViStatus status;

char string[256];

Viulnt32 retCnt;

int i =0;

bool lockflag = false;

if (argc == 2 && argv[1][O0] == °-" && argv[1][1] ==
1") {

lockflag = true;

}

status = viOpenDefaultRM(&rm);

if (status < VI_SUCCESS) goto error;

status = viOpen(rm, “GPIB8::1::INSTR*“, NULL, NULL,
&vi);

if (status < VI_SUCCESS) goto error;
for (i = 1; i < 100; i++) {
it (lockflag) {
viLock(vi, VI_EXCLUSIVE_LOCK,
VI_TMO_INFINITE,
NULL, NULL);
}
status = viWrite(vi, (ViBuf) ”chl:scale?*“, 10
&retCnt);
if (status < VI_SUCCESS) goto error;
status = viRead(vi, (ViBuf) string, 256,

&retCnt);

if (status < VI_SUCCESS) goto error;

printf(C’%d: scale %s*“, i, string);

status = viWrite(vi, (ViBuf) chl:coupling?“,
13,

&retCnt);

if (status < VI_SUCCESS) goto error;

status = viRead(vi, (ViBuf) string, 256,
&retCnt);

ifT (status < VI_SUCCESS) goto error;
printf(C’%d: coupling %s*, 1, string);

Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

it (lockflag) {
viunlock(vi);
}

}

viClose(vi);
viClose(rm);
return O;

error:
viStatusDesc(rm, status, string);
fprintf(stderr, “Error: %s\n‘“, (ViBuf) string);
return O;

}
Figure 5-12: EXLOCKEXAM.CPP Example

Testing Exclusive Locking You can see for yourself how exclusive locking works by running two instances
of the program as follows:

1. Bring up an MS-DOS Prompt window, change to the directory where the
EXLOCKEXAM.EXE fileislocated, and type:

EXLOCKEXAM -|

NOTE. Be sure to type| for locked, not the number 1.

2. Beforeyou press Enter, bring up another MS-DOS Prompt window, change
to the same directory, and type

EXLOCKEXAM
3. Now press Enter in each window in quick succession.

The locked instance runs and prints correctly, while the unlocked instance
exits with an error.

4. Try running the programs again with both instances having the -| lock
switch, or try running them with neither having the -l lock switch, to see the
possibilities.

If you run two instances with the -| option, both will run correctly. If you
run two instances at once without the -1 option, they will not work correctly
(and will terminate with an error).

Lock Sharing Because the VISA locking mechanism is session-based, multiple threads sharing
a session that has locked a resource have the same access privileges to that
resource. Some applications, however, with separate sessions to a resource might
want all those sessions to have the same privilege as the session that |ocked the

Tektronix Version 1.1 TekVISA Programmer Manual 5-39

Programming Examples

resource. In other cases, there might be a need to share locks among sessionsin
different applications. Essentially, sessions that acquire alock to aresource may
share the lock with other sessions they select, and exclude access from other
Sessions.

VISA defines a shared lock type that gives exclusive access privileges to a
session, along with the discretionary capability to share these exclusive
privileges. A session can acquire a shared lock on aresourceto get exclusive
access privilegesto it. When sharing the resource using a shared lock, the
viL ock() operation returns an accessKey that can be used to share the lock. The
session can then share this lock with any other session by passing around the
accessKey.

Before other sessions can access the locked resource, they need to acquire the
lock by passing the accesskey in the requestedKey parameter of the viL ock ()
operation. Invoking viL ock() with the same key will register the new session to
have the same access privilege as the origina session. The session that acquired
the access privileges through the sharing mechanism can also pass the access key
to other sessions for resource sharing. All the sessions sharing a resource using
the shared lock should synchronize their accesses to maintain a consistent state
of the resource.

VISA provides the flexibility for applications to specify akey to use as the
accessKey, instead of VISA generating the accessKey. Applications can suggest a
key value to use through the requestedKey parameter of the viL ock() operation.

If the resource was not locked, the resource will use this requestedKey as the
accessKey. If the resource was locked using a shared lock and the requestedKey
matches the key with which the resource was locked, the resource will grant
shared access to the session. If an application attempts to lock aresource using a
shared lock and passes VI_NULL as the requestedKey parameter, VISA will
generate an accessKey for the session.

A session seeking to share an exclusive lock with other sessions needs to acquire
ashared lock for this purpose. If it requests an exclusive lock, no valid access
key will be returned. Consequently, the session will not be able to share it with
any other sessions. This precaution minimizes the possibility of inadvertent or
malicious access to the resource.

Acquiring an Exclusive ~ When multiple sessions have acquired a shared lock, VISA allows one of the
Lock While Owninga sessions to acquire an exclusive lock along with the shared lock it is holding.
Shared Lock That is, asession holding a shared lock could aso acquire an exclusive lock
using the viL ock () operation. The session holding both the exclusive and shared
lock will have the same access privileges that it had when it was holding the
shared lock only. However, this would prevent other sessions holding the shared
lock from accessing the locked resource. When the session holding the exclusive

lock releases the resource using the viUnlock () operation, all the sessions
(including the one that had acquired the exclusive lock) will again have all the

5-40 Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

access privileges associated with the shared lock. Thisis useful when multiple
sessions holding a shared lock must synchronize. This can aso be used when one
of the sessions must execute in acritical section.

In the reverse case in which asession is holding an exclusive lock only (no
shared locks), VISA does not alow it to change to a shared lock.

Nested Locks VISA supports nested locking. That is, a session can lock the same VISA
resource multiple times for the same lock type. Unlocking the resource requires
an equa number of invocations of the viUnlock () operation. A resource can be
actually unlocked only when the lock count isO.

Each session maintains a separate lock count for each type of lock. Repeated
invocations of the viL ock() operation for the same session will increase the
appropriate lock count, depending on the type of lock requested. In the case of a
shared lock, nesting viL ock() calls will return with the same accessKey every
time. In case of an exclusive lock, viL ock() will not return any accessKey,
regardless of whether it is nested or not.

A session does not need to pass in the access key obtained from the previous
invocation of viL ock() to gain a nested shared lock on the resource. However, if
an application does pass in an access key when nesting on shared locks, it must
be the correct one for that session.

SHAREDLOCK.CPP Thefollowing C++ example, SHAREDL OCK.CPP, demonstrates acquiring an

Example exclusivelock while holding a shared lock, and also illustrates nested locking.
In this example, the program opens the Default Resource Manager and opens a
session to the GPIB device with primary address 1 on board 8. The program
then uses the vilock () operation to establish a shared lock on the device for an
infinite period of time, with “mykey” defined as the key to the lock. A shared
lock alows other applications that use the same key to have access to the
specified resource. Next the program opens a FOR loop that will iterate 100
times.

Each time through the loop, the program uses the vilock () operation toset an
exclusive lock on the device for an infinite period of time. Thislock is nested
inside the shared lock on the resource. The program then uses a series of
viwrite() and viRead() operations to send and receive Tektronix TDS scope
commands and responses as follows:

1. The: chi: scal e? command queries the oscilloscope for the vertical scale of
channel 1. Sending this command is equivalent to selecting Vertical Setup
from the Vertical menu and then viewing the Scale. The program reads the
response from the scope and then printsiit, along with the number of times
the program has been through the FOR loop.

