
Oscilloscope Analysis

and Connectivity Made Easy

Adding Live Oscilloscope Data to Popular Analysis Software

Includes Excel�, Visual Basic, MATLAB�, and LabVIEW�

Examples

071-1046-00

www.tektronix.com

Copyright Tektronix Inc. All rights reserved. Licensed software products
are owned by Tektronix or its suppliers and are protected by United States
copyright laws and international treaty provisions. LabVIEW and
LabWindows™/CVI are trademarks of National Instruments Corporation.
Mathcad is a registered trademark of MathSoft, Inc. MATLAB is a registered
trademark of The MathWorks, Inc. Microsoft and Excel are trademarks and
Windows is a registered trademark of Microsoft Corporation.

Tektronix, Inc., P.O. Box 500, Beaverton, OR 97077

Tektronix and Tek are registered trademarks of Tektronix, Inc.

Note: Software on the CD is provided AS IS with no warranties of any
kind, specifically excluding WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Tektronix, Inc.
assumes no liability of any kind for your use of this software.

 i

Table of Contents

Preface..xv
What This Book is About... xv
Who Should Read This Book .. xv
How This Book is Organized... xv
Document Conventions.. xvi

Chapter 1: Connectivity Building Blocks ..1
Connectivity Made Easier ...1
Built-in Connectivity Features ...1
New Connectivity Building Blocks ...3

TekVISA A Standard Way to Connect ..4
TekVISA Toolbar ..5
TekVISA ActiveX Control ..6
TekVISA API...6
Internal “Virtual” GPIB...6
VXI-11.2 Client /Server Connected by Local Area Network (LAN)6
Tektronix Plug-n-Play Drivers with LabWindows/CVI and LabVIEW8

MATLAB’s Instrument Control Toolbox..9

PART 1: EXCEL AND VISUAL BASIC ...11

Chapter 2: The TekVISA Toolbar ..13
Introduction ...13

Toolbar Prerequisites...13
Toolbar Features..14

Adding the TekVISA Toolbar to Excel...14
Connecting to Oscilloscopes...15
Saving and Restoring Scope Settings...16

Save Settings from the Scope ...17
Display Current Settings from the Scope..17
Save Scope Settings to a Workbook ..17
Save Scope Settings to a File...18

Assign Stored Settings to the Scope..20
Assign Settings from a Workbook...20
Assign Settings from a File ...20

Capturing and Graphing Waveforms...21
Clearing the Active Sheet..23
Capturing and Graphing Measurements ...24

Capture Single Measurement(s) ..24
Capture and Graph Repeated Measurement(s)...27

Select Measurement(s)...28
Specify Timing ..30

ii

Choose Charting Options... 31
Capturing Triggered Waveforms .. 32
Getting Help with the TekVISA Toolbar.. 35
TekVISA Toolbar Source Code .. 36
Chapter 2 Review... 36

Chapter 3: Understanding the TekVISA ActiveX Control37
Introduction... 37
Background Information ... 37
Terminology.. 38
Automated Acquisition.. 38

Native GPIB Commands and Queries... 39
TekVISA ActiveX Control Methods, Properties, and Events 39

Chapter 4. A Simple Program To Get Waveforms..41
Introduction... 41
GPIB Commands for Waveform Acquisition... 41

Waveform Data ... 41
Waveform Data Formats .. 42
Waveform Record Length .. 42
Waveform Source .. 42

Waveform Preamble.. 43
The TekVISA ActiveX Control and Waveform Acquisition.................................. 43

The GetWaveform Method.. 43
Other Methods of Waveform Acquisition... 43

Getting Started ... 44
What You Need to Get Started.. 44
What You Will Do .. 45
What You Will Learn.. 47

The Get Waveform Example in Excel VBA .. 48
Building the Form .. 48

Open VBA in Excel (Alt+F11)... 48
Insert a UserForm .. 50
Add the TekVISA ActiveX Control .. 51
Design the Form... 52

Getting Help .. 53
Changing Properties in the Properties Window... 54
Using the Object Browser (F2) .. 57

A Quick Overview of the Excel Object Model....................................... 58
F1 From the Object Browser Is Your Friend... 59

Coding the Event Procedures ... 60
The Activate UserForm Routine... 61
The Clear Button Routine... 63
The Get Waveform Button Routine .. 65

 iii

Running the GetWaveForm Program...69
The Show Form Routine...69

Running the Program with the Jitter Example ...71
Using VB Instead of VBA ..74
Chapter 4 Review..76

Chapter 5. A More Complex Four-Part Program...77
Introduction ...77

What You Need to Get Started ..77
What You Will Do...78
What You Will Learn ..80

The TekVISA Test Run Example in Excel VBA...81
Building the Form...81
Changing Properties in the Properties Window ...81
The Current Devices List Box ..83

The Current Devices List Box Design ...83
The UserForm Initialize Routine ...83

The Measurement Commands Frame ...84
The Measurement Commands Frame Design......................................84
Additions to the UserForm Initialize Routine...85
The Get Immediate Measurement Button Routine................................86

The Waveform Data Frame ...87
The Waveform Data Frame Design ..87
Additions to the UserForm Initialize Routine89
The Clear Button Routine ...90
The Get Waveform Button Routine...90

The Send GPIB Commands Frame ...93
The Send GPIB Commands Frame Design..93
The Clear Button Routine ...94
The Send Command Button Routine ..94

Running the TekVISA Test Run Program ..95
The Show Form Routine...95

Using VB Instead of VBA ..97
Chapter 5 Review..98

Chapter 6: A Measurement Charting Example...99
Introduction ...99

What You Need to Get Started ..99
What You Will Do...100
What You Will Learn ..103

The Chart Measurements Example in Excel VBA...104
Building the Form...104
Changing Properties in the Properties Window ...104
Initialization ..107

Module Level Variable Declarations ...107

iv

The UserForm Initialize Routine... 107
Choosing Measurements .. 109

Command Button Routines .. 109
Capture Measurements Routine .. 110
List Box Routines ... 114
Calculate Record Length Routine .. 115

Displaying Results... 116
Check Box Routine .. 116
Spin Button Routines ... 117
Insert Chart Routine.. 118
Draw Chart Routine.. 119

Running the Chart Measurements Program.. 120
The Show Form Routine .. 120

Using VB Instead of VBA ... 121
Chapter 6 Review... 124

Chapter 7: A Triggered Waveform Capture Example..127
Introduction... 127
Getting Started ... 127

What You Need to Get Started.. 127
What You Will Do .. 128
What You Will Learn.. 130

The Triggered Waveform Capture Example in VB ... 130
Building the Form .. 130

The Settings Tab.. 133
The Measurements Tabs ... 137
The Data Tab ... 139

Getting Help .. 141
Using the Object Browser (F2)... 141
The VB Intellisense Feature... 142

Reviewing the Code .. 143
Code Organization ... 143
Initialization Routines ... 145
List Devices And Display Channels Routines 146
List Measurements Routines.. 148
Wait for Trigger Routine ... 149
Set Registers Routines .. 151
Trigger Event Handling Routines ... 153
Get Measurement and Waveform Data Routines 156
Display Results in Grid Routines.. 157
Save Data to Disk Routines ... 157
Other General Purpose Routines... 158

Running the Triggered Waveform Capture Example................................. 158
Using VBA Instead of VB ... 162
Chapter 7 Review... 163

 v

PART 2: MATLAB AND LABWINDOWS/CVI AND LABVIEW165

Chapter 8: Live Updates to MATLAB using ICT...167
Introduction ...167

What You Need to Get Started ..167
What You Will Do...168
What You Will Learn ..168

The Instrument Control Toolbox..168
Configuring VISA Resources ...169
Communicating with VISA-GPIB Objects...169
Using the Instrument Control ASCII Communication Tool170
Cleaning up Instrument Objects during Debugging172

The Jitter Example with MATLAB ICT Functions ..173
Creating the jitter2 Function...174
Testing Automatic Waveform Acquisition...182

Improved Jitter Example with a GUI Interface...184
Adding GUI Components to the Solution ...184
Performing an Interim Test ..189
Modifying Auto-Generated Functions...189

The jitter3 Function ...189
The Parameter Edit Text Box Functions ...191
The VISA Selector Popup Menu Function ..192
The CONNECT Button Function...193
The Open Instrument Function ...194
The Close Button Function ...195
The SINGLE Button Function ...196
The Start Button Function...197
The Stop Button Function ...198
The Acquire Instrument Function..199
The Waveform Export Check Box Function..202
The Export Instrument Button Function ..203

Testing the Improved Solution ...204
Chapter 8 Review..206

Chapter 9: LabWindows/CVI and LabVIEW ..207
Introduction ...207
Tektronix Plug-n-Play Drivers ...207
Overview of LabWindows/CVI...208
Using Tektronix Plug-n-Play Drivers with LabWindows/CVI209

Loading the Driver..209
Load from the Instrument Menu..209
Open from the File Menu ..212

vi

Building the Interface... 213
Getting Help .. 216
Modifying Auto-Generated Functions.. 217

The Main Function ... 219
The Panel Handler Function .. 220
The Start Button Function .. 221
Inserting a PnP Driver Function into LabWindows/CVI Code 222
The Dial Control Function .. 223
The Timer Control Function ... 223
The Stop Button Function .. 225
The Exit Button Function.. 225

Running Your Program.. 225
Overview of LabVIEW .. 227
Using Tektronix Plug-n-Play Drivers with LabVIEW ... 227

Loading the Driver... 227
Viewing Driver Functions... 229
Getting Help .. 231
Creating a Quick Demo Program .. 234

Add the Initialize vi ... 234
Place More Driver vi’s and Wire Them... 236
Configure vi’s from the Block Diagram... 240
Configure vi’s from the Front Panel.. 242

Running Your Program.. 243
Using VISA Operations with LabVIEW... 244

Creating a Timed Measurement Program ... 244
The Front Panel ... 244
The Block Diagram... 247

Running Your Program.. 252
Chapter 9 Review... 253

Appendix A: Command and Control Reference ...255
Introduction... 255
Native GPIB Commands and Queries.. 255
TekVISA Active X Control Methods, Properties, and Events............................ 263
MATLAB Instrument Control Toolbox Functions .. 282
PnP Driver Functions ... 289
VISA Operations... 290

Appendix B: Fast LAN Access to Your Oscilloscope..293
Introduction... 293
VXI-11 and LAN Connectivity for Oscilloscopes... 293
Benefits of LAN Access.. 294
Deployment Considerations ... 295
VXI-11 LAN Server Installation and Configuration.. 295
VXI-11 LAN Client Access Setup ... 296

 vii

TekVISA Installation...296
Application Examples..300

Visual Basic Example ..300
MATLAB Example..300
LabWindows/CVI Example ..300
LabVIEW Example...301
C Program Example...301

Programming Tips...301
Timeout Settings ..301
Non-TekVISA VXI-11 Clients ...302

VXI-11 Standard..302

Appendix C: Other VB Examples...303
Introduction ...303
Alternate Methods for Getting Waveform Data Using the TekVISA Control......303
Writing and Reading Binary/ASCII Waveform Example....................................303

The User Interface ...305
How the Program Works..307

Writing ASCII Data..307
Reading ASCII Data ...307
Writing Binary Data...307
Reading Binary Data...308

Code Listing...309
Declarations..309
Clear Button Routine ..309
Get ASCII Data Routine..309
Get Binary Data Routine...311
Read ASCII Button Routine ..313
Read Binary Button Routine ...313
Write ASCII Button Routine ..314
Write Binary Button Routine..316
Form Load Routine ...318
Handle Open Dialog Routine ..318
Handle Save Dialog Routine...319
Concatenate String in Buffer Routine ...320

Appendix D: Using the Waveform Generator ..321
Introduction ...321
To Generate a Live Waveform..321

viii

Set up Your Display Mode... 321
Locate the Software and Examples for This Book..................................... 323
Connect the Cable .. 323
Start Up the Waveform Generator... 324
Set Up the Oscilloscope and Calibrate the Sound Card............................ 325
Generate the Waveform.. 327
Copy and Paste the Waveform Data into Excel .. 327
Export the Waveform into a File Appropriate for Excel.............................. 328
Import the Waveform into Excel .. 328

Index ...331

 ix

List of Figures
Figure 1. A Copy Setup box prepares waveform data for Excel2
Figure 2. TekVISA supports connectivity to programming
 environments ..5
Figure 3. Range of connections made possible by TekVISA
 components ..7
Figure 4. The path to LAN connectivity..8
Figure 5: Tektronix VXI Plug-n-Play Drivers integrate with
 popular test automation software such as LabVIEW9
Figure 6: The TekVISA Toolbar in Excel..13
Figure 7: How TekVISA ActiveX Controls interface with
 Excel VBA and VB..44
Figure 8: The form you will design for the GetWaveform
example ...45
Figure 9: The Get Waveform form at runtime46
Figure 10: Excel Clock Jitter example..47
Figure 11: Get Waveform form before changing default
properties...53
Figure 12: Using the VBA Help facility...54
Figure 13: The redesigned form for Get Waveform57
Figure 14: An object hierarchy from the Excel Object Model.........58
Figure 15 Using the Object Browser with Excel VBA.....................59
Figure 16: Related online help from the Object Browser60
Figure 17: The Clock Jitter example with the Get Waveform
program added ..74
Figure 18: Visual Basic 6.0 version of Get Waveform program75
Figure 19: The form you will design for the Test Run example......79
Figure 20: The Test Run form at runtime.......................................80
Figure 21: TekVISA Test Run form before changing
default captions and appearance of controls82
Figure 22: The redesigned form for TekVISA Test Run.................82
Figure 23: The Current Devices list box...83
Figure 24: The Measurement Commands frame...........................85
Figure 25: The Waveform Data frame ...89
Figure 26: The Send GPIB Commands frame...............................94
Figure 27: Visual Basic 6.0 version of the TekVISA
Test Run program..97
Figure 28: The form you will design for the Chart
Measurements example ..101
Figure 29: The Chart Measurements form at runtime..................102
Figure 30: Chart Measurements plotted results...........................103
Figure 31: Chart Measurements form before changing
default captions and appearance of controls105

x

Figure 32: The redesigned form for Chart Measurements 105
Figure 33: How the Excel model incorporates charts.................. 118
Figure 34: Visual Basic 6.0 version of Chart Measurement
program... 122
Figure 35: The form you will design for the Triggered
Waveform Capture example ... 129
Figure 36: The Triggered Waveform Capture form at runtime 130
Figure 37: The Settings tab at design time 134
Figure 38: The TDS7000 Series Measurements tab
at design time.. 137
Figure 39: The TDS8000 Series Measurements tab
at design time.. 138
Figure 40: The Data tab at design time....................................... 140
Figure 41 Using the Object Browser with Visual Basic 6.0 142
Figure 42: The form module and code module in separate
Code Windows of VB.. 144
Figure 43: Triggered Waveform Capture example flow diagram. 145
Figure 44: The VISA Configuration Utility 169
Figure 45: MATLAB’s Instrument Control Toolbox ASCII
communication tool ... 172
Figure 46: How commands and queries are funneled
through MATLAB functions ... 174
Figure 47: The first screen of the jitter2 function in MATLAB...... 182
Figure 48: The plotted graph solutions for jitter2 in the
MATLAB Figure Window... 183
Figure 49: Building a GUI using the MATLAB guide utility.......... 185
Figure 50: The MATLAB guide utility Property Inspector 186
Figure 51: First page of completed jitter3 example in MATLAB.. 204
Figure 52: The plotted graph solutions for jitter3 in the
MATLAB Figure Window... 206
Figure 53: Plug-n-play Driver Help file for TDS/CSA8000 Series
oscilloscopes... 208
Figure 54: The Measurement Capture program interface
at LabWindows/CVI design time ... 213
Figure 55: Adding controls to a LabWindows/CVI panel............. 214
Figure 56: Dialog box for editing attributes of the Dial control
in LabWindows/CVI... 214
Figure 57: Page from the LabWindows/CVI Help file.................. 217
Figure 58: The LabWindows/CVI Code Window......................... 219
Figure 59: The LabWindows/CVI program while executing 226
Figure 60: Page from the LabVIEW Tutorial in the Help file........ 232
Figure 61: Sample context help for a PnP Driver functon 233
Figure 62: The Front Panel for the LabVIEW example 246
Figure 63: The Block Diagram for the LabVIEW example........... 252
Figure 64: The LabVIEW program while executing..................... 253

 xi

Figure 65: LAN connectivity from PC applications to
Tektronix oscilloscope ...294
Figure 66. VISA Configuration Window297
Figure 67. TekVISA Add Remote Host dialog box.......................298
Figure 68. TekVISA Delete Remote Resource dialog box...........299
Figure 69: Sample VISA program for LAN-based
oscilloscope access...301
Figure 70: Design-time form for the Writing and Reading
Binary/ASCII Waveform example ..305
Figure 71: Runtime form for the Writing and Reading
Binary/ASCII Waveform example ..307

xii

List of Tables
Table 1. Table of typographic conventionsxvi
Table 2: Quick review of exporting and importing
oscilloscope data .. 2
Table 3: Summary of TekVISA Toolbar buttons............................ 14
Table 4: Some command and control terminology........................ 38
Table 5: Useful icons on the VBA Standard Toolbar..................... 49
Table 6: Icons for VBA controls used in this book......................... 51
Table 7: Changes to make in the Properties window
to Get Waveform... 55
Table 8: Property changes to make outside of frames
in TekVISA Test Run .. 83
Table 9 Property changes to make in the Measurement
Commands frame ... 84
Table 10: Measurements available in the Measurement
Commands frame ... 85
Table 11: Property changes to make in the Waveform
Data frame .. 88
Table 12: Property changes to make in the Send GPIB
Commands frame ... 93
Table 13: Changes to make in the Properties window to
Chart Measurements .. 105
Table 14: Useful icons on the VB Standard Toolbar 131
Table 15: Icons for VB controls used in this example 133
Table 16: Changes to make in the Properties window to
the Settings tab ... 135
Table 17: Changes to make in the Properties window to
the TDS7000 Series Measurements tab 138
Table 18: Changes to make in the Properties window to
the TDS8000 Series Measurements tab 139
Table 19: Changes to make in the Properties window to
the Data tab .. 140
Table 20:List of Initialization routines.. 145
Table 21: Routines involved in listing devices and
displaying channels... 147
Table 22: Routines involved in listing measurements to
capture.. 149
Table 23: Routines involving dialog box buttons......................... 151
Table 24: Routines involved in setting registers.......................... 153
Table 25: Routines involved in handling trigger events............... 156
Table 26: Routines involved in getting measurement and
waveform data .. 156
Table 27: Routines involved in displaying results in the grid....... 157

 xiii

Table 28: Routines involved in saving data to disk......................157
Table 29: General purpose routines ..158
Table 30: Icons for MATLAB guide toolbar controls
used in this book..185
Table 31: Changes to make in the Property Inspector to
GUI controls...188
Table 32: Relevant attributes of controls that appear
on the Measurement Capture panel in LabWindows/CVI215
Table 33: Relevant attributes of controls that appear
on the measuredemo.vi Front Panel in LabVIEW........................247
Table 34: TDS7000 Series native GPIB commands
used in examples in this book..256
Table 35: TDS7000 Series native GPIB queries
used in examples in this book..261
Table 36: Methods, properties and events of the
TekVISA ActiveX Control...263
Table 37: MATLAB Instrument Control Toolbox functions...........282
Table 38: TDS/CSA 8000 PnP driver functions used
in LabWindows/CVI and LabVIEW examples..............................289
Table 39: VISA operations used in LabVIEW and
LAN Server examples..290
Table 40: Changes to make in the Properties window
to the Writing and Reading Binary/ASCII Waveform example.....306
Table 41: Summary of functions in the Reading
Binary/ASCII Files example ...308

xiv

 What This Book is About

Oscilloscope Analysis and Connectivity Made Easy xv

Preface

What This Book is About

This book shows you how to use a variety of popular tools to build graphical
user interfaces to Tektronix Windows-based oscilloscopes. By using these
“soft front panels,” you can quickly and easily connect your oscilloscope,
whether locally or remotely, to the latest PC tools for analyzing waveform
and measurement data. In addition, this book explores the functionality of the
TekVISA Toolbar Add-In for Excel, which requires no additional
programming.

Who Should Read This Book

Whether you are a novice who has never built a graphical user interface
before or an experienced programmer, you will find this book helpful if you
are interested in increasing your productivity with Tektronix Windows-based
oscilloscopes. The examples cover programming environments ranging from
Excel Visual Basic for Applications (VBA) and Visual Basic 6.0 to
MATLAB, LabWindows/CVI, and LABVIEW. Familiarity with any or all of
these environments is helpful but not necessary in order to work most of the
examples.

How This Book is Organized

This book is divided into two parts. Each part includes multiple chapters and
is designed to impart new information in progressive steps.

• Part 1 covers the use of Excel with the TekVISAToolbar and
the TekVISA ActiveX control, and also includes Visual
Basic 6.0 examples with the TekVISA ActiveX control.

• Part 2 describes the use of MATLAB with the Instrument
Control Toolbox, and the use of LabWindows/CVI and
LabView with Tektronix Plug-n-Play drivers.

• The appendices summarize the syntax of commands and
controls used in the book, discuss LAN connectivity, present
more complex examples, and describe the use of an optional
Waveform Generator program to generate live waveforms
for examples.

Document Conventions

xvi Oscilloscope Analysis and Connectivity Made Easy

A CD-ROM accompanies this book. The CD-ROM includes the text of the
book saved in PDF format, so you can use Adobe Acrobat Reader to access
the book on-line. Also on the CD are the programming examples discussed in
the book.

Document Conventions

This book makes use of certain notational conventions and typefaces in
distinctive ways, as summarized in Table 1.

Table 1. Table of typographic conventions

Typeface Meaning Example

boldface Used to emphasize important
points and to denote exact
characters to type or buttons to
click in step-by-step
procedures.

Connect your monitor to the
video port.

1. Click OK.

italics Used to introduce terms and to
specify variables in syntax
descriptions.

An industry-standard
communications protocol
called VXI-11

Attribute (type) = newvalue

SampleName Used to designate the name of
a function, statement, filename,
or similar construct in regular
body text.

You will employ a user-
defined function called
Acquire_Instrument.

Note: Used to call attention to notes
or tips in text.

Note: Start here.

Code Used to designate blocks of
code.

sCHCommands =
 "DESE 1;*ESE 1;*SRE 32"

Menu >
Submenu

Used to designate a series of
cascading menus.

The example here means: from
the Tools menu, choose
Macro.

1. Choose Tools > Macro.

 Connectivity Made Easier

Oscilloscope Analysis and Connectivity Made Easy 1

Chapter 1:
Connectivity Building
Blocks

Connectivity Made Easier

The first connectivity book to accompany a Windows-based Tektronix
oscilloscope was entitled Oscilloscope Connectivity Made Easy. Since that
book was published, Tektronix has added a number of new building blocks to
make connectivity even more seamless and broad-based. These connectivity
building blocks provide a new layer of middleware for connecting your
Windows-based analysis programs to Tektronix embedded oscilloscope
software.

The previous book showed you how to copy and paste or export and import
data into three popular analysis programs: Excel, Mathcad, and MATLAB.
That book also showed you how to use a stand-alone application to feed
waveform data repeatedly into Excel or Mathcad.

This Oscilloscope Analysis and Connectivity Made Easy book gives you
even more routes to jump-start connectivity to your favorite analysis
program. You will:

• explore new levels of connectivity to Excel and MATLAB

• learn how to use Visual Basic to interact with your
oscilloscope in the Windows environment

• acquire the tools and expertise to interconnect with the
LabVIEW graphical programming environment

Built-in Connectivity Features

Because Excel and MATLAB are of special interest to our customers,
Tektronix has built simple point-and-click interfaces from its oscilloscopes to
these three programs. For example, Figure 1 shows the dialog box for
copying TDS5000/7000 Series Oscilloscope waveform data to be pasted into
Excel. The oscilloscope software also includes similar setup boxes for
exporting data in a format suitable for MATLAB.

Built-in Connectivity Features

2 Oscilloscope Analysis and Connectivity Made Easy

�
Figure 1. A Copy Setup box prepares waveform data for Excel

 Table 2 quickly reviews how to pass oscilloscope data to Excel and
MATLAB. As shown in the table, you can use copy-and-paste or export-and-
import techniques to move information from your oscilloscope to these
programs.

Table 2: Quick review of exporting and importing oscilloscope data

Menu Selections / Commands

 Using
Microsoft
Excel with
Clipboard

Using
Microsoft

Excel .txt File

Using
MATLAB

.dat File

To Copy / Export
Data from
TDS5000 and
TDS7000 Series
Oscilloscopes

Edit > Copy
Setup

File > Export
Setup

File > Export
Setup

To Copy / Export
Data from
TDS/CSA8000 Series
Oscilloscopes

Edit > Copy
Waveform

File > Export
Waveform

To Paste / Import
Data into
Excel / MATLAB

Edit > Paste Data > Get
External Data >
Import Text File

or

Right-click and
select
Refresh Data

Reference data
filename as
argument of
M-file function
call in Command
Window

 New Connectivity Building Blocks

Oscilloscope Analysis and Connectivity Made Easy 3

New Connectivity Building Blocks

Now a number of new connectivity components have come on the scene.
These new connectivity tools support faster and more seamless transfer of
continuous live data into Excel and MATLAB. New connectivity building
blocks also support other popular programming environments: Visual Basic
as well as LabVIEW and LabWindows/CVI, a Measurement Studio
component.