Tektronix Version 1.1 TekVISA Programmer Manual 5-41

Programming Examples

2. The: chi: coupl i ng? command queries the oscill oscope for the input
attenuator coupling setting for channel 1. This command is equivaent to
selecting Coupling from the Vertical menu.vertical scale of channel 1. The
program reads the response from the scope and then printsit, along with the
number of times the program has been through the FOR loop.

Each time through the loop, the program unlocks the exclusive lock on the
device using the viUnlock () operation, and sleeps long enough for a cooperating
program that shares the lock to execute. Once the program exits the FOR loop, it
unlocks the outer shared lock on the device using the viUnlock() operation,
closes the session to the oscilloscope, and closes the session to the Default
Resource Manager.

#include <stdio.h>
#include <stdlib.h>
#include visa.h*
#include <windows.h>

int main(int argc, char* argv[])

{

ViSession rm, vi;

ViStatus status;

char string[256];

Viulnt32 retCnt;

int i =0;

status = viOpenDefaultRM(&rm);

if (status < VI_SUCCESS) goto error;

status = viOpen(rm, “GPIB8::1::INSTR*“, VI_NULL,
VI_NULL,

&vi);
if (status < VI_SUCCESS) goto error;

// A shared lock only allows other applications that
use the
// same key to have access to the specified resource.
viLock(vi, VI_SHARED_LOCK, VI_TMO_INFINITE, “mykey”,
VI_NULL);
for (i = 1; 1 < 100; i++) {
viLock(vi, VI_EXCLUSIVE_LOCK, VI_TMO_INFINITE,
VI_NULL, VI_NULL);
status = viWrite(vi, (ViBuf) chl:scale?*“, 10,
&retCnt);
if (status < VI_SUCCESS) goto error;
status = viRead(vi, (ViBuf) string, 256,
&retCnt);
if (status < VI_SUCCESS) goto error;
printf(C’%d: scale %s*“, i, string);

5-42 Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

status = viWrite(vi, (ViBuf) chl:coupling?“,

13,
&retCnt);
if (status < VI_SUCCESS) goto error;
status = viRead(vi, (ViBuf) string, 256,
&retCnt);
if (status < VI_SUCCESS) goto error;
printf(’%d: coupling %s*“, i, string);
viunlock(vi);
::Sleep(1000);
}
viunlock(vi);
viClose(vi);
viClose(rm);
return O;
error:
viStatusDesc(rm, status, string);
fprintf(stderr, “Error: %s\n“, (ViBuf) string);
return O;
}

Figure 5-13: SHAREDLOCK.CPP Example

Testing Shared Locking You can see for yourself how shared locking works by running two instances of
the program as follows:

1. Bring up an MS-DOS Prompt window, change to the directory where the
SHAREDLOCK.EXE fileislocated, and type:

SHAREDLOCK

2. Beforeyou press Enter, bring up another MS-DOS Prompt window, change
to the same directory, and type

SHAREDLOCK
3. Now press Enter in each window in quick succession.

The two instances with the shared lock cooperate and work together, taking
turns sequentially while the other one sleeps.

4. Now try running the EXLOCKEXAM exclusive locking example with the -I
switch, while one or more instances of the SHAREDL OCK program are
running.

The EXLOCKEXAM program will wait until al instances of the
SHAREDLOCK program have completed before it can access the resource.

Tektronix Version 1.1 TekVISA Programmer Manual 5-43

Programming Examples

Building a Graphical User Interface

The VISAAPIDemo example incorporates a number of TekVISA operations and
illlustrates their use in a C++ program with a graphical user interface.

Fﬂ?isa API Deno =101]
— Parameters for wilpen, viFindRsrc, and wiParseRearc———— E it
Resource name: |GPIBO:1:INSTR

wiCloze[<defaulk-session? |

WI_EXCLUSIVE_LOCK [~ W|_LOAD_COMFIG r

Tirmeout [mz): ||:|

—irite data buffer [for vivriteds fafitedaync)

wiFindRzrc(]

|
|
|
viParseRarc] |
|
|
|

“idn? :I wiCloze[< vi-zezzion: |
= viG etdttribute / viSetbttibute.
— Results from Y154 Operatians it
Vidtatus: |_SUICCESS (0] N
chRead = 45 ;I
TEKTRONIX, TDS7054 6533.CF-91.1CT Fy:1.200291 = | wiwritedsync)
wiF eaddayncy]

enable /0 completion callback

;I wiClear(]

Figure 5-14: VISAAPIDemo Graphical User Interface

5-44 Tektronix Version 1.1 TekVISA Programmer Manual

Programming Examples

When the viGetAttribute/vi SetAttribute... button is pressed, the following dialog
box appears:

VISA Attributes =10f x|

—WISA Altribute
Cloze |
|VI_LATTR_TMO_YALUE =l

Scope; thiz =eszion Accesz: readdwrite

= [t Attnibute Walue
1000

— Set Attribute Yalue

YiBoolears & FALSES W TRUE £ wiS etAttibute |

Willlnt32: I 1000

When the enable I/0 completion button is pressed, the following confirmation
box appears:

¥isa API Demo - EventH andlerIOComplekel) x|

@ EventHandlerIoCanmpletel) invaked with eventType == VI_EVENT IO COMPLETION

Tektronix Version 1.1 TekVISA Programmer Manual 5-45

Programming Examples

The source code for this example can be found on your CD. The following figure
illlustrates the control toolbar and various windows used in building this
examplein Visual C++.

£, YisaApiDenmo - Microsoft Yisual C++

Fle Edit Yiew Insert Project Build Layout Tools Window Help

NEc &A@ [l EEY R LT3N N

ViahpDema = |[wina2 Release -] & ST EE “jﬁ B & &
X P [a 5] | & visanpiDemaDig.cpp =0l x|
|T E[<+ Command button handler foo “viOpenDefaultRM[)j

A -

An abl void CVisadpiDemoDlg: OnOpenCloseDefRni)

m D { - - - mn

m_editViStatus . SetWindowTe=xt{""):

X ® n_mlelnfo SetWindowTezt(""):

— Peaklessages();

FindA [:

gt srel) ; if (m_viDefRM == VI_NULL)
@
A e R : :
& | yiPareeR sc]| [I n_stat = viOpenDefaul tRH(&m_wiDefRM)]
*L @ . : : : : : : I .I : Else
]: -+ vilpen(<vi-session: | : I

l'£= """""""""""""""""""" . n_=stat = viClosei{n_wiDefRHM);

[H J Jo | vietbttibute £ viSetbttribute I . n_wiDefRM = YI_NULL:

" T n_viSession = VI_NULL:

20 @ _ il I) n_bI0Complete = fal=es;

ﬁ =] T UpdateBut tons()

e @ viRead] [} .

o] H 4

Push Button Properties A
W? General | Shiles | Extended Styles |

0: |\DC_OPEN_CLOSE_DEF =| Caption: |vi0penDefaulAM()

v Visible [Group [~ HelplD
[™ Disabled [¥ Tab stop

Figure 5-15: C++ Controls Toolbar and Form, Code, and Properties Windows

5-46 Tektronix Version 1.1 TekVISA Programmer Manual

./ |
Appendices

-/ |
Appendix A: VISA Data Type Assignments

Tables A-1 and A-2 give the type assignments for ANSI C and Visual Basic for
each generic VISA datatype. Although ANSI C types can be defined in a header
file, Visua Basic types cannot.