Tektronix latest connectivity solutions incorporate:

• TekVISA Toolbar, an add-in that supports easy data capture
into Microsoft Excel without any programming

• TekVISA ActiveX Control, a Visual Basic OCX control that
“wraps” and encapsulates the TekVISA library, enabling
rapid application development in Visual Basic 6.0 or Visual
Basic for Applications (VBA) Excel’s behind-the-scenes
development environment

• TekVISA API, a standard application programming interface
(API) and common I/O library for connecting to and
controlling measurement devices such as oscilloscopes

• Internal “virtual”GPIB, a software resource built into
TekVISA, that links the Windows processor to the
embedded processor in Tektronix Windows-based
oscilloscopes, permitting faster acquisitions than
conventional GPIB hardware links

• VXI Plug-n-Play Drivers, for Tektronix Windows-based
oscilloscopes, capable of connecting with LabWindows/CVI
and LabVIEW test automation software and other
programming environments

• Seamless connectivity with MATLAB via the Instrument
Control Toolbox, available from The MathWorks, Inc.

• VXI-11.2 Client/Server, technology for LAN connectivity

New Connectivity Building Blocks

4 Oscilloscope Analysis and Connectivity Made Easy

TekVISA�A Standard Way to Connect
TekVISA is the new Tektronix implementation of the industry-standard
library of common I/O operations known as VISA. VISA (Virtual Instrument
Software Architecture) was the brainchild of the VXIplug&play Systems
Alliance (http://www.vxipnp.org), a group formed to standardize the building
of instrumentation drivers. TekVISA’s set of operations, attributes, and
events supports connectivity between application development
environments such as C++, Visual Basic, MATLAB, and LabVIEW and
multiple kinds of resources including devices connected:

• via a local GPIB connection

• via a local Serial (RS-232) connection

• via the Tektronix internal software connection known as
virtual GPIB

• via a remote GPIB-LAN connection

• remotely via virtual GPIB, Tektronix VXI-11 client/server
technology, and an Ethernet LAN connection

Figure 2 shows the broad range of connectivity brought together through
TekVISA technology.

 New Connectivity Building Blocks

Oscilloscope Analysis and Connectivity Made Easy 5

�
Figure 2. TekVISA supports connectivity to programming environments

TekVISA Toolbar
The easiest way to get up and running with your Windows-based
oscilloscope is by making connections using the TekVISA Toolbar. This
add-in to Microsoft Excel works just like any other toolbar in that
application. When you click an icon, a dialog box pops up that allows you to
pass information back and forth between the Microsoft Excel application and
your Windows-based oscilloscope, without any programming modifications.
If you need no special customization beyond the built-in toolbar functions,
the TekVISA Toolbar will serve you well and get you going quickly, whether
you are transferring oscilloscope measurements or captured waveforms into
Excel. Chapter 2 introduces you to the use of this multi-purpose toolbar.

New Connectivity Building Blocks

6 Oscilloscope Analysis and Connectivity Made Easy

TekVISA ActiveX Control
The TekVISA ActiveX Control will make your job a lot easier if you are
familiar with Visual Basic or Excel’s Visual Basic for Applications. This
book explores some ways to use this powerful control to build fast
connections from VB or VBA to the acquisitions side of your oscilloscope.
With this tool, you can spend time using the programs that help you do your
job, instead of losing time building complicated specialized instrument
drivers out of sheer necessity, as was often required in the past. You can
simply drop this control onto a form and then quickly design an interface
with buttons and boxes to suit your needs.

If you just know a little bit about VB, the TekVISA ActiveX Control and the
sample programs that come with this book will arm you with enough
hands-on information to customize the examples given. Or, you can write
your own pop-up dialogs between your oscilloscope and Excel or Visual
Basic 6.0. Chapters 3 through 7, along with Table 36 in Appendix A, cover
programming at this level using the TekVISA Control. Chapters 3 through 6
focus on using VBA with Excel spreadsheets, while Chapter 7 and Appendix
C concentrate on using Visual Basic 6.0.

TekVISA API
If you are an accomplished VB or C++ programmer, you can write programs
that call TekVISA operations directly, especially if you need more
fine-grained control. The TekVISA API software now comes standard on
Tektronix Windows-based oscilloscopes. The online TekVISA Programming
Manual includes a lookup reference section and a tutorial section with
programming examples. This subject matter is beyond the scope of this book.

Internal “Virtual” GPIB
TekVISA support for an internal resource called virtual GPIB means fast
connectivity between Windows and the embedded software side of your
oscilloscope. Virtual GPIB provides a software bridge to and from embedded
oscilloscope software, permitting direct internal access to the oscilloscope for
much faster and larger acquisitions than conventional GPIB ports. What is
more, this feature facilitates remote connections with other PCs over a
standard Ethernet LAN without the need for special GPIB-to-LAN hardware
adapters.

TekVISA also includes Asynchronous Serial (ASRL) and GPIB resources
that support more traditional connections to non-Windows-based
instruments.

VXI-11.2 Client /Server Connected by Local Area Network (LAN)
Tektronix VXI-11.2 Client/Server technology adds another important piece
to the connectivity picture. The VXI-11 Server-side component, combined
with TekVISA’s virtual GPIB, provides a software passageway for
connecting your Windows-based oscilloscope over an Ethernet LAN to
remote PCs. On each remote PC, you would install another copy of TekVISA
to make use of its built-in VXI-11 Client-side component.

 New Connectivity Building Blocks

Oscilloscope Analysis and Connectivity Made Easy 7

You will need your own VXI-11 Client-side software if you want to connect
UNIX-based systems to your Windows-based oscilloscope.

Appendix B discusses the details of accessing the oscilloscope across a local
area network (LAN) from the programming environments discussed in this
book. Figure 3 shows the range of connections made possible by the various
TekVISA building block components. Figure 4 focuses on the components
that make LAN connectivity possible.

�

�
�

Figure 3. Range of connections made possible by TekVISA components

New Connectivity Building Blocks

8 Oscilloscope Analysis and Connectivity Made Easy

�

�
Figure 4. The path to LAN connectivity

Tektronix Plug-n-Play Drivers with LabWindows/CVI and LabVIEW
Tektronix VXI Plug-n-Play drivers add another feature to the connectivity
landscape, enabling easy linkage with popular test automation software such
as LabVIEW (Figure 5) and LabWindows/CVI. VXI Plug-n-Play drivers for
Tektronix Windows-based oscilloscopes add a layer of middleware so you
can work in these graphical programming environments without spending a
lot of time getting data in or out of your test equipment. Chapter 9 and Table
38 in Appendix A focus on connectivity scenarios using these graphical
tools.

 New Connectivity Building Blocks

Oscilloscope Analysis and Connectivity Made Easy 9

Figure 5: Tektronix VXI Plug-n-Play Drivers integrate with popular test automation
software such as LabVIEW

MATLAB’s Instrument Control Toolbox
Anothr connectivity tool has emerged from The MathWorks, which now
offers an Instrument Control Toolbox with MATLAB. This toolbox makes
connectivity with Windows-based oscilloscopes such as the Tektronix TDS
Family possible without complicated programming. Chapter 8 shows you
how to import live waveforms into MATLAB using this new toolbox.

New Connectivity Building Blocks

10 Oscilloscope Analysis and Connectivity Made Easy

 11

PART 1: EXCEL AND VISUAL BASIC

Chapter 2: The TekVISA Toolbar ...13

Chapter 3: Understanding the TekVISA ActiveX Control37

Chapter 4: A Simple Program to Get Waveforms...41

Chapter 5: A More Complex Four-Part Program...77

Chapter 6: A Measurement Charting Example..99

Chapter 7: A Triggered Data Capture Example...127

PART 1: EXCEL AND VISUAL BASIC

12 Oscilloscope Analysis and Connectivity Made Easy

 Introduction

Oscilloscope Analysis and Connectivity Made Easy 13

Chapter 2:
The TekVISA Toolbar

Using the TekVISA Toolbar with
Microsoft�Excel

Introduction

This chapter introduces you to the TekVISA Toolbar a multi-purpose
toolbar that allows you to place data from your Windows-based oscilloscope
directly into an Excel document simply by clicking a few buttons. Easy
acquisition is the heart of the toolbar. You can make single or repeated
captures of data on a triggered, periodic, or timed basis, with the option of
also graphing the data. Figure 6 shows the TekVISA Toolbar, which includes
six button icons.

�

Figure 6: The TekVISA Toolbar in Excel

No programming is required in order to use the TekVISA Toolbar; however,
the Visual Basic source code for the toolbar is available on the companion
CD for experienced VB programmers who wish to modify toolbar features
for their own use. In later chapters of this book, you will learn how to build
less complicated VBA programs that implement some of the functions built
into this toolbar.

Toolbar Prerequisites
You can use the TekVISA Toolbar with Microsoft Excel1 running either on
your Tektronix Windows-based oscilloscope or on a separate PC connected
by a network to your oscilloscope. The oscilloscope and connected PC (if
any) must each have TekVISA installed on it in order to establish a
connection between Excel and your oscilloscope. See Appendix B for
information about configuring access to networked oscilloscopes.

1 The toolbar runs as an Add-In to Microsoft Excel 2000 and XP.

Adding the TekVISA Toolbar to Excel

14 Oscilloscope Analysis and Connectivity Made Easy

Toolbar Features
The TekVISA Toolbar enables rapid capture of oscilloscope data from within
Microsoft Excel worksheets. Table 3 describes the six buttons on the toolbar.

Table 3: Summary of TekVISA Toolbar buttons

Icon Button Name Meaning

Connect Chooses the TekVISA-enabled oscilloscope with which

to connect.

Settings Saves oscilloscope settings to a file or Excel workbook,

and restores oscilloscope settings from a file or Excel
workbook. Settings saved into a workbook are
automatically loaded into the oscilloscope when the
workbook is opened.

Waveform Captures waveform data into a worksheet and graphs

it.

Measurement Captures and graphs single or periodic waveform

measurements.

TriggerCapture Captures waveform data from an oscilloscope-defined

trigger, places it into a worksheet, and graphs it.

Note: This feature not currently implemented for
TDS/CSA8000 oscilloscopes.

Help Launches the online help file for the TekVISA Toolbar.

The toolbar is easy to use. Click a button and a dialog box appears. Within
dialog boxes, you can select the type of data you want to capture and
automatically paste into Excel, along with an optional line chart.

If you let your mouse linger over a button, a tool tip will appear indicating
the button’s function. Clicking the Help button launches an online help file
for the TekVISA Toolbar (see page 35).

Adding the TekVISA Toolbar to Excel

The TekVISA Toolbar is an Excel Add-In. During toolbar installation, the
toolbar file (TekVISAToolbar.xla) is normally placed in a subdirectory of the
main TekVISA files.2

2 Assuming you are installing on the C: drive on a Windows 98 system, the toolbar is placed in
C:\VXIpnp\Win95\TEKvisa\ExcelToolbar\TekVISAToolbar.xla. On a Windows NT system, the toolbar is
placed in C:\VXIpnp\WinNT\TEKvisa\ExcelToolbar\TekVISAToolbar.xla.

 Connecting to Oscilloscopes

Oscilloscope Analysis and Connectivity Made Easy 15

When you first install the TekVISA Toolbar, follow these steps to add it to
Excel:

1. Start up Excel and select Tools > Add-Ins… from the Excel
menu bar.

The Add-Ins dialog box appears.

2. Select the check box next to TekVISA Toolbar in the list of
choices. If the TekVISA Toolbar does not appear in the list,
click the Browse… button, navigate to the appropriate
directory, and select the TekVISAToolbar.xla file.

3. Click OK.

The TekVISA Toolbar appears undocked in the Excel program.

4. Leave the toolbar undocked, or drag it up to the Excel
Formatting Toolbar if you want it to remain docked in a
fixed position.

Connecting to Oscilloscopes

The Connect button on the TekVISA Toolbar allows you to select a
TekVISA-enabled oscilloscope with which to establish a connection.

To connect to a Tektronix Windows-based oscilloscope from within Excel:

1. Click the Connect button on the TekVISA Toolbar.

Saving and Restoring Scope Settings

16 Oscilloscope Analysis and Connectivity Made Easy

A dialog box similar to the following appears:

2. By default, the first GPIB device encountered in the
instrument list is selected.

3. Leave the selection as is, or select another instrument with
which to connect and click OK.

The connection with the selected instrument is made. You may only
connect to one instrument at a time using the TekVISA Toolbar.

Note: You can click the Refresh button to display any changes to
the list of connected devices since the last time you clicked the
Connect button.

Saving and Restoring Scope Settings

The Settings button on the TekVISA Toolbar allows you to save
oscilloscope settings to a file or to an active Excel workbook, and restore
them later to the oscilloscope.

If you save settings to an active worksheet and then save and reopen the
associated Excel .xls file, the settings are automatically assigned to the
oscilloscope.

If you save settings to a file, you have the option of placing a descriptor in
the settings file. The file can take one of two forms:

• Files with a .set extension are identical to settings saved
from within the oscilloscope.

• Files with an .stg extension contain both the oscilloscope
settings and a descriptor that you specify when saving the
settings. Descriptors may be up to 256 characters in length
and can serve as useful reminders when you are storing
many different oscilloscope settings on disk. Descriptors
also provide an alternative to long file names as a way of
differentiating files.

 Saving and Restoring Scope Settings

Oscilloscope Analysis and Connectivity Made Easy 17

Save Settings from the Scope

Display Current Settings from the Scope
To capture and display oscilloscope settings:

1. Click the Settings button on the TekVISA Toolbar.

A dialog box with two tabs appears.

2. Select the Save Current Scope Settings tab.

3. Click the Display Current Settings button.

Settings from the oscilloscope appear in a scrollable list box on the
tab.

Note: You can clear the settings at any time, if you wish to
discard them, by clicking the Clear Display button.

Save Scope Settings to a Workbook
To save current oscilloscope settings to the Excel workbook:

1. Select the Workbook option button.

2. Click the Save button.

Oscilloscope settings are saved into an invisible worksheet in the
workbook named TekVISASettings. When you save your work under
Excel, this worksheet is stored inside your .xls file.

Saving and Restoring Scope Settings

18 Oscilloscope Analysis and Connectivity Made Easy

Note: To make the TekVISASettings sheet visible:

• Press Alt+F11 to open the Visual Basic for Applications editor.

• Press Ctrl+G to open the Immediate Window.

• Type the following line exactly as shown (the name is
case-sensitive):

Activeworkbook.Worksheets("TekVISASettings").Visible = True

A tab for the worksheet now appears, with the oscilloscope
 settings stored in a single cell of the sheet. The worksheet
 remains visible until you type the following line in the
 Immediate Window:

 Activeworkbook.Worksheets("TekVISASettings").Visible = False

Save Scope Settings to a File
To save the current oscilloscope settings to a file:

1. Select the File option button.

A descriptor edit box appears above the list box. By default a
date/time stamp appears in the edit box.

2. Leave the descriptor as is, or change the descriptor for the
current oscilloscope settings.

3. Click the Save button.

A Save As dialog box appears:

 Saving and Restoring Scope Settings

Oscilloscope Analysis and Connectivity Made Easy 19

The default name of the file is a date/time representation in the
format yymmdd_hhmmss (using two-digit representations of
year/month/day_hour/minute/second). For instance, the file name
010412_183303 represents April 12, 2001 at 6:33:03 PM.

If the descriptor edit box:

• is empty, the default file type in the Save As dialog
box is .set.

• is a date/time stamp, the following message appears,
prompting you for the file type you want to use to
save the oscilloscope settings.

• is any other content, the default file type in the Save
As dialog box is .stg.

Regardless of the file type presented, you can still select a different
scope settings file type from the Save as type field in the Save As
dialog box.

4. Leave the file name and type as is, or change the name
and/or type to your preferences.

5. Click Save to save the file under the selected name and type.

A message appears at the bottom of the Settings dialog box
confirming the location of the saved file.

Saving and Restoring Scope Settings

20 Oscilloscope Analysis and Connectivity Made Easy

Assign Stored Settings to the Scope

Assign Settings from a Workbook
When you save your work under Excel, the TekVISASettings worksheet is
stored inside your .xls file. When you open the Excel file later, the settings
saved in the workbook are automatically loaded into the oscilloscope by a
stored Excel macro. If for some reason this macro fails to execute, you can
assign settings stored in the workbook by taking the following steps:

1. Click the Settings button on the TekVISA Toolbar.

A dialog box with two tabs appears.

2. Select the Assign Settings to Scope tab.

3. Choose the Workbook option button.

4. Click the Assign Settings to Scope button.

Settings are assigned to the oscilloscope immediately.

Assign Settings from a File
To assign settings to the oscilloscope from those stored in a file:

1. Click the Settings button on the TekVISA Toolbar.

A dialog box with two tabs appears.

2. Select the Assign Settings to Scope tab.

3. Choose the File option button.

4. Click the Assign Settings to Scope button.

An Open File dialog box appears showing (.set) and (.stg) files.

5. Select the desired file and click Open.

 Capturing and Graphing Waveforms

Oscilloscope Analysis and Connectivity Made Easy 21

Settings appear in the Assign Settings to Scope tab’s list box, and the
settings are assigned to the oscilloscope. For settings stored in (.stg)
files, the descriptor also appears above the list box as shown:

Capturing and Graphing Waveforms

The Waveform button on the TekVISA Toolbar allows you to capture the
time and values of a single waveform sequence into the current worksheet,
beginning at a chosen cell location. You select the type of waveform (such as
Sample or Average—see page 42) on the oscilloscope before the capture.

Waveform data from all selected channels is captured and placed into the
active sheet. The waveform capture is limited to 65000 rows of data, the
approximate number of rows in Excel spreadsheets.

You also have the option of charting the waveform data. You can have the
chart inserted into the active sheet or a separate sheet.

Note: If you want to capture triggered waveform data instead of a
single untriggered sequence, see the TriggerCapture button on page
32.

For information about clearing the active sheet, see page 23.

To capture waveforms into an Excel spreadsheet and, optionally, graph it:

1. Select the Waveforms button on the TekVISA Toolbar.

Capturing and Graphing Waveforms

22 Oscilloscope Analysis and Connectivity Made Easy

A dialog box similar to the following appears:

All active channels are displayed, along with the number of data
points in the waveform sample, derived from oscilloscope settings.
The current measurement source channel is indicated by the
appearance of the word Measure to the right of the measurement
channel (screen appearance is slightly different for TDS/CSA8000
Series Oscilloscopes).

Note: You can click the Refresh button to display any
oscilloscope changes to the number of active channels, the
measurement source channel, or the number of data samples.

2. Select the channel(s) from which you want to capture data.

(Hold down the Ctrl key while clicking if you want to make
multiple selections.)

3. Select the starting cell in which to begin inserting the
waveform, or leave the default as is (A1).

You can specify the starting cell either by scrolling through the
column and row values, or by directly entering the row and column
values in the edit boxes under the Start Data Display heading.
Possible Excel starting cells range from A1 to AZ99. Starting cell
designations must take the A1-style format rather than the R1C1-
style format (explained on page 68).

4. If you want to generate an Excel graph on completion of the
waveform capture, select the Generate Excel graph check
box to enable the graph placement option buttons, and click
Activesheet or New Sheet, depending on where you want
the chart inserted.

5. Click OK to start the acquisition and display the data in the
active sheet starting at the designated cell.

 Clearing the Active Sheet

Oscilloscope Analysis and Connectivity Made Easy 23

A single time column is displayed and the data values from all
selected channels appear in successive columns (with a maximum of
65000 rows).

If you checked the box to graph the data, a stacked line graph
appears after the capture, either in the active sheet (as shown here) or
in a separate chart sheet. If necessary, you can modify this chart
using Excel.

Clearing the Active Sheet

The Clear ActiveSheet button is available on the dialog box displayed when
you click the Waveform, Measurement, or TriggerCapture buttons on the
toolbar. Behavior is the same in all three cases.

To clear the active sheet (data and charts):

1. Click the Clear Activesheet button.

Capturing and Graphing Measurements

24 Oscilloscope Analysis and Connectivity Made Easy

The following prompt message appears:

2. Click Yes to clear all contents data and charts.

This clears all data, all cell formulas, and all cell formatting from the
active worksheet cells. It also removes any embedded charts inside
the active worksheet.

3. If the active sheet is a separate chart sheet, select the sheet
labeled TekChart1, and click the Clear Activesheet button.

The following prompt message appears:

4. Click OK to clear the chart.

The TekChart1 chart sheet is removed.

Capturing and Graphing Measurements

The Measurement button on the TekVISA Toolbar allows you to capture
single or repeated timed measurement(s) and optionally graph them as well.

Capture Single Measurement(s)
To capture one or more single measurements:

1. Select the Measurement button on the TekVISA Toolbar.

A three-tabbed dialog box appears.

2. Choose the Selection tab.

All active channels are displayed. The current measurement source
channel is indicated by the appearance of the word Measure to the
right of the measurement channel (screen appearance is slightly
different for TDS/CSA8000 Series Oscilloscopes).

 Capturing and Graphing Measurements

Oscilloscope Analysis and Connectivity Made Easy 25

Note: You can click the Refresh button to display any
oscilloscope changes to the number of active channels or the
measurement source channel.

3. Select the Single Capture option button.

The Timing and Charting tab forms disappear and a Select All check
box appears on the Selection tab.

4. Click a measurement from the list box under the Select
Measurement(s) heading to select it. To select multiple
measurements, hold down the Ctrl key while highlighting the
measurements you want to select, or select the Select all
check box as shown to select all measurements available in
the list.

5. Click the Show Engineering Units box if you want to have
engineering units such as V, ms, or % displayed next to each
measurement.

6. Select the starting cell in which to begin inserting the
measurement(s), or leave the default as is (A1).

You can specify the starting cell either by scrolling through the
column and row values, or by directly entering the row and column
values in the edit boxes under the Start Data Display heading.
Possible Excel starting cells range from A1 to AZ99. Starting cell
designations must take the A1-style format rather than the R1C1-
style format (explained on page 68).

Capturing and Graphing Measurements

26 Oscilloscope Analysis and Connectivity Made Easy

7. Click Columns or Rows, depending on how you want the
data arranged.

Usually captured measurements are placed in columns, because there
are over 65000 rows in an Excel worksheet, whereas data placed in
rows is subject to a 256-column limit in Excel worksheets. If you
choose the Select All check box, however, the Rows option button is
selected by default because these measurement snapshots are best
displayed vertically, with engineering units in a column to the right.

8. Click Activesheet or New Sheet, depending on where you
want the data inserted.

Note: For information about clearing the active sheet, see page
23.

9. Click Start.

Measurements are taken of the channel with the word Measure to its
right in the Active Channels list box. Measurement heading(s) and
current values, along with their units of measure, are placed in the
selected sheet starting at the designated cell.

 Capturing and Graphing Measurements

Oscilloscope Analysis and Connectivity Made Easy 27

�

Capture and Graph Repeated Measurement(s)
To capture multiple timed measurement(s):

1. Select the Measurement button on the TekVISA Toolbar.

A three-tabbed dialog box appears.

2. Choose options from the Selection tab (see Select
Measurement(s) on page 28), the Timing tab (see page 30),
and the Charting tab (see page 31).

3. When you have made all your selections, click Start from
any of the tabs.

Measurements are taken of the channel with the word Measure to its
right in the Active Channels list box (screen appearance is slightly
different for TDS/CSA8000 Series Oscilloscopes). Measurement
heading(s) and current values, along with their units of measure, are
placed in the selected sheet starting at the designated cell. An

Capturing and Graphing Measurements

28 Oscilloscope Analysis and Connectivity Made Easy

optional chart may also appear in the active sheet as shown here, or
in a separate chart sheet:

Select Measurement(s)
To select the measurement(s) to capture:

1. Choose the Selection tab.

All active channels are displayed. The current measurement source
channel is indicated by the appearance of the word Measure to the
right of the measurement channel (screen appearance is slightly
different for TDS/CSA8000 Series Oscilloscopes).

Note: You can click the Refresh button to display any
oscilloscope changes to the number of active channels or the
measurement source channel.

2. Select the Repeated timed captures option button.

3. Click a measurement from the list box under the Select
Measurement(s) heading to select it. To select multiple

 Capturing and Graphing Measurements

Oscilloscope Analysis and Connectivity Made Easy 29

measurements, hold down the Ctrl key while highlighting the
measurements you want to select.

Note: The example here shows TDS/CSA8000 Series
Oscilloscope measurements, which include the source channel
and timebase along with each measurement.

4. Click the Show Engineering Units box if you want to have
engineering units such as V, ms, or % displayed next to each
measurement.

5. Select the starting cell in which to begin inserting the
waveform, or leave the default as is (C1).

You can specify the starting cell either by scrolling through the
column and row values, or by directly entering the row and column
values in the edit boxes under the Start Data Display heading.
Possible Excel starting cells range from A1 to AZ99. Starting cell
designations must take the A1-style format rather than the R1C1-
style format (explained on page 68).

6. Click Columns or Rows, depending on how you want the
data arranged.

Usually captured measurements are placed in columns, because there
are over 65000 rows in an Excel worksheet, whereas data placed in
rows is subject to a 256-column limit in Excel worksheets.

7. Click Activesheet or New Sheet, depending on where you
want the data inserted.

Note: For information about clearing the active sheet, see page
23.

Capturing and Graphing Measurements

30 Oscilloscope Analysis and Connectivity Made Easy

Specify Timing
To specify timing of the capture:

1. Select the Timing tab.

2. If you want the measurement capture to begin as soon as you
click the Start button, choose the Immediately option button.

3. If you want to delay measurement capture until a specified
time:

a. Choose the Specified Time option button.

b. In the Day box, type or select the date to begin the
measurement capture.

c. In the Time box, type or select the hour and minute to
begin the capture.

4. In the Interval box, type or select a time value to specify the
interval between captures. Notice that this value adjusts the
Record Length value.

5. In the Duration box, type or select a time value to specify the
duration of each capture. Notice that this value adjusts the
Record Length value.

6. If necessary, change the value in the Record Length text box
to change the record length of each capture. Notice that this
value adjusts the Duration value.