Table A-1 lists those types that are both used and exported by direct users of
VISA (such asinstrument drivers). Table A-2 lists types that may be used but
not exported by such users. For example, end-users would see the types
specified in A-1 exported by aVXI Plug& Play instrument driver; however, end
users would not see the types specified in Table A-2.

Thus, if you are writing a program using the VISA API, you will see the data
typesin both tables. However, if you are writing aprogram using a VXl
Plug& Play instrument driver API, you will only see the datatypesin Table A-1.

Tektronix Version 1.1 TekVISA Programmer Manual A-1

Appendix A: VISA Data Type Assignments

Application Development Environments (ADE)

) . LabVIEW
C, C++ Visual Basic and MATLAB
Program Program LabWindows
|
Program uses
| Instrument Driver AP
PnP
Instrument Insrument |
if | Program usesTekVISAAPI
Specific Driver AP /E 9
|
\
TekVISA Input/Output Library API
Virtual GPIB ASRL LAN
GPIB i (RS232 COML, (VXI-11
(GPIBS) (GPIBO-GPIB3) COM2) Protocol)

|

S

Ele)
=G
= 8
2o

(@]
om0

)

(000 © @B 6O @ -

J

J

]

Test and Measurement

Instruments

Figure A-1: Your Program Can Use the Instrument Driver API or VISA API

Table A-1: Type Assignments for VISA and Instrument Driver APIs

VISA Data Type C / Visual Basic Bindings Description

Viuint32 unsigned long A 32-bit unsigned integer.
Long

ViPUInt32 Viuint32 * The location of a 32-bit unsigned
N/A integer.

ViAUInt32 ViuInt32[] An array of 32-bit unsigned integers.
N/A

Tektronix Version 1.1 TekVISA Programmer Manual

Appendix A: VISA Data Type Assignments

Table A-1: Type Assignments for VISA and Instrument Driver APIs (Cont.)

VISA Data Type C / Visual Basic Bindings Description

Vilnt32 signed long A 32-bit signed integer.
Long

ViPInt32 Vilnt32 * The location of a 32-hit signed
N/A integer.

ViAlnt32 Vilnt32[] An array of 32-bit signed integers.
N/A

ViUlnt16 unsigned short A 16-bit unsigned integer.
Integer

ViPUInt16 Vilint16 * The location of a 16-hit unsigned
N/A integer.

ViAUInt16 Viuint16[] An array of 16-bit unsigned integers.
N/A

Vilnt16 signed short A 16-bit signed integer.
Integer

ViPInt16 Vilnt16 * The location of a 16-hit signed
N/A integer.

ViAlnt16 Vilnt16[] An array of 16-bit signed integers.
N/A

VilInt8 unsigned char An 8-bit unsigned integer.
Integer/Byte

ViPUInt8 Viuint8 * The location of an 8-hit unsigned
N/A integer.

ViAUINt8 Viuintg][] An array of 8-bit unsigned integers.
N/A

Vilnt8 signed char An 8-bit signed integer.
Integer/Byte

ViPInt8 Vilnt8 * The location of an 8-hit signed
N/A integer.

ViAInt8 Vilnt8[] An array of 8-bit signed integers.
N/A

ViAddr void * A type that references another data
Long type, in cases where the other data

type may vary depending on a particu-
lar context.

ViPAddr ViAddr * The location of a ViAddr.
N/A

ViAAddr ViAddr] An array of type ViAddr.
N/A

ViChar char An 8-bit integer representing an ASCII
Integer/Byte character.

Tektronix Version 1.1 TekVISA Programmer Manual

Appendix A: VISA Data Type Assignments

Table A-1: Type Assignments for VISA and Instrument Driver APIs (Cont.)

VISA Data Type C/ Visual Basic Bindings Description

ViPChar ViChar * The location of a ViChar.
N/A

ViAChar ViChar[] An array of type ViChar.
N/A

ViByte unsigned char An 8-bit unsigned integer representing
Integer/Byte an extended ASCII character.

ViPByte ViByte * The location of a ViByte.
N/A

ViAByte ViByte[] An array of type ViByte.
N/A

ViBoolean Viuint16 A type for which there are two comple-
Integer mentaryvalues: VI_TRUE and

VI_FALSE.

ViPBoolean ViBoolean * The location of a ViBoolean.
N/A

ViABoolean ViBoolean] An array of type ViBoolean.
N/A

ViReal32 float A 32-bit single-precision value.
Single

ViPReal32 ViReal32 * The location of a 32-hit single-preci-
N/A sion value.

ViAReal32 ViReal32[] An array of 32-bit single-precision
N/A values.

ViReal64 double A 64-bit double-precision value.
Double

ViPReal64 ViReal64 * The location of a 64-bit double-preci-
N/A sion value.

ViAReal64 ViReal64]] An array of 64-bit double-precision
N/A values.

ViBuf ViPByte The location of a block of data.
String

ViPBuf ViPByte The location to store a block of data.
String

ViABuf ViBuf[] An array of type ViBuf.
N/A

ViString ViPChar The location of a NULL-terminated
String ASCII string.

ViPString ViPChar The location to store a NULL-termi-
String nated ASCII string.

A-4 Tektronix Version 1.1 TekVISA Programmer Manual

Appendix A: VISA Data Type Assignments

Table A-1: Type Assignments for VISA and Instrument Driver APIs (Cont.)

VISA Data Type C / Visual Basic Bindings Description
ViAString ViString[] An array of type
N/A ViString.
ViRsrc ViString A ViString type that is further restricted
String to
adhere to the addressing grammar for
resources as described in Table 2-63.
ViPRsrc ViString The location to store a ViRsrc.
String
ViARsrc ViRsrc(] An array of type ViRsrc.
N/A
ViStatus Vilnt32 A defined type that contains values
Long corresponding to VISA-defined
Completion and Error termination
codes.
ViPStatus ViStatus * The location of a ViStatus.
N/A
ViAStatus ViStatus][] An array of type ViStatus.
N/A
ViVersion ViuInt32 A defined type that contains a refer-
Long ence to all
information necessary for the architect
to
represent the current version of a
resource.
ViPVersion ViVersion * The location of a ViVersion.
N/A
ViAVersion ViVersion[] An array of type ViVersion.
N/A
ViObject ViuInt32 The most fundamental VISA data
Long type. It
contains attributes and can be closed
when no
longer needed.
ViPObject ViObject * The location of a ViObject.
N/A
ViAObject ViObject[] An array of type ViObject.
N/A

Tektronix Version 1.1 TekVISA Programmer Manual

Appendix A: VISA Data Type Assignments

Table A-1: Type Assignments for VISA and Instrument Driver APIs (Cont.)

VISA Data Type C / Visual Basic Bindings Description
ViSession ViObject A defined type that contains a refer-
Long ence to all
information necessary for the architect
to
manage a communication channel
with a
resource.
ViPSession ViSession * The location of a ViSession.
N/A
ViASession ViSession[] An array of type ViSession.
N/A
ViAttr Viuint32 A type that uniquely identifies an
Long attribute.
ViConstString const ViChar * A ViString type that is guaranteed to
String not be

modified by any driver.

Table A-2: Type Assignments for VISA APIs Only

VISA Data Type C/ Visual Basic Bindings Description
ViAccessMode Viuint32 A defined type that specifies the
Long different
mechanisms that control access to a
resource.
ViPAccessMode ViAccessMode * The location of a ViAccessMode.
N/A
ViBusAddress Viuint32 A type that represents the system
Long dependent
physical address.
ViPBusAddress ViBusAddress * The location of a ViBusAddress.
N/A
ViBusSize Viuint32 A type that represents the system
Long dependent
physical address size.
ViAttrState ViUlnt32 A value unique to the individual type
Long of an
attribute.
ViPAttrState void * The location of a ViAttrState.
Any

Tektronix Version 1.1 TekVISA Programmer Manual

Appendix A: VISA Data Type Assignments

Table A-2: Type Assignments for VISA APIs Only (Cont.)

VISA Data Type C/ Visual Basic Bindings Description
ViVAList va_list The location of a list of a variable
Any number of
parameters of differing types.
ViEventType Viuint32 A defined type that uniquely identifies
Long the type of an event.
ViPEventType ViEventType * The location of a
N/A ViEventType.
ViAEventType ViEventType * An array of type
N/A ViEventType.
ViPAttr ViAttr * The location of a ViAttr.
N/A
ViAAttr ViAttr * An array of type ViAttr.
N/A
ViEventFilter Viuint32 A defined type that specifies filtering
Long masks or other information unique to
an event.
ViFindList ViObject A defined type that contains a refer-
Long ence to all resources found during a
search operation.
ViPFindList ViFindList * The location of a
N/A ViFindList.
ViEvent ViObject A defined type that encapsulates the
Long information necessary to process an
event.
ViPEvent ViEvent * The location of a
N/A ViEvent.
ViKeyld ViString A defined type that contains a refer-
String ence to all information necessary for
the architect to manage the associa-
tion of a thread or process and
session with a lock on a resource.
ViPKeyld ViPString The location of a
String ViKeyld.
ViJobld Viuint32 A defined type that contains a refer-
Long ence to all information necessary for
the architect to encapsulate the
information necessary for a posted
operation request.

Tektronix Version 1.1 TekVISA Programmer Manual A-7

Appendix A: VISA Data Type Assignments

Table A-2: Type Assignments for VISA APIs Only (Cont.)

VISA Data Type C / Visual Basic Bindings Description

ViPJobld ViJobld * The location of a
N/A ViJobld.

ViHndlIr ViStatus (*) A value representing an entry point to
(ViSession, an operation for use as a callback.
ViEventType,

ViEvent, ViAddr)

N/A

A-8 Tektronix Version 1.1 TekVISA Programmer Manual

-/ |
Appendix B: Completion and Error Codes

The following Tektronix VISA completion and error codes are presented in
alphabetical order within category.

Table B-1: Completion Codes

Code Description
VI_SUCCESS DEV_ The session opened successfully, but the device at the
NPRESENT specified address is not responding.

VI_SUCCESS_EVENT_EN

The specified event is already enabled for at least one of the
specified mechanisms.

VI_SUCCESS_EVENT DIS

The specified event is already disabled for at least one of the
specified mechanisms.

VI_SUCCESS_MAX_CNT

The number of bytes read is equal to count.

VI_SUCCESS_NCHAIN

Event handled successfully. Do not invoke any other handlers
on this session for this event.

VI_SUCCESS_NESTED _
EXCLUSIVE

The specified access mode is successfully acquired, and this
session has nested exclusive locks.

VI_SUCCESS_NESTED
SHARED

The specified access mode is successfully acquired, and this
session has nested shared locks.

VI_SUCCESS_QUEUE_
EMPTY

The operation completed successfully, but queue was empty.

VI_SUCCESS_QUEUE_
NEMPTY

Wait terminated successfully on receipt of an event notification.
There is still at least one more event occurrence of the type
specified by inEventType available for this session.

VI_SUCCESS_SYNC

Read or write operation performed synchronously.

VI_SUCCESS_TERM_CHAR

The specified termination character was read.

VI_WARN_CONFIG_
NLOADED

The specified configuration either does not exist or could not
be loaded; using VISA-specified defaults instead.

VI_WARN_NSUP_ATTR
STATE

Although the specified attribute state is valid, it is not
supported by this implementation.

VI_WARN_NSUP_BUF

The specified buffer is not supported.

VI_WARN_NULL_OBJECT

The specified object reference is uninitialized.

This message is returned if the value VI_NULL is passed to it.

VI_WARN_UNKNOWN_
STATUS

The status code passed to the operation could not be
interpreted.

Tektronix Version 1.1 TekVISA Programmer Manual

B-1

Appendix B: Completion and Error Codes

B-2

Table B-2: Error Codes

Code

Description

VI_ERROR_ALLOC

The system could not allocate a formatted I/O buffer because
of insufficient system resources.

VI_ERROR_ASRL_FRAMING

A framing error occurred during transfer.

VI_ERROR_ASRL_OVER-
RUN

An overrun error occurred during transfer. A character was not
read from the hardware before the next character arrived.

VI_ERROR_ASRL_PARITY

A parity error occurred during transfer.

VI_ERROR_ATTR_READON-
LY

The specified attribute is read-only.

VI_ERROR_BERR

Bus error occurred during transfer.

VI_ERROR_CLOS-

Unable to deallocate the previously allocated data structures

ING_FAILED corresponding to this session or object reference.
VI_ERROR_HNDLR _ If no handler is installed for the specified event type, the
NINSTALLED request to enable the callback mechanism for the event type

returns this error code. The session cannot be enabled for the
VI_HNDLR mode of the callback mechanism.

VI_ERROR_INP_PROT VIOL

Device reported an input protocol error during transfer.

VI_ERROR_INV_ACCESS_
KEY

The requestedKey value passed in is not a valid access key to
the specified resource.

VI_ERROR_INV_ACC_
MODE

Invalid access mode.

VI_ERROR_INV_CONTEXT

Specified event context is invalid.

VI_ERROR_INV_DEGREE

Specified degree is invalid.

VI_ERROR_INV_EVENT

Specified event type is not supported by the resource.

VI_ERROR_INV_EXPR

Invalid expression specified for search.

VI_ERROR_INV_FMT

A format specifier in the writeFmt string is invalid.

VI_ERROR_INV_HNDLR_
REF

Either the specified handler reference or the user context value
(or both) does not match any installed handler.

VI_ERROR_INV_JOB._[D

Specified job identifier is invalid.

This message is returned If the operation associated with the
specified jobld has already completed.

VI_ERROR_INV_LOCK_
TYPE

The specified type of lock is not supported by this resource.

VI_ERROR_INV_MASK

The system cannot set the buffer for the given mask.

VI_ERROR_INV_MECH

Invalid mechanism specified.