For example, suppose that a capture with a 2-second interval and a
1-minute duration displays a record length of 30. If you change the
capture to a 3-second interval, the record length changes to 20. If
instead, you keep the 2-second interval and change the record length
to 60, the duration changes from 1-minute to 2-minute.

 Capturing and Graphing Measurements

Oscilloscope Analysis and Connectivity Made Easy 31

Choose Charting Options
To specify charting options for the capture:

1. Select the Charting tab.

The No Chart option appears preselected as the default option.

2. If you want charting to take place at periodic intervals, click
the Periodically option button and choose 10, 20, 25, or 50 as
the percentage of completion interval for periodic chart
updates.

3. If you want charting to take place after all measurement
capturing completes, click the Upon Completion option
button.

4. Click Activesheet or New Sheet, depending on where you
want the chart inserted.

Note: For information about clearing the active sheet, see page
23.

Capturing Triggered Waveforms

32 Oscilloscope Analysis and Connectivity Made Easy

Capturing Triggered Waveforms

The TriggerCapture button on the TekVISA Toolbar allows you to capture
the time and values of a triggered waveform and/or measurement(s) into the
current worksheet, beginning at a chosen cell location. You select the type of
trigger event (such as Edge or Glitch), the type of waveform (such as Sample
or Average—see page 42), the active channels, and the measurement channel
on the oscilloscope before the capture. The toolbar dialog box allows you to
select one or more active channels from which to capture a waveform, and
one or more types of measurements to capture over the measurement
channel.

If you select the Waveform Data check box, waveform data from all selected
active channels is captured and placed into the active sheet when the trigger
event occurs. The waveform capture is limited to 65000 rows of data, the
approximate number of rows in Excel spreadsheets.

If you select the Measurement Data check box, measurement data from the
measurement channel is captured and placed into the active sheet (in a
column before any captured waveform data) when the triggered event occurs.

You have the option of performing a specified number of captures.

Note: If you want to capture a single untriggered waveform sequence
instead of triggered waveform data, see the Waveform button on page 21.
If you want to capture untriggered measurement data, see the
Measurement button on page 24.

For information about clearing the active sheet, see page 23.

To capture triggered data into an Excel spreadsheet:

1. Select the TriggerCapture button on the TekVISA Toolbar.

 Capturing Triggered Waveforms

Oscilloscope Analysis and Connectivity Made Easy 33

A dialog box similar to the following appears:

All active channels are displayed, along with the number of data
points in the waveform sample, derived from oscilloscope settings.
The current measurement source channel is indicated by the
appearance of the word Measure to the right of the measurement
channel.

Note: You can click the Refresh button to display any
oscilloscope changes to the number of active channels, the
measurement source channel, or the number of data samples.

2. If you want to capture triggered waveform data from the

measurement source channel:

a. Select the Waveform Data check box.

b. Click to select one or more active channels in the list
box from which to capture the data.

3. If you want to capture triggered measurement data:

a. Select the Measurement Data check box.

b. Click to select one or more measurements in the list box
to capture over the Measurement channel.

c. Click the Show Engineering Units box if you want to
have engineering units such as V, ms, or % displayed
next to each measurement.

4. Select the starting cell in which to begin inserting the data,
or leave the default as is (A1).

Capturing Triggered Waveforms

34 Oscilloscope Analysis and Connectivity Made Easy

You can specify the starting cell either by scrolling through the
column and row values, or by directly entering the row and column
values in the edit boxes under the Start Data Display heading.
Possible Excel starting cells range from A1 to AZ99. Starting cell
designations must take the A1-style format rather than the R1C1-
style format (explained on page 68).

5. Specify the number of captures to perform or leave the
default value of 1.

6. Click OK to start the acquisition and display the data in the
active sheet starting at the designated cell.

For measurement data, a time stamp for the triggered event appears
in the first row of a column, followed by the requested
measurement(s), with engineering unit(s) added if that box was
checked.

For waveform data, times for each data point appear in the first
column. The first row of subsequent columns contains a time stamp
for each capture of a triggered event. Below the time stamp,
waveform data values appear in successive rows (with a maximum
of 65000 rows). The number of columns of data varies depending on
the number of captures.

�

 Getting Help with the TekVISA Toolbar

Oscilloscope Analysis and Connectivity Made Easy 35

Getting Help with the TekVISA Toolbar

The Help button on the TekVISA Toolbar displays online help for the
toolbar. When you click this button, the following Help screen appears:

You can navigate through the pages of this online help system using the
usual buttons and links available in Windows-based Help files.

TekVISA Toolbar Source Code

36 Oscilloscope Analysis and Connectivity Made Easy

TekVISA Toolbar Source Code

Tektronix used the TekVISA ActiveX control to build the TekVISA Toolbar
described in this chapter. The source code for this Add-In along with
explanatory text is available on the companion CD that accompanies this
book. You can also view the source code by loading the TekVISA Toolbar
and going to the Excel Visual Basic Editor (select Tools > Macro > Visual
Basic Editor or press Alt+F11).

The source code is a good place to look if you wish to build your own
specialized Excel Add-In or customize the TekVISA Toolbar. Before dealing
with the extra complexity of building an Add-In, however, look over the rest
of the chapters in the Excel part of this book. These chapters introduce you to
the TekVISA ActiveX control, and take you step-by-step through procedures
for using Excel VBA to build some simple dialog boxes for capturing
oscilloscope data and communicating with your oscilloscope.

Chapter 2 Review

To review what you learned in this chapter:

• You learned that you do not have to do any programming
to use the TekVISA Toolbar.

• You learned how to use the TekVISA Toolbar to establish a
connection between Excel and your oscilloscope and get or
set scope settings.

• You learned how to use the TekVISA Toolbar to acquire
measurement and waveform data from your oscilloscope
and optionally chart it.

• You learned that the TekVISA Toolbar source code is
available to you if you want to customize the functionality of
the toolbar or learn how to build your own.

 Introduction

Oscilloscope Analysis and Connectivity Made Easy 37

Chapter 3:
Understanding the TekVISA ActiveX
Control

Some background information about
oscilloscope controls and commands

Introduction

Chapter 2 examined the functionality of a toolbar that enables
point-and-click communication between your oscilloscope and Microsoft
Excel. If you want more detailed information on the workings of those
functions or want to create your own connectivity functions, read this
chapter.

Background Information

In this chapter, you will:

1. Review some general terminology.

2. Become familiar with the TekVISA ActiveX Control used to
build the TekVISA Toolbar Add-In. You will learn about
using this control to acquire and receive oscilloscope data
and pass it to Excel VBA and Visual Basic 6.0 automation
interfaces.

3. Review information about GPIB commands and queries
that are native to your oscillscope.

4. Learn how some TekVISA ActiveX Control methods can be
used to send native GPIB commands and queries to the
oscilloscope from Excel or Visual Basic programs and
receive the results, if any.

Terminology

38 Oscilloscope Analysis and Connectivity Made Easy

Terminology

This chapter uses the same terminology as Chapter 1. In addition, you will
become familiar with a few new terms as shown in Table 4.

Table 4: Some command and control terminology

Term Meaning

Automated
Acquisition

A set of application programming interfaces (APIs) to your
oscilloscope that let you automate the same functions you would
normally perform using the knobs and graphs on your
oscilloscope. Includes elements discussed below.

Waveform
Acquisition
program

A Visual Basic program, either stand-alone or used in conjunction
with Excel, which uses the TekVISA Control and GPIB
commands to implement a direct waveform connection.

TekVISA API A set of resources, operations, attributes, and events that
conform to the VISA standard for building drivers for test and
measurement equipment.

TekVISA ActiveX
Control

A set of methods, properties, and events that encapsulate
portions of the TekVISA API and provide an easy way to use VB
or VBA to get waveforms or to send GPIB commands and
queries to the oscilloscope and obtain query responses back
from the oscilloscope.

Native GPIB
commands and
queries

A set of GPIB commands and queries native to specific Tektronix
Windows-based oscilloscopes, that can be passed by certain
TekVISA ActiveX Control methods.

VXI Plug-n-Play
driver commands

A set of driver commands for controlling specific Tektronix
Windows-based oscilloscopes. These commands conform to
VXIPlug&Play standards, and enable connectivity with
LabWindows/CVI and LabVIEW.

VXI-11 LAN Server A software component that supports LAN-based instrument
communication using the VXI-11 communications protocol, a part
of the TekVISA software.

�

Automated Acquisition

To perform automated acquisition, you will add two kinds of elements to
your program:

• Native GPIB commands and queries based on ANSI/IEEE
standards that define the GPIB hardware interface, signals,
and common commands

• The TekVISA ActiveX Control based on the VISA standard
for building test and measurement system drivers

 Automated Acquisition

Oscilloscope Analysis and Connectivity Made Easy 39

Native GPIB Commands and Queries
To use an analogy, native GPIB commands are like telephone numbers. You
have to specifiy things like the country code, area code, exchange, and the
extension. TekVISA ActiveX Control methods are more like speed
dialing they provide shortcut ways to send telephone numbers or, in this
case, native GPIB commands.

In subsequent chapters, you will use some native GPIB commands and
queries to control waveform acquisition and measurement functions of your
instrument. These commands follow GPIB interface conventions. Table 34
and Table 35 in Appendix A explain the subset of native GPIB commands
and queries used in this book.

• Commands modify instrument settings or tell the
oscilloscope to perform a specific action.

• Queries cause the oscilloscope to return data and
information about its status.

To learn more about the full set of native GPIB commands, see the Online
Programmer Guide for your Tektronix Oscilloscope Series.

TekVISA ActiveX Control Methods, Properties, and Events
The TekVISA ActiveX Control includes a simple set of Visual Basic methods,
properties, and events that overlay more detailed operations defined in the
TekVISA API.

Because these ActiveX Controls use in-process calls, they execute nearly as
fast as if you had coded to the TekVISA API itself. As you saw from using
the TekVISA Toolbar which was written in Visual Basic this can mean
rapid application development without the usual loss of performance
associated with a more simplified, higher level interface.

In upcoming chapters, you will become more familiar with the TekVISA
ActiveX Control that provides a portal into your oscilloscope. You will learn
how to customize interfaces by accessing this control through its methods,
properties, and events:

• Some methods, such as Query, WriteString, and ReadString
involve more detailed programming that directly accesses
native GPIB commands.

• Other methods, such as GetWaveform, offer much higher-
level interfaces that consolidate multiple TekVISA
operations and involve fewer lines of code.

Table 36 in Appendix A summarizes the methods, properties, and events of
the TekVISA ActiveX Control used with Excel VBA and Visual Basic 6.0
examples.

Automated Acquisition

40 Oscilloscope Analysis and Connectivity Made Easy

 Introduction

Oscilloscope Analysis and Connectivity Made Easy 41

Chapter 4. A Simple Program
To Get Waveforms

Using VBA to import real-time waveforms into
Excel

Introduction

You have looked at how to use the TekVISA Toolbar to import data quickly
into Microsoft Excel, and learned about the TekVISA ActiveX Control. In
this chapter, you will paste the TekVISA ActiveX Control onto a form and
build a simple user interface to transfer acquisition data from the oscilloscope
to your spreadsheet/worksheet. This will add a direct connection for
waveforms to Excel a connection that automatically gets waveform data
out of the oscilloscope and inserts it into Excel.

If this application solves your waveform data acquisition needs as supplied,
you can use it “as is” with Excel. In that case, you may wish to load it from
the companion CD and immediately begin using it. However, if you think
you might want to customize the application, read on because you will
explore the inner workings of the underlying VBA program in some detail.

GPIB Commands for Waveform Acquisition

Before writing the program, you will examine some relevant Native GPIB
commands that involve waveform acquisition. Then you will look at the
GetWaveform method exposed by the TekVISA ActiveX Control.

Waveform Data
Waveform data points are a collection of values that define a waveform. One
data value usually represents one data point in the waveform record.

You can get waveform data from the oscilloscope by using the CURVE?
query. Before you transfer waveform data, you must typically specify the
data format, record length, and waveform source.

GPIB Commands for Waveform Acquisition

42 Oscilloscope Analysis and Connectivity Made Easy

Waveform Data Formats
Acquired waveform data uses eight or more bits to represent each data point.
The number of bits used depends on the acquisition mode specified when
you acquired the data. For example, on Tektronix real-time Windows-based
oscilloscopes (such as TDS5000 and TDS7000 Series oscilloscopes), data
acquired in SAMple or ENVelope mode uses eight bits per waveform data
point. Data acquired in AVERage mode uses up to 14 bits per point.

You specify the format with the DATa:ENCdg command. The instrument can
transfer waveform data in either ASCII or binary format.

Binary data can be represented by integer or floating-point values. The range
of the values depends on the number of bytes specified. When the byte
number is one, signed integer data ranges from -128 to 127, and positive
integer values range from 0 to 255. When the byte number is two, the values
range from -32768 to 32767. When a MATH (or REF that came with a
MATH) is involved, 32-bit floating-point values are used that are four bytes
in number.

The defined binary formats specify the order in which the bytes are
transferred.

• RIBinary specifies signed integer data-point representation
with the most significant byte transferred first. SRIbinary is
the same as RIBinary except that the byte order is swapped
so the least-significant byte is transferred first.