VI_ERROR_INV_OBJECT
VI_ERROR_INV_SESSION

The given session or object reference is invalid (both are the
same value).

VI_ERROR_INV_PROT

The protocol specified is invalid.

Tektronix Version 1.1 TekVISA Programmer Manual

Appendix B: Completion and Error Codes

Table B-2: Error Codes (Cont.)

Code

Description

VI_ERROR_INV_RSRC_
NAME

Invalid resource reference specified. Parsing error.

VI_ERROR_INV_SETUP

Some implementation-specific configuration file is corrupt or
does not exist.

VI_ERROR_IO An unknown 1/O error occurred during transfer.
VI_ERROR_LIBRARY _ A code library required by VISA could not be located or loaded.
NFOUND

VI_ERROR_LINE_IN_USE The specified trigger line is currently in use.

VI_ERROR_NCIC The interface associated with the given vi is not currently the

controller in charge.

VI_ERROR_NENABLED

The session must be enabled for events of the specified type in
order to receive them.

VI_ERROR_NLISTENERS

No Listeners condition is detected (both NRFD and NDAC are
deasserted).

VI_ERROR_NSUP_ATTR

The specified attribute is not defined by the referenced
session, event, or find list.

VI_ERROR_NSUP_ATTR_
STATE

The specified state of the attribute is not valid, or is not
supported as defined by the session, event, or find list.

VI_ERROR_NSUP_FMT

A format specifier in the writeFmt string is not supported.

VI_ERROR_NSUP_OPER

The given vi does not support this operation.

VI_ERROR_OUTP_PROT_
vIoL

Device reported an output protocol error during transfer.

VI_ERROR_RAW_WR_
PROT _VIOL

Violation of raw write protocol occurred during transfer.

VI_ERROR_RAW _RD_
PROT _VIOL

Violation of raw read protocol occurred during transfer.

VI_ERROR_RSRC_BUSY

The resource is valid, but VISA cannot currently access it.

VI_ERROR_RSRC_LOCKED

Specified type of lock cannot be obtained because the
resource is already locked with a lock type incompatible with
the lock requested

VI_ERROR_RSRC_NFOUND

There are no more matches.

VI_ERROR_SESN_

The current session did not have any lock on the resource.

NLOCKED

VI_ERROR_SRQ _ Service request has not been received for the session.
NOCCURRED

VI_ERROR_SYSTEM _ The VISA system failed to initialize.

ERROR

VI_ERROR_TMO Timeout expired before write operation completed.

Tektronix Version 1.1 TekVISA Programmer Manual

B-3

Appendix B: Completion and Error Codes

B-4 Tektronix Version 1.1 TekVISA Programmer Manual

-/ |
Glossary

The following are some specialized terms used within this document.

Address
A string (or other language construct) that uniquely locates and identifies a
resource. VISA defines an ASCII-based grammar that associates strings with
particular physical devices or interfaces and VISA resources.

ADE
Application Development Environment

API
Application Programmers Interface. The direct interface that an end user sees
when creating an application. The VISA API consists of the sum of all of the
operations, attributes, and events of each of the VISA Resource Classes.

Attribute
A value within aresource that reflects a characteristic of the operationa state
of aresource.

BusError
An error that signals failed access to an address. Bus errors occur with
low-level accesses to memory and usually involve hardware with bus
mapping capabilities. For example, non-existent memory, a non-existent
register, or an incorrect device access can cause a bus error.

Communication Channel
The same as Session. A communication path between a software el ement and
aresource. Every communication channel in VISA is unique.

Controller
A device that can control another device(s) or isin the process of performing
an operation on another device.

Device
An entity that receives commands from a controller. A device can be an
instrument, a computer (acting in a non-controller role), or a periphera
(such as aplotter or printer). In VISA, the concept of adeviceis generaly
the logical association of several VISA resources.

GPIB (General Purpose Interface Bus)
An interconnection bus and protocol that alows you to connect multiple
instruments in a network under the control of a controller. Also known as
|EEE 488 bus. It transfers data with eight parallel data lines, five control
lines, and three handshake lines.

Tektronix Version 1.1 TekVISA Programmer Manual Glossary-1

Glossary

Glossary-2

Instrument
A device that accepts some form of stimulus to perform a designated task,
test, or measurement function. Two common forms of stimuli are message
passing and register reads and writes. Other forms include triggering or
varying forms of asynchronous control.

Interface
A generic term that applies to the connection between devices and control-
lers. It includes the communication media and the device/controller hardware
necessary for cross-communication.

Instrument Driver
Library of functions for controlling a specific instrument

LabVIEW
Graphical programming ADE for Windows, Windows NT, and Sun
operating systems

LabWindows/CVI
C-based ADE for the Windows and Sun operating systems

LLB
LabVIEW VI library

NI -488
National Instruments GPIB interface software

NI-VXI
National Instruments V XIbus interface software

Operation
An action defined by aresource that can be performed on aresource.

Oscilloscope
An instrument for making a graph of two factors. These are typicaly voltage
versus time.

Process
An operating system component that shares a system’s resources. A
multi-process system is a computer system that alows multiple programs to
execute simultaneously, each in a separate process environment. A single-
process system is a computer system that allows only a single program to
execute at a given point in time.

Register
An address location that either contains avalue that is afunction of the state
of hardware or can be written into to cause hardware to perform a particular
action or to enter a particular state. In other words, an address location that
controls and/or monitors hardware.

Tektronix Version 1.1 TekVISA Programmer Manual

Glossary

Resource Class
The definition for how to create a particular resource. In generd, thisis
synonymous with the connotation of the word class in object-oriented
architectures. For VISA Instrument Control Resource Classes, thisrefers to
the definition for how to create a resource that controls a particular capability
of adevice.

Resource or Resource I nstance
In generd, this term is synonymous with the connotation of the word object
in object-oriented architectures. For VISA, resource more specifically refers
to aparticular implementation (or instance in object-oriented terms) of a
Resource Class. In VISA, every defined software module is a resource.

Session
The same as Communication Channel. A communication path between a
software element and a resource. Every communication channel in VISA is
unique.

SRQ
|EEE 488 Service Request. Thisis an asynchronous request from a remote
GPIB device that requires service. A service request is essentially an
interrupt from aremote device. For GPIB, this amounts to asserting the SRQ
line on the GPIB.

Status Byte
A byte of information returned from a remote device that shows the current
state and status of the device. If the device follows |EEE 488 conventions,
bit 6 of the status byte indicates if the device is currently requesting service.

Template Function
Instrument driver subsystem function common to the majority of VXI-
plug& play instrument drivers.

Top-level Example
A high-level test-oriented instrument driver function. It istypically
developed from the instrument driver subsystem functions.

Virtual Instrument
A name given to the grouping of software modules (in this case, VISA
resources with any associated or required hardware) to give the functionality
of atraditional stand-alone instrument. Within VISA, avirtua instrument is
the logical grouping of any of the VISA resources. The VISA Instrument
Control Resources Organizer serves as ameans to group any number of any
type of VISA Instrument Control Resources within aVISA system.