• RPBinary is positive integer data-point representation, with
the most significant byte transferred first. SFPbinary is the
same as RPBinary except that the byte order is swapped so
the least-significant byte is transferred first.

• FPBinary is single-precision floating-point representation of
data whose width is 4. SFPbinary is the same as FPBinary
except that the byte order is swapped so the least-significant
byte is transferred first.

Waveform Record Length
You can transfer multiple points for each waveform record. You can also
transfer a portion of the waveform or the entire record. When transferring
data from the instrument, you can specify the first and last data points in the
waveform record. Setting DATa:STARt to 1 and DATa:STOP to the record
length will always return the entire waveform.

Waveform Source
The DATa:SOUrce command specifies the waveform source when
transferring a waveform from the instrument. You can only transfer one
waveform at a time.

 The TekVISA ActiveX Control and Waveform Acquisition

Oscilloscope Analysis and Connectivity Made Easy 43

Waveform Preamble
Each waveform that you transfer has an associated preamble that contains
information such as the horizontal scale, the vertical scale, and other settings
in effect when the waveform was created.

You can get preamble data from the oscilloscope by using the WFMOutpre?
query.

The TekVISA ActiveX Control and Waveform Acquisition

TekVISA provides a way to get waveforms without having to issue all the
GPIB commands just summarized. If you only want to get waveform data at
the current oscilloscope settings, without altering those settings
programmatically, you can use the method discussed next.

The GetWaveform Method
The TekVISA ActiveX Control provides a way to combine the equivalent of
dozens of native GPIB commands or multiple TekVISA API operations in a
single method called GetWaveform. This method gets a waveform at the
current oscilloscope settings, along with its sample interval and trigger
position. You can specify the channel from which to retrieve the waveform
and the desired screen resolution to use in displaying the waveform.

Note: If the waveform setting is MIN/MAX, this method gets double
the number of points and still displays the waveform correctly.

Other Methods of Waveform Acquisition
As shown in Figure 7, you can use ActiveX Control methods like WriteString
to send and receive native GPIB commands and queries (such as ACQuire
and CURVE?) to your oscilloscope, and methods like ReadString to receive
responses from the oscilloscope (such as waveform data in the form of an
array named wave in this example). Or, you could use the GetWaveform
method to do virtually the same thing.

Getting Started

44 Oscilloscope Analysis and Connectivity Made Easy

Figure 7: How TekVISA ActiveX Controls interface with Excel VBA and VB

Getting Started

What You Need to Get Started
You can work this example either on a separate PC or on your Windows-
based oscilloscope, using either the Excel Visual Basic for Applications
Editor or Visual Basic 6.0. To get started, you will need the following:

• A Windows-based Tektronix oscilloscope (an external
monitor is recommended if you are working the example on
your oscilloscope)

• Excel 2000 or XP (or Visual Basic 6.0) installed on your
oscilloscope or on an attached external PC

• The TekVISA connectivity software described in Chapter 1
(see page 323 for the location of the completed example)

 Getting Started

Oscilloscope Analysis and Connectivity Made Easy 45

What You Will Do
In this chapter, you will learn how to use VBA (or VB) to build a program
with features similar to the one that runs when you click the Waveform icon
on the TekVISA Toolbar. This sample program illustrates how to capture
raw waveform data at the current oscilloscope settings and insert it into your
spreadsheet.

Figure 8 shows the design-time interface that you will create. As you can see,
the user interface consists of a VBA UserForm with one Frame on the left
and one unframed List Box on the right. A Label appears above the List Box.

The Frame groups these fields:

• three caption Labels

• three Labels being used to hold results

• two Command Buttons

Each caption Label appears to the left of each empty result Label.

�
Figure 8: The form you will design for the GetWaveform example

Getting Started

46 Oscilloscope Analysis and Connectivity Made Easy

This UserForm allows users to get the following information when they click
the Get Waveform button:

• the currently active TekVISA resource device being used for
the waveform transfer

• the current data point sample values of the waveform and
associated times (relative to the trigger point), displayed in
two columns in the spreadsheet

• the current record length of the waveform being retrieved
(calculated by subtracting the starting data point from the
ending data point)

• the current sample interval of the waveform being retrieved

• the current trigger position of the waveform being retrieved

Figure 9 shows the same UserForm at runtime after fields have been
populated with results.

Figure 9: The Get Waveform form at runtime

 Getting Started

Oscilloscope Analysis and Connectivity Made Easy 47

After sending waveforms to an empty spreadsheet as shown in Figure 9, you
will use the same program to send waveforms to the Excel clock jitter
example (Figure 10) from the Oscilloscope Connectivity Made Easy book.
This example has been provided in its completed form on the CD that
accompanies this book. (The spreadsheet is set up to receive data in the
format exported by TDS7000 Series Oscilloscopes.)

�
Figure 10: Excel Clock Jitter example

What You Will Learn
The purpose of this chapter is to illustrate some basic operations of the
TekVISA ActiveX Control and familiarize you with the interface. Once you
have gone through this chapter, you will know how to:

• add the TekVISA ActiveX Control to the list of available
controls in Excel, and use some of its properties and methods

• design and create a UserForm in Excel by dragging and
dropping controls onto the form

• modify controls on the form by changing properties in the
Properties window

• expand the VBA code blocks created by inserting controls

• add a button to run the VBA program that you just created
from your Excel spreadsheet

The Get Waveform Example in Excel VBA

48 Oscilloscope Analysis and Connectivity Made Easy

• insert and run the program in a blank spreadsheet

• insert and run the program with a spreadsheet that already
contains data and formulas

• find out the changes you will need to make if you want the
program to run in Visual Basic 6.0 instead of Excel VBA

The Get Waveform Example in Excel VBA

Building the Form
If you are already familiar with the Visual Basic for Applications design
environment, the step-by-step instructions below may seem elementary. If so,
you may wish to skip the instructions on how to build the UserForm and just
refer to Figure 8 on page 45 and Table 7 on page 55 for details on building
the user interface, then have a look at the code. Later chapters focus
primarily on the VBA code and assume you are already familiar with VBA’s
visual editing tools for constructing dialog interfaces.

Open VBA in Excel (Alt+F11)
To begin building the UserForm:

1. Open Excel and save the spreadsheet under the name
Getwaveform.xls.

2. To access the Visual Basic for Applications design
environment from within Excel, select Tools > Macro >
Visual Basic Editor or press ALT+F11.

Note: The keystroke combination ALT+F11 switches you back
and forth between the Excel spreadsheet and the Visual Basic
Editor.

 The Get Waveform Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 49

The Microsoft Visual Basic screen appears with the Project Explorer
window on the top left, the Properties window on the bottom left,
and space on the right for the Code window or Object Browser to
display.

�

3. If you do not see the Project Explorer or Properties window,
display them by selecting icons from the standard toolbar
(see Table 5).

Table 5: Useful icons on the VBA Standard Toolbar

Icon Icon Name Select from

 Insert UserForm Standard Toolbar

Object Browser Standard Toolbar

Project Explorer Standard Toolbar

 Properties Standard Toolbar

Toolbox Standard Toolbar

The Get Waveform Example in Excel VBA

50 Oscilloscope Analysis and Connectivity Made Easy

Insert a UserForm
To begin building a UserForm:

1. Click the Insert UserForm icon on VBA’s Standard Toolbar:

A UserForm appears with the name UserForm1 preassigned

along with the Controls Toolbox for adding controls to the form.

Table 6 shows icons on the Controls Toolbox that are relevant to this
book.

 The Get Waveform Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 51

Table 6: Icons for VBA controls used in this book

Icon Icon Name Select from

Checkbox Controls Toolbox

CommandButton Controls Toolbox

Frame Controls Toolbox

Label Controls Toolbox

Listbox Controls Toolbox

Spin Button Controls Toolbox

Textbox Controls Toolbox

Add the TekVISA ActiveX Control
To add the TekVISA ActiveX Control to the UserForm:

1. Select Tools > Additional Controls.

The Additional Controls dialog box appears.

2. Place an X in the box next to the TekVISA Control
(TvcControl) and click OK.

The Get Waveform Example in Excel VBA

52 Oscilloscope Analysis and Connectivity Made Easy

The TekVISA Control icon is added to the Controls Toolbox.

3. Drag the TekVISA Control icon from the Controls Toolbox
onto the lower right quadrant of UserForm1 where it appears
as an icon at design time, but is invisible at runtime.

By adding the Control to your Userform, you have made all its
methods, properties, and events available to be called by your code.

Design the Form
To design the Get Waveform UserForm:

1. Insert a Frame into UserForm1 using one of the following
techniques:

Note: Frames are used to group and organize other controls.

a. Click the Frame in the Toolbox and then click in the

UserForm, or

b. Drag the Frame from the Toolbox to the UserForm, or

c. Double-click the Frame in the Toolbox, and then click in
the UserForm once for each Frame you want to create.

The Frame appears in its default size. VBA automatically gives
it the name Frame1.

Note: You can use similar techniques to insert other kinds of
controls in a UserForm or to insert controls inside a Frame.

2. Position the frame on the left side of the UserForm and, if

necessary, drag the sides or corners of the Frame to change
its size.

3. Drag a List Box onto the right side of UserForm1. VBA
automatically names it ListBox1.

 The Get Waveform Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 53

4. Add two Command Buttons to the bottom of Frame1,
placing them side by side.

Note: To place a control within a frame, you can use any of
the techniques described in step 1. As an alternative, you can
give the frame focus by clicking it, and then cut or copy a
control elsewhere on the form and paste it into the frame.

5. Similarly, add six Labels to Frame1 and a seventh Label

above ListBox1, making sure that each control is placed as
shown in Figure 11.

�

Figure 11: Get Waveform form before changing default properties

Getting Help
Labels are not just used for captions. Labels 4 through 6 will be used to hold
results specifically, additional waveform values (record length, sample
interval, and trigger position) associated with the waveform data.

You can find out more about using Labels by taking a look at the Help
facility:

1. From the Microsoft Visual Basic menu bar, select Help >
Contents and Index > Microsoft Forms Design Reference >
Label Control.

2. Click Example and select Zoom Event Example to see usage
of Labels in a coded example.

As shown in Figure 12, the text explains that you can use a Label to
display the current value. Examples like these can be very useful
when you are writing VBA code.

The Get Waveform Example in Excel VBA

54 Oscilloscope Analysis and Connectivity Made Easy

�
Figure 12: Using the VBA Help facility

Changing Properties in the Properties Window
Table 7 summarizes all the changes to make in the Properties window to
modify the UserForm from its appearance in Figure 11 to its final appearance
in Figure 8.

 The Get Waveform Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 55

Table 7: Changes to make in the Properties window to Get Waveform

Control Property Change from Change to

UserForm1 Caption UserForm1 Get Waveform

tvc (TekVISA) (Name) Tvc1 Tvc1 (no change needed)

Frame1 Caption Frame1 Waveform Data

Label1 Caption Label1 Record Length

Label2 Caption Label2 Interval

Label3 Caption Label3 Trigger

(Name) Label4 LblRL

Caption Label4 (no Caption)

BackColor Button Face Button Light Shadow

Label4

Special Effect Flat Sunken

(Name) Label5 LblInterval

Caption Label5 (no Caption)

BackColor Button Face Button Light Shadow

Label5

Special Effect Flat Sunken

(Name) Label6 LblTriggerPos

Caption Label6 (no Caption)

BackColor Button Face Button Light Shadow

Label6

Special Effect Flat Sunken

Label7 Caption Label7 Devices

Listbox1 (Name) Listbox1 lstDevices

(Name) CommandButton1 cmdGetWaveform CommandButton1
 Caption CommandButton1 Get Waveform

(Name) CommandButton2 cmdClear CommandButton2
 Caption CommandButton2 Clear

To make the code more meaningful, you will also rename some of the
controls that will correspond to variable names and subroutine names in the
VBA code logic you will write later. Changes to names are underlined in the
table, to help distinguish them from captions. To support good coding
practice, always name a control first before changing any of its other
properties, if you think you might want to associate it with a code block later.

Note: A control’s name corresponds to its subroutine name or
variable name in the code. A control’s caption appears on the
UserForm and affects how the form looks, but has nothing to do with
the code.

The Get Waveform Example in Excel VBA

56 Oscilloscope Analysis and Connectivity Made Easy

To use the Properties window to change the properties of controls:

1. In the Properties window, change the caption (not the name)
for UserForm1 to Get Waveform.

2. Change the caption for Frame1 to Waveform Data.

3. Change the caption for Label1 to Record Length.

and resize Label1 by dragging the box handles if necessary.

Note: If you want a label to appear on two lines, change its Wrap
property to True.

4. Change the caption for Label2 to Interval and the caption for

Label3 to Trigger.

5. For Label4 through Label6, change the names to lblRL,
lblInterval, and lblTriggerPos, respectively, and delete their
captions so they do not appear on the form.

6. For Label4 through Label6, use drop-down lists in the
Properties window to change BackColor (the background
color) from Button Face to Button Light Shadow, and
SpecialEffect from Flat to Sunken.