VI
LabVIEW program or Virtual Instrument

Tektronix Version 1.1 TekVISA Programmer Manual Glossary-3

Glossary

Glossary-4

Virtual GPIB
A specid type of GPIB resource that creates a software connection between
the embedded instrument software and the Windows software on a Tektronix
Windows-based oscill oscope, without the need for any GPIB controller
hardware or cables.

VISA
Virtual Instrument Software Architecture. The architecture consists of two
main VISA components: the VISA Resource Manager and the VISA
Instrument Control Resources.

VISA Instrument Control Resources
Thisis the name given to the part of VISA that defines al of the device-spe-
cific resource classes. VISA Instrument Control Resources encompass all
defined device and interface capabilities for direct, low-level instrument
control.

VISA Resource M anager
Thisis the name given to the part of VISA that manages resources. This
management includes support for opening, closing, and finding resources;
setting attributes, retrieving attributes, and generating events on resources;
and so on.

VISA Resource Template
Thisis the name given to the part of VISA that defines the basic constraints
and interface definition for the creation and use of aVISA resource. All
VISA resources must derive their interface from the definition of the VISA
Resource Template.

VTL
VISA Transition Library.

Tektronix Version 1.1 TekVISA Programmer Manual

Index
A

Address, Glossary-1
Tektronix, xvi
ADE, Glossary-1
AP, Glossary-1
Application Development Environments (ADE), 1-1
LabVIEW, 1-2
MATLAB, 1-2
Microsoft C/C++, 1-2
Microsoft Visual Basic, 1-2
Attribute, Glossary-1
attributes, 1-5

B

Bus Error, Glossary-1

C

Communication Channel, Glossary-1
Completion and Error Codes, B-1

in alphabetical order, B-1
Configuration utility, 1-2
Contacting Tektronix, xvi
Controller, Glossary-1

D

Default Resource Manager, 1-5
Device, Glossary-1

E

Event types, in alphabetical order, 4-1
events, 1-5

F

Finding Resources
Examples of Regular Expression Matches, 2-29
Examples That Include Attribute Expression
Matches, 2-29
Regular Expression Special Characters and
Operators, 2-28

Tektronix Version 1.1 TekVISA Programmer Manual

G

Glossary, Glossary-1
GPIB, Glossary-1
GPIB (General Purpose Interface Bus), Glossary-1

Instrument, Glossary-2

instrument control (INSTR) resource class, 1-5
Instrument Driver, Glossary-2

instrument driver, 1-1

Interface, Glossary-2

L

LabVIEW, Glossary-2
LabwWindows/CV1, Glossary-2
LLB, Glossary-2

locking mechanism, 1-5

M

Manuals, related, xv

N

NI-488, Glossary-2
NI-VXI, Glossary-2

O

Opening Resources, Resource Address String Grammar
and Examples, 2-41

Operation, Glossary-2

operations, 1-5

Oscilloscope, Glossary-2

P

ParseRsrc (sesn, rsrcName, intfType, intfNum), 2-44
Phone number, Tektronix, xvi

Process, Glossary-2

Product support, contact information, xvi

Index-1

Index

Programming examples, 5-1 R

basic input output
asynchronous read/write, 5-14 Register, Glossary-2
reading and writing data, 5-12 Related Manuals, xv

basic input/output, 5-12 Resource Address String Grammar, 3-25
Clear, 5-14 Resource Class, Glossary-3
extract from SIMPLE.CPP example, 5-13 Resource or Resource Instance, Glossary-3
RWEXAM.CPP example, 5-13 resources, 1-5

Status/Service Request, 5-15
synchronous read/write, 5-13
Trigger, 5-14 S
Compiling and linking, 5-2
finding resources, 5-5
FINDRSRCATTRMATCH.CPP example, 5-8
SIMPLEFINDRSRC.CPP example, 5-6
using attribute matching, 5-8
using regular expressions, 5-6
handling events, 5-26

Service support, contact information, xvi
Session, Glossary-3

sessions, 1-5

SRQ, Glossary-3

Status Byte, Glossary-3

callback mechanism, 5-30 T
exception handling, 5-35
generating an error condition on asynchronous TDS7000 Series Oscilloscopes, 1-2
operations, 5-36 remote PCs networked to, 1-2
gueueing mechanism, 5-27 Technical support, contact information, xvi
SRQ.CPP example, 5-27, 5-32 Tektronix, contacting, xvi
locking and unlocking resources, 5-36 Tektronix ADO07 GPIB-LAN adapter, 1-2
acquiring an exclusive lock while owning a shared TekVisa, 1-1
lock, 5-40 applications and connectivity supported by, 1-2
EXLOCKEXAM.CPP example, 5-37 features and benefits, 1-2
lock sharing, 5-39 installation, 1-6
locking types and access privileges, 5-36 product description, 1-1
nested locks, 5-41 TekVisa attributes
SHAREDL OCK.CPP example, 5-41 by category, 3-1
testing exclusive locking, 5-39 event attributes, 3-3
testing shared locking, 5-43 GPIB device attributes, 3-2
opening and closing sessions, 5-3 interface attributes, 3-1
SIMPLE.CPP example, 5-4 miscellaneous attrbutes, 3-3
reading and writing formatted data, 5-15 read/write attributes, 3-3
buffered 1/0 operations, 5-25 resource attributes, 3-1
BUFFERIO.CPP example, 5-23 serial device attributes, 3-1
controlling the serial 1/0 buffers, 5-26 TekVisaManua
flushing the formatted I/O buffer, 5-25 conventions used, xiv
FORMATIO.CPP example, 5-17 who should read, xiii
formatted 1/O operations, 5-17 TekVisa operations
resizing the formatted 1/0 buffers, 5-22 by category, 2-1
variable list operations, 5-26 finding resources, 2-1
setting and retrieving attributes, 5-10 handling events, 2-2
ATTRACCESS.CPP example, 5-10 locking and unlocking resources, 2-3
retrieving attributes, 5-10 opening and closing sessions, events, and find lists,
setting attributes, 5-10 2-1

Index-2 Tektronix Version 1.1 TekVISA Programmer Manual

Index

other basic /O operations, 2-1
reading and writing basic data, 2-1
reading and writing formatted data, 2-2
setting and retrieving attributes, 2-1
Template Function, Glossary-3
Terminology, 1-4
Top-level Example, Glossary-3