 The Get Waveform Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 57

Note: The drop-down arrow may not be visible until you click
inside the rows for the BackColor and SpecialEffect properties.

7. Change the rest of the captions and sizes for controls as

shown in Table 7 so that the form looks like Figure 13.

Figure 13: The redesigned form for Get Waveform

Using the Object Browser (F2)
In addition to using the online help discussed on page 53, you can use the
Object Browser to learn more about the classes and members of Excel’s
built-in object model.

The Get Waveform Example in Excel VBA

58 Oscilloscope Analysis and Connectivity Made Easy

A Quick Overview of the Excel Object Model
Figure 14 shows a hierarchy of some relevant objects in the Excel Object
Model.

Figure 14: A object hierarchy from the Excel Object Model

The Application object is at the root of the hierarchy tree and has a number of
“active” properties such as ActiveSheet. Plural objects are collections that
hold other objects. For example, Workbooks is a container for Workbook
objects, which in turn contain Worksheet collections of Worksheet objects,
each of which contains Range objects.

Much of your code will focus on Range objects, which can reference a single
cell, a row or column, or an entire sheet. You can use the Range End
property to select contiguous cells until an empty cell is encountered. The
following examples demonstrate some ways you can reference ranges:

Application.Range(“A3”)
Application.Worksheets(“Sheet1”).Range(“A3”)
Application.ActiveSheet.Range(“A3”)
Range(“A3”)
Range(“A1:D10”)
Range(“A1”,”D10”)
Range(“A1:A10, D1:D10, G1:G10”)
Range(“MyRange”)
[A1:D10] (Evaluate Method)
Range(ActiveCell, ActiveCell.End(xlDown)).Select

You can use the Cells property to reference all cells within a worksheet or
range, or limit the reference by using this R1C1 row/column syntax:

 cells (rowindex, columnindex)

For example, the following code assigns a formula to cell C2:

ActiveSheet.Cells(2,3).Formula = “=SUM(D1:D10)”

By pressing F2 or clicking the Object Browser icon on the Standard Toolbar,
you can browse to find out which methods, properties, and events to use with
such object components as Application, Worksheet, UserForm, Range, and
Cell, so you can make the correct calls and references in your code.

 The Get Waveform Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 59

For example, to find out more about the Cells property:

1. Press F2 to bring up the Object Browser.

2. Select Excel from the upper drop-down list.

3. Type Cells in the lower drop-down list as the object to
search for.

4. Press Enter.

You will see the screen shown in Figure 15. You can then click on
various library entries in the Search Results to see how the Cells
property relates to other members of the object model.

Figure 15 Using the Object Browser with Excel VBA

F1 From the Object Browser Is Your Friend
From the Object Browser, you can jump to a context-sensitive online help
topic.

For example:

1. Select a related class such as Range.

2. Press F1 (or right-click and select Help).

Figure 16 shows the resulting help screen.

The Get Waveform Example in Excel VBA

60 Oscilloscope Analysis and Connectivity Made Easy

Figure 16: Related online help from the Object Browser

Within this help screen, you can click items in the hierarchy diagram
to jump to other related topics if necessary, or to see more of the
hierarchy tree.

Coding the Event Procedures
Mostly by acting on events, you will be coding what should happen when the
form is initialized and when the user clicks each button on the form.

As you type the code, you will notice some helpful features. For example,
when you type a period after a COM object such as the TekVISA ActiveX
Control, the VBA Intellisense feature opens a list that prompts you with
choices. Valid properties, methods, and events exposed by the COM object
as public are preceded by a green icon, like the first choice in the following
list:

 The Get Waveform Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 61

Similarly, after you type an opening parenthesis, the Intellisense feature
prompts you with the syntax for arguments, and displays valid choices:

The Activate UserForm Routine
This is the main body of the code, because it executes immediately to assign
initial variables and prepare a UserForm before it is displayed. This routine
uses TekVISA calls to find all available device resources, then sets the active
device to be virtual GPIB, which is always GPIB8.

1. In the Project Explorer window, right-click the
frmGetWaveform icon in the Forms folder and select View
Code

or press F7 to switch to the Code window for this project.

2. Type the following in the Code window:

Option Explicit

This statement causes VBA to ensure that a variable is defined
before you use it.

3. In the Project Explorer window, do one of the following to
switch to the UserForm:

a. Double-click the frmGetWaveform icon in the Forms
folder, or

b. Right-click the frmGetWaveform icon in the Forms
folder and select View Object, or

c. Press Shift+F7.

4. Double-click the right side of the UserForm, outside of the
frame.

VBA inserts the following code fragment into the Code window. It is
so named because Click is the default event for the UserForm object.

Private Sub UserForm_Click()

End Sub

The Get Waveform Example in Excel VBA

62 Oscilloscope Analysis and Connectivity Made Easy

5. Delete this code block, since you want to write a routine that

takes place when the form is activated, not when a user
clicks it.

6. Click the right drop-down menu to see a list of members
(methods, properties, and events) that are valid with
UserForm, and select Activate. The Activate event allows
you to initialize module-level variables before the UserForm
is first displayed.

VBA inserts the following code block:

Private Sub UserForm_Activate()

End Sub

7. Type the following code inside the UserForm_Activate
subroutine (TekVISA-related statements are highlighted in
boldface):

 Dim i As Integer
 Dim dev As Variant

 Tvc1.SearchCriterion = 0 ’search all devices
 ’ get detected VISA devices
 dev = Tvc1.FindList
 ’ populate devices listbox
 If IsArray(dev) Then
 For i = LBound(dev) To UBound(dev)
 lstDevices.AddItem dev(i)
 Next
 End If

When the UserForm is activated before it first displays, this code:

a. Declares a counter variable and a list array of devices.

b. Uses the SearchCriterion property of the TekVISA
ActiveX Control to set criteria to search for resource
devices detected on this instrument.

 The Get Waveform Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 63

c. Uses the FindList property of the TekVISA ActiveX
Control to get the results of the search and store them in
a device list array.

d. Uses LBound and UBound functions to refer to the lower
and upper boundaries of the device list array while
iterating through the list.

e. Uses the Excel AddItem method to populate the
lstDevices list box with the Find list results, which will
appear on the form as available devices.

8. Type the following code next inside the UserForm_Activate
subroutine:

 For i = 0 To lstDevices.ListCount - 1
 If Left(lstDevices.List(i), 5) = "GPIB8" Then
 ’ default to virtual GPIB device
 lstDevices.ListIndex = i
 Tvc1.Descriptor = lstDevices.Text
 Exit For
 End If
 Next

This code:

a. Uses the Excel ListCount property to iterate through the
items in the lstDevices list box for an entry
corresponding to a virtual GPIB device (GPIB8).

b. Uses the Excel ListIndex property to set the virtual GPIB
device as the currently selected item in the lstDevices list
box, so that it appears preselected on the form.

c. Uses the Descriptor property of the TekVISA ActiveX
Control to set the value in the Text property of the
lstDevices list box in this case, the virtual GPIB device
string as the active VISA resource.

The Clear Button Routine
Next you will initialize some variables. You know that the Clear command
button will clear fields, so you will write that initialization code also.

1. Type the following in the Code window, just below the
Option Explicit statement:

Dim rngHold As Range ’ reference to worksheet range for
 ’ clearing

This statement declares a variable of data type Range to hold the
worksheet range. Since this variable appears outside of any
subroutine, its scope is modular and it can be referenced from any
routine in the module. You will reference this range when you write

The Get Waveform Example in Excel VBA

64 Oscilloscope Analysis and Connectivity Made Easy

the code associated with the Clear command button, which must
clear the range between acquisitions.

2. Select cmdClear from the left drop-down menu in the Code
window.

The following code fragment for the cmdClear_Click subroutine
appears in the Code window. Click is the default event for command
button controls.

Private Sub cmdClear_Click()

End Sub

In this case, Click is the event you want to use in your code.

3. Type the following code inside the cmdClear_Click
subroutine:

 If Not rngHold Is Nothing Then
 rngHold.Clear
 rngHold.ClearContents
 rngHold.ClearFormats
 End If

 lblInterval.Caption = ""
 lblRL.Caption = ""
 lblTriggerPos.Caption = ""

When the Clear button is clicked, if waveform data is present, this
code:

a. uses Clear, ClearContents, and ClearFormats methods of an
Excel Range object to clear the spreadsheet columns where
waveform data appears (including all values, formulas, and
formatting)

b. uses the Caption property of an Excel Label control to clear the
captions of the result Labels (where additional waveform values
appear on the form)

 The Get Waveform Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 65

The Get Waveform Button Routine
Next you will work on the logic that takes place when the user clicks the Get
Waveform button. This involves placing a call to to the GetWaveform
method of the TekVISA ActiveX Control, which takes five arguments. You
will also learn to use the ScreenUpdating, Cursor, and ActiveSheet properties
of the Excel Application object, which represents the entire Excel application.
In the process, you will encounter some Excel fine points, such as xlWait and
xlDefault, which are preassigned mouse-pointer constants that can be
assigned to the Cursor property.

Note: You can use Application object shortcuts (for example,
ActiveSheet.Range) rather than fully-qualified references (for
example, Workbook.ActiveSheet.Range) whenever doing so is
unambiguous.

1. Press Shift+F7 to switch to the UserForm, and double-click

the Get Waveform button.

VBA inserts the following code block:

Private Sub cmdGetWaveform_Click()

End Sub

2. Type the following code inside the cmdGetWaveform_Click

subroutine code block:

 Dim arrWF As Variant, xinc As Double, trigpos As Long
 ’ variables for GetWaveform method
 Dim arrLength As Long, i As Long
 Dim t As Double
 Dim tracker As Long
 Dim blnProceed As Boolean
 Dim msg As String
 Dim ans As Integer
 Dim hUnits As String, vUnits As String
 On Error GoTo cmdGetWaveFormErr

This code declares:

a. Variables for three arguments passed by the
GetWaveform method of the TekVISA ActiveX Control,
including an array variable to hold the waveform values,
and variables to hold the sample interval (x-axis
increment) and trigger position.

b. An array variable to hold the waveform record length
and a variable for iteration through the array.

c. An interim variable t to hold the time value (relative to
the trigger point) associated with each data point sample
value.

d. A variable to track the rows in cells of the active
worksheet.

The Get Waveform Example in Excel VBA

66 Oscilloscope Analysis and Connectivity Made Easy

e. A boolean variable to determine whether to proceed in
the case of large waveforms.

f. Variables to hold MsgBox messages and user answers.

g. Two variables for output parameters of the
GetWaveform method.

If clicking the GetWaveform button causes an error, control passes to
the cmdGetWaveformErr error routine.

3. Type the following code inside the cmdGetWaveform_Click
subroutine code block:

Call Tvc1.GetWaveform(CH1, arrWF, xinc, trigpos,
 vUnits, hUnits)

 ’ test that an array has been returned
 If IsArray(arrWF) Then
 ’ get length of array
 arrLength = UBound(arrWF) - LBound(arrWF) + 1
 lblRL.Caption = arrLength
 End If
 ’ show rest of waveform info
 lblInterval.Caption = xinc
 lblTriggerPos.Caption = trigpos

 DoEvents

This code:

a. Calls the TekVISA Control with the GetWaveform
method, which accepts one argument (the channel from
which to get a waveform) and passes back five
arguments (see Table 36 in Appendix A for more
information about this method).

b. Uses the IsArray function to test that a waveform array
has been returned .

c. Calculates the record length by subtracting the starting
data point from the ending data point (+ 1) and stores it
in the Caption property of the lblRL Label control, so that
it will appear on the form.

d. Stores the returned sample interval and trigger position
argument values in the Caption property of the lblInterval
and lblTriggerPos Label controls, respectively, so that
they will appear on the form.

e. Uses the DoEvents function to pass control to the
operating system so it can repaint the screen, allowing
the user to see the updated fields on the form. Control is
returned after the operating system has finished
processing the events in its queue.

 The Get Waveform Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 67

4. Type the following code inside the cmdGetWaveform_Click
subroutine code block:

 ’ flag for large waveform sets
 blnProceed = True
 If arrLength > 10000 Then
 msg = "Waveform includes " & arrLength & " values. "
 msg = msg & "Do you wish these values to be displayed ?"
 ans = MsgBox(msg, vbYesNo + vbDefaultButton2,
 "Get Waveform")
 If ans = vbNo Then blnProceed = False
 End If

 If blnProceed = False Then Exit Sub

This code:

a. Sets a Boolean flag to true.

b. If the record length exceeds 10,000, puts up a message
box with Get Waveform displayed in the title bar, asking
the user whether or not to display the values.

c. Uses the vbyesno and vbDefaultButton2 constants to set
the message box style to include Yes and No buttons,
with the second button (the No button) preselected as the
default.

d. Gets the user’s response and, if the user clicked the No
button, sets the flag to false and exits the subroutine.