U

URL, Tektronix, xvi

V

VI, Glossary-3, Glossary-4
VI_ALL_ENABLED_EVENTS, 2-15, 2-17, 2-19,
2-101
VI_ALL_MECH, 2-15, 2-17
VI_ANY_HNDLR, 2-86
VI_ASRL_END_BREAK, 3-9
VI_ASRL_END_LAST_BIT, 3-8, 3-9
VI_ASRL_END_NONE, 2-58, 3-8, 3-9
VI_ASRL_END_TERMCHAR, 2-58, 3-8, 3-9
VI_ASRL_FLOW_DTR_DSR, 3-1
VI_ASRL_FLOW_NONE, 3-10
VI_ASRL_FLOW_RTS CTS, 3-10, 3-12
VI_ASRL_FLOW_XON_XOFF, 3-10
VI_ASRL_IN_BUF, 2-31, 2-77
VI_ASRL_IN_BUF_DISCARD, 2-31
VI_ASRL_OUT_BUF, 2-32, 2-77
VI_ASRL_OUT_BUF_DISCARD, 2-32
VI_ASRL_PAR_EVEN, 3-11
VI_ASRL_PAR_MARK, 3-11
VI_ASRL_PAR_NONE, 3-11
VI_ASRL_PAR _ODD, 3-11
VI_ASRL_PAR_SPACE, 3-11
VI_ASRL_STOP_ONE, 3-13
VI_ASRL_STOP_ONES5, 3-13
VI_ASRL_STOP_TWO, 3-13
VI_ASRLA488, 2-6, 2-12, 2-65, 3-19
VI_ATTR_ASRL_AVAIL_NUM, 3-5
VI_ATTR_ASRL_BAUD, 3-5
VI_ATTR_ASRL_CTS STATE, 3-6
VI_ATTR_ASRL_DATA_BITS, 3-6, 3-8
VI_ATTR_ASRL_DCD_STATE, 3-7
VI_ATTR_ASRL_DSR STATE, 3-7
VI_ATTR_ASRL_DTR_STATE, 3-8
VI_ATTR_ASRL_END_IN, 2-58, 3-8
VI_ATTR_ASRL_END_OUT, 3-9
VI_ATTR_ASRL_FLOW_CNTRL, 3-10, 3-12
VI_ATTR_ASRL_PARITY, 3-11
VI_ATTR_ASRL_REPLACE_CHAR, 3-11

Tektronix Version 1.1 TekVISA Programmer Manual

VI_ATTR_ASRL_RI_STATE, 3-12
VI_ATTR_ASRL_RTS STATE, 3-12
VI_ATTR_ASRL_STOP BITS, 3-13
VI_ATTR_ASRL_XOFF CHAR, 3-13
VI_ATTR_ASRL_XON_CHAR, 3-14
VI_ATTR BUFFER, 3-14
VI_ATTR_EVENT_TYPE, 3-15
VI_ATTR_GPIB_PRIMARY_ADDR, 3-15
VI_ATTR_GPIB_READDR EN, 3-16
VI_ATTR_GPIB_SECONDARY_ADDR, 3-16
VI_ATTR_GPIB_UNADDR _EN, 3-17
VI_ATTR_INTF_INST_NAME, 3-17
VI_ATTR_INTF_NUM, 3-18
VI_ATTR_INTF_TYPE, 3-18
VI_ATTR_IO_PROT, 2-6, 2-12, 2-65, 3-19
VI_ATTR_JOB_ID, 2-63, 2-108
VI_ATTR_JOB_ID , 3-19
VI_ATTR_MAX_QUEUE_LENGTH, 2-101, 3-20
VI_ATTR_OPER_NAME, 3-20
VI_ATTR_RD_BUF_OPER_MODE, 3-21
VI_ATTR_RET_COUNT, 3-21
VI_ATTR_RM_SESSION, 3-22
VI_ATTR_RSRC_IMPL_VERSION, 3-22
VI_ATTR_RSRC_LOCK_STATE, 3-23
VI_ATTR_RSRC_MANF _ID, 3-23
VI_ATTR_RSRC_MANF _NAME, 3-24
VI_ATTR_RSRC_NAME, 3-24
VI_ATTR_RSRC_SPEC_VERSION, 3-25
VI_ATTR_SEND_END_EN, 3-26
VI_ATTR_STATUS, 2-63, 3-26
VI_ATTR_SUPPRESS END_EN, 2-58, 3-27
VI_ATTR_TERMCHAR, 2-58, 3-9, 3-27
VI_ATTR_TERMCHAR_EN, 2-58, 3-28
VI_ATTR_TMO_VALUE, 3-28
VI_ATTR_TRIG_ID, 3-29
VI_ATTR_USER_DATA, 3-29
VI_ATTR_WR _BUF_OPER_MODE, 3-30
VI_EVENT_EXCEPTION, 4-1
VI_EVENT_IO_COMPLETION, 2-63, 2-108, 4-1
VI_EVENT_SERVICE_REQUEST, 4-2
VI_EXCLUSIVE_LOCK, 2-38, 2-42, 3-23
VI_FALSE, 2-58, 3-16, 3-17, 3-26, 3-27, 3-28
VI_FLUSH_DISABLE, 3-21
VI_FLUSH_ON_ACCESS, 3-21, 3-30
VI_FLUSH_WHEN_FULL, 3-30
VI_HNDLR, 2-15, 2-17, 2-20

VI_Hs488, 3-19

VI_INTF_ASRL, 3-18

VI_INTF_GPIB, 3-18

VI_LOAD_CONFIG, 2-42

VI_NO_LOCK, 3-23

VI_NO_SEC_ADDR, 3-16

VI_NORMAL, 2-6, 2-12, 2-65, 3-19

Index-3

Index

VI_NULL, 2-27, 2-38, 2-59, 2-84, 2-102, 2-104,
2-108, 3-22

VI_QUEUE, 2-15, 2-17, 2-20

VI_READ_BUF, 2-31, 2-77

VI_READ_BUF_DISCARD, 2-31

VI_SHARED_LOCK, 3-23

VI_SUCCESS _MAX_CNT, 2-58

VI_SUCCESS TERM_CHAR, 2-58

VI_SUSPEND_HNDLR, 2-15, 2-17, 2-20

VI_TMO_IMMEDIATE, 2-102, 3-28

VI_TMO_INFINITE, 2-102, 3-28

VI_TRIG_PROT_DEFAULT, 2-7

VI_TRIG_SW, 3-29

VI_TRUE, 2-58, 3-16, 3-17, 3-26, 3-27, 3-28

VI_WRITE_BUF, 2-31, 2-77

VI_WRITE_BUF_DISCARD, 2-31

viAssertTrigger (vi, protocol), 2-5

viBufRead (vi, buf, count, retCount), 2-7

viBufWrite (vi, buf, count, retCount), 2-9

viClear (vi), 2-11

viClose (vi), 2-12

viDisableEvent (vi, event, mechanism), 2-14

viDiscardEvents (vi, event, mechanism), 2-16

viEnableEvent (vi, eventType, mechanism, context),
2-18

viEventHandler (vi, eventType, context, userHandle),
2-21

viFindNext (findList, instrDesc), 2-23

viFindRsrc (sesn, expr, findList, retcnt, instrDesc),
2-25

viFlush (vi, mask), 2-30

viGetAttribute (vi, attribute, attrState), 2-32

vilnstallHandler (vi, eventtype, handler, userHandle),
2-34

viLock (vi, lockType, timeout, requestedK ey,
accessKey), 2-36

viOpen (sesn, rsrcName, accessMode, timeout, vi),
2-39

viOpenDefaultRM (sesn), 2-42

viPrintf (vi, writeFmt, <argl, arg2, ...>), 2-46

viQueryf (vi, writeFmt, readFmt, <argl, arg2,...>),
2-54

Index-4

viRead (vi, buf, count, retCount), 2-56
viReadAsync (vi, buf, count, jobld), 2-59
ViReadSTB (vi, status), 2-64
virtual GPIB, 1-1, 1-6
Virtual Instrument, Glossary-3
virtual instrument, 1-6
Virtual Instrument Software Architecture (VISA), 1-1
VISA, Glossary-4
VISA configuration utility, 1-7

adding a remote hogt, 1-9

deleting aremote host, 1-10

finding resources, 1-9
VISA Data Type Assignments, A-1

for ANSI C, A-1

for Visual Basic, A-1
VISA Instrument Control Resources, Glossary-4
VISA Resource Manager, 1-5, Glossary-4
VISA Resource Template, Glossary-4
viScanf (vi, reedFmt, <argl, arg2,...>), 2-66
viSetAttribute (vi, attribute, attrState), 2-74
viSetBuf (vi, mask, size), 2-75
viSPrintf (vi, buf, writeFmt, <argl, arg2,...>), 2-77
viSScanf (vi, readFmt, <argl, arg2,...>), 2-80
viStatusDesc (vi, status, desc), 2-82
viTerminate (vi, degree, jobld), 2-83
viUninstallHandler (vi, eventType, handler, user-

Handle), 2-85
viUnlock (vi), 2-86
ViVPrintf (vi, writeFmt, params), 2-89
ViV Queryf (vi, writeFmt, readFmt, params), 2-91
viVScanf (vi, readFmt, params), 2-94
ViV SPrintf (vi, buf, writeFmt, params), 2-96
ViV SScanf (vi, buf, readFmt, params), 2-98
viWaitOnEvent (vi, inEventType, timeout, outEvent-
Type, outContext), 2-100

viWrite (vi, buf, count, retCount), 2-102
viWriteAsync (vi, buf, count, jobld), 2-104
VTL, Glossary-4

W

Web site address, Tektronix, xvi

Tektronix Version 1.1 TekVISA Programmer Manual

	Title Page
	Table of Contents
	List of Figures
	List of Tables

	Preface
	Who Should Read This Manual
	About This Manual
	Conventions
	Related Manuals and Information
	Contacting Tektronix

	Getting Started
	Product Description
	Terminology
	What You Need to Get Started

	Operations Summary
	Operations
	viAssertTrigger (vi, protocol)
	viBufRead (vi, buf, count, retCount)
	viBufWrite (vi, buf, count, retCount)
	viClear (vi)
	viClose (vi)
	viDisableEvent (vi, eventType, mechanism)
	viDiscardEvents (vi, eventType, mechanism)
	viEnableEvent (vi, eventType, mechanism, context)
	viEventHandler (vi, eventType, context, userHandle)
	viFindNext (findList, instrDesc)
	viFindRsrc (sesn, expr, findList, retCount, instrDesc)
	viFlush (vi, mask)
	viGetAttribute (vi, attribute, attrState)
	viInstallHandler (vi, eventType, handler, userHandle)
	viLock (vi, lockType, timeout, requestedKey, accessKey)
	viOpen (sesn, rsrcName, accessMode, timeout, vi)
	viOpenDefaultRM (sesn)
	viParseRsrc (sesn, rsrcName, intfType, intfNum)
	viPrintf (vi, writeFmt, <arg1, arg2, ...>)
	viQueryf (vi, writeFmt, readFmt, <arg1, arg2,...>)
	viRead (vi, buf, count, retCount)
	viReadAsync (vi, buf, count, jobId)
	viReadSTB (vi, status)
	viScanf (vi, readFmt, <arg1, arg2,...>)
	viSetAttribute (vi, attribute, attrState)
	viSetBuf (vi, mask, size)
	viSPrintf (vi, buf, writeFmt, <arg1, arg2,...>)
	viSScanf (vi, buf, readFmt, <arg1, arg2,...>)
	viStatusDesc (vi, status, desc)
	viTerminate (vi, degree, jobId)
	viUninstallHandler (vi, eventType, handler, userHandle)
	viUnlock (vi)
	viVPrintf (vi, writeFmt, params)
	viVQueryf (vi, writeFmt, readFmt, params)
	viVScanf (vi, readFmt, params)
	viVSPrintf (vi, buf, writeFmt, params)
	viVSScanf (vi, buf, readFmt, params)
	viWaitOnEvent (vi, inEventType, timeout, outEventType, outContext)
	viWrite (vi, buf, count, retCount)
	viWriteAsync (vi, buf, count, jobId)

	Attributes Summary
	Attributes
	VI_ATTR_ASRL_AVAIL_NUM
	VI_ATTR_ASRL_BAUD
	VI_ATTR_ASRL_CTS_STATE
	VI_ATTR_ASRL_DATA_BITS
	VI_ATTR_ASRL_DCD_STATE
	VI_ATTR_ASRL_DSR_STATE
	VI_ATTR_ASRL_DTR_STATE
	VI_ATTR_ASRL_END_IN
	VI_ATTR_ASRL_END_OUT
	VI_ATTR_ASRL_FLOW_ CNTRL
	VI_ATTR_ASRL_PARITY
	VI_ATTR_ASRL_REPLACE_CHAR
	VI_ATTR_ASRL_RI_STATE
	VI_ATTR_ASRL_RTS_STATE
	VI_ATTR_ASRL_STOP_BITS
	VI_ATTR_ASRL_XOFF_CHAR
	VI_ATTR_ASRL_XON_CHAR
	VI_ATTR_BUFFER
	VI_ATTR_EVENT_TYPE
	VI_ATTR_GPIB_PRIMARY_ADDR
	VI_ATTR_GPIB_READDR_EN
	VI_ATTR_GPIB_SECONDARY_ADDR
	VI_ATTR_GPIB_UNADDR_EN
	VI_ATTR_INTF_INST_NAME
	VI_ATTR_INTF_NUM
	VI_ATTR_INTF_TYPE
	VI_ATTR_IO_PROT
	VI_ATTR_JOB_ID
	VI_ATTR_MAX_QUEUE_LENGTH
	VI_ATTR_OPER_NAME
	VI_ATTR_RD_BUF_OPER_MODE
	VI_ATTR_RET_COUNT
	VI_ATTR_RM_SESSION
	VI_ATTR_RSRC_IMPL_VERSION
	VI_ATTR_RSRC_LOCK_STATE
	VI_ATTR_RSRC_MANF_ID
	VI_ATTR_RSRC_MANF_NAME
	VI_ATTR_RSRC_NAME
	VI_ATTR_RSRC_SPEC_VERSION
	VI_ATTR_SEND_END_EN
	VI_ATTR_STATUS
	VI_ATTR_SUPPRESS_END_EN
	VI_ATTR_TERMCHAR
	VI_ATTR_TERMCHAR_EN
	VI_ATTR_TMO_VALUE
	VI_ATTR_TRIG_ID
	VI_ATTR_USER_DATA
	VI_ATTR_WR_BUF_OPER_MODE

	Events
	VI_EVENT_EXCEPTION
	VI_EVENT_IO_COMPLETION
	VI_EVENT_SERVICE_REQ

	Programming Examples
	Introduction
	Compiling and Linking Examples
	Opening and Closing Sessions
	Finding Resources
	Setting and Retrieving Attributes
	Basic Input/Output
	Reading and Writing Formatted Data
	Handling Events
	Locking and Unlocking Resources
	Building a Graphical User Interface

	Appendix A: VISA Data Type Assignments
	Appendix B: Completion and Error Codes
	Glossary
	Index