5. Type the following code inside the cmdGetWaveform_Click
subroutine code block:

 ’ proceed to display the data
 If (IsArray(arrWF) And blnProceed) Then
 ’ set headers
 ActiveSheet.Range("C1").Value = "Time"
 ActiveSheet.Range("C1").Font.Bold = True
 ActiveSheet.Range("D1").Value = "Value"
 ActiveSheet.Range("D1").Font.Bold = True
 tracker = 2
 ’ let user know we are filling cells
 Application.Cursor = xlWait
 ’ stop screen repaints while filling cells
 Application.ScreenUpdating = False

If a waveform array is present and the Boolean flag is set to true, this
code:

a. Assigns Time and Value headers to cells in range C1:C1
and D1:D1 of the active Excel sheet (the Range property
applies to single cells in this example).

The Get Waveform Example in Excel VBA

68 Oscilloscope Analysis and Connectivity Made Easy

b. Sets the row tracking variable to 2 so the program will
start inserting values in the second row under the
headers.

c. Changes the mouse pointer cursor to an hourglass to let
the user know that the program is busy filling cells.

d. Turns off screen repainting to speed up execution while
processing waveform data.

6. Type the following code inside the cmdGetWaveform_Click
subroutine code block:

For i = LBound(arrWF) To UBound(arrWF)
 ’ calculate time
 t = (i - trigpos) * xinc
 ActiveSheet.Cells(tracker, 3).Value = t
 ActiveSheet.Cells(tracker, 4).Value = arrWF(i)
 tracker = tracker + 1
 Next
 ’ we are done reset cursor and screen painting
 Application.Cursor = xlDefault
 Application.ScreenUpdating = True
 ’ set reference to range for the clear button
 Set rngHold = ActiveSheet.Range("C1", Cells(tracker, 4))
 Else
 MsgBox "Error encountered acquiring Waveform", vbOKOnly,
 "Get Waveform"
 End If
Exit Sub

This code:

a. Loops through the waveform array, calculating the time
value (relative to the trigger point) for each waveform
data point according to the formula

(data-point-index – trigger-position) * sample-interval

and assigning time and data point values to cells in columns C
and D of the active sheet for as many rows as needed.

Note: The Cells property uses R1C1-style references. For
example, cell C5 would be “C5” in A1 notation, but “R5C3”
in R1C1 notation.

b. Changes the cursor back to the default mouse pointer

arrow.

c. Turns on screen repainting again so that the screen will
refresh.

d. Sets the range reference for the Clear button to start with
C1 and end with the row in column D referenced by the
tracker variable.

 The Get Waveform Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 69

e. Adds an Else clause, in case waveform acquisition fails,
that displays an error message in a message box with an
OK button and “Get Waveform” displayed in the title
bar.

7. Type the following code inside the cmdGetWaveform_Click
subroutine code block:

cmdGetWaveFormErr:
MsgBox "Error " & Err.Number & ": " & Err.Description,
 vbOKOnly,"Get Waveform"
Application.Cursor = xlDefault
Application.ScreenUpdating = True

If an error occurs when the Get Waveform button is clicked, this
code:

a. Displays an error message that includes the error number
and its description, using a message box with an OK
button and “Get Waveform” displayed in the title bar.

b. Changes the cursor back to the default mouse pointer
arrow.

c. Turns on screen repainting again so that the screen will
refresh.

Running the GetWaveForm Program

The Show Form Routine
Now that you have created the form, the next step is to create a short routine
that displays it when the user clicks a button on the spreadsheet.

1. Expand the Modules folder in the Project Explorer window
and double-click Module1.

2. An empty page in the Code window appears.

3. Type the following:

Option Explicit

Sub btnShowForm()
 frmGetWaveform.Show vbModeless
End Sub

This code displays the GetWaveform form with the display style set
to the constant vbModeless, meaning that the form is not modal.
Since it is modeless, no applications are suspended when the form is
displayed, so the user need not respond to the form before using any
other part of the application.

The Get Waveform Example in Excel VBA

70 Oscilloscope Analysis and Connectivity Made Easy

To add a button to the spreadsheet so you can run the program you just
created:

1. Press Alt+F11 to switch from VBA to the Excel spreadsheet.

2. If the Excel Forms Toolbar is not visible, select View >
Toolbar > Forms to display it. You can dock the toolbar so
that it displays horizontally below the menu bar, or let it
float free as shown here:

As you can see, the Forms Toolbar on the Excel spreadsheet is
similar in appearance to VBA’s Control Toolbox. Some of the
control icons are identical, but these icons are meant to be associated
with macros of recorded actions, or with preexisting code modules
such as the ShowForm module you just created.

3. Double-click the Button icon and click in or near cell A4, the
spot in the spreadsheet where you want to insert it.

The Assign Macro dialog box appears.

4. Select the ShowForm module as the macro name and click
OK.

 Running the Program with the Jitter Example

Oscilloscope Analysis and Connectivity Made Easy 71

5. Right-click the button, select Edit Text, and change the
button caption from Button1 to Show Form.

6. Select File > Save to save the GetWaveform.xls spreadsheet,
along with the VBA program you just created.

7. Click away from the button if necessary to exit Design
mode, and then click the Show Form button to run the
program.

The GetWaveform dialog box appears.

Note: Even if you do not have a waveform source connected to
Channel 1 of your oscilloscope, you will still be able to pick up
enough noise to generate some data to see if your program
works.

8. Modify your oscilloscope settings to prepare for a waveform

transfer. Be sure to set the record length as part of this step.

9. Click the Get Waveform button.

You will see results similar to Figure 9 on page 46. If an error
occurs, switch to VBA and choose Help > Contents and Index >
Visual Basic User Interface Help > Toolbars > Debug Toolbar for a
quick summary of the debugging features of VBA.

Running the Program with the Jitter Example

You have used the Get Waveform program to insert a waveform into an
empty spreadsheet. Now you will use it to insert a waveform into a
spreadsheet already filled with data and formulas.

You will use the jitter1.xls spreadsheet, the Excel Jitter example from the
Oscilloscope Connectivity Made Easy book.

Note: If you have the Oscilloscope Connectivity Made Easy book,
refer to it for instructions on setting up the Waveform Generator and
connecting a cable from your oscilloscope sound port to Channel 1.
These instructions also appear in Appendix D on page 321. If you do
not want to use the Waveform Generator, you will still be able to
pick up enough random noise on Channel 1 to generate some data,
enough to verify that your program is making connections.

1. In the GetWaveform.xls spreadsheet, press Alt+F11 to switch

from the Excel spreadsheet to VBA.

2. Select frmGetWaveform in the Project Explorer window.

Running the Program with the Jitter Example

72 Oscilloscope Analysis and Connectivity Made Easy

3. Select File > Export File… and click Save to save the
frmGetWaveForm UserForm and VBA code.

Excel writes two files to disk, one with a .frm extension and one with
a .frx extension.

4. Select Module1 in the Project Explorer window.

5. Select File > Export File… and click Save to save the
ShowForm VBA code.

Excel writes a file to disk with a .bas extension.

6. Close the GetWaveform.xls spreadsheet and open the
jitter1.xls spreadsheet in Excel.

7. To disable automatic calculation, select Tools > Options and
click Manual on the Calculation tab.

This will keep you from having to wait while Excel recalculates the
entire spreadsheet numerous times while you are working.

8. Press Alt+F11 to switch from the Excel spreadsheet to VBA.

9. Select File > Import File… , select frmGetWaveForm.frm
and click Open to insert the frmGetWaveForm UserForm
and VBA code into the jitterfast.xls spreadsheet.

10. Select File > Import File… , select Module1.bas and click
Open to insert the Module1 VBA code (the ShowForm code)
into the jitterfast.xls spreadsheet.

11. Double-click the frmGetWaveform icon in the Project
Explorer window and change these lines in the Code
window:

 ActiveSheet.Range("C1").Value = "Time"
 ActiveSheet.Range("C1").Font.Bold = True
 ActiveSheet.Range("D1").Value = "Value"
 ActiveSheet.Range("D1").Font.Bold = True

 tracker = 2

 ActiveSheet.Cells(tracker, 3).Value = t
 ActiveSheet.Cells(tracker, 4).Value = arrWF(i)

 ’ set reference to range for the clear button
 Set rngHold = ActiveSheet.Range("C1", Cells(tracker, 4))

to these lines, so that the waveform data will be inserted in columns
H and I, starting at row 6:

 ActiveSheet.Range("H1").Value = "Time"
 ActiveSheet.Range("H1").Font.Bold = True
 ActiveSheet.Range("I1").Value = "Value"
 ActiveSheet.Range("I1").Font.Bold = True

 Running the Program with the Jitter Example

Oscilloscope Analysis and Connectivity Made Easy 73

 tracker = 6

 ActiveSheet.Cells(tracker, 8).Value = t
 ActiveSheet.Cells(tracker, 9).Value = arrWF(i)

 ’ set reference to range for the clear button
 Set rngHold = ActiveSheet.Range("H1", Cells(tracker, 9))

12. Press Alt+F11 to switch from VBA to the Excel spreadsheet.

13. Insert a Show Form button into the Jitterfast.xls spreadsheet
and assign the button to the ShowForm code as you did
earlier for the GetWaveform.xls spreadsheet.

Note: Instead of adding a form button, you may want to add a
custom menu item. Such menu items are typically added by
coding the Workbook object’s Open and BeforeClose events:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Dim sMenuName As String

 smenuName = "&JitterExample"
' Delete the menu before closing
 On Error Resume Next
 MenuBars(xlWorksheet).Menus(sMenuName).Delete
End Sub

Private Sub Workbook_Open()

' Creates a new menu and adds menu items

 Dim sMenuName As String
 Dim sCaption As String
 Dim SMacro As String

 sMenuName = "&JitterExample"
 sCaption = "Show Jitter Form"
 sMacro = "LaunchForm"

 On Error Resume Next

' Delete the menu if it already exists
 MenuBars(xlWorksheet).Menus(sMenuName).Delete

' Add the menu
 MenuBars(xlWorksheet).Menus(sMenuName).MenuItems
 .Add Caption:=sCaption, OnAction:=sMacro
 End with
End Sub

14. Save the spreadsheet, then click the Show Form button to

display the Get Waveform dialog box.

15. Click the Get Waveform button.

16. Press F9 to manually recalculate the spreadsheet.

The program inserts new waveform data into the form fields and new
waveform time and data point values into columns H and I of the
spreadsheet, starting at row 6.

Using VB Instead of VBA

74 Oscilloscope Analysis and Connectivity Made Easy

A screen similar to the one shown in Figure 17 displays.

�
Figure 17: The Clock Jitter example with the Get Waveform program added

Using VB Instead of VBA

If you want to work this exercise using Visual Basic 6.0, you will need to
create the form using that tool instead of Excel VBA. Refer to Chapter 7 for
an example of how to use Visual Basic 6.0 controls to design a form.

Figure 18 shows a VB 6.0 version of the Get Waveform example discussed
in this chapter. This program was saved under the project name
p_Ch4VB.vbp on the CD that accompanies this book. Notice that a list box
has been used to display the waveform data points in this example, since
there is no spreadsheet.

 Using VB Instead of VBA

Oscilloscope Analysis and Connectivity Made Easy 75

Figure 18: Visual Basic 6.0 version of Get Waveform program

You will also have to make some changes to the code. Where you used the
VBA UserForm class with the Activate event, substitute the VB Form class
with the Load event. Therefore, instead of creating a UserForm_Activate()
subroutine, you will create a Form_Load() subroutine in VB 6.0 as shown
here:

Private Sub Form_Load()

Instead of using a spreadsheet to store the waveform data points, you will use
a list box named lstWF in the form itself. The GetWaveform routine is shown
here:

Private Sub cmdGetWaveForm_Click()
 ’ declare variables
 Dim arrWF As Variant ’array variable which will hold waveform values
 Dim xinc As Double ’ variable which will hold the x axis increment
 Dim trigpos As Long ’ variable which hold the timing trigger
 ’ position
 Dim i As Long ’ counter variable
 Dim hUnits As String, vUnits As String ’ variables for returning
 ’ unit types

 On Error GoTo cmdGetWFMErr

 ’CH1 is the OCX built-in constant specifying Channel 1
 Call Tvc1.GetWaveform(CH1, arrWF, xinc, trigpos, vUnits, hUnits)

 If IsArray(arrWF) Then ’ check to be sure returned value is an
 ’ array
 lblRecLength.Caption = UBound(arrWF) - LBound(arrWF) + 1
 Else
 Exit Sub
 End If
 lblInterval.Caption = xinc
 lblTrigPos.Caption = trigpos

 If chkDisplayWF.Value = 1 Then ’ if user wants values displayed,
 ’ loop through the array
 For i = LBound(arrWF) To UBound(arrWF)
 lstWF.AddItem arrWF(i)
 Next
 End If

Chapter 4 Review

76 Oscilloscope Analysis and Connectivity Made Easy

You cannot load VB 6.0 forms into Excel VBA (or load VBA user forms into
VB 6.0). If you try to load a VB 6.0 form into Excel VBA, you will get this
message:

The form class contained in the specified file is not supported in Visual
Basic for Applications; the file can’t be loaded.

However, you can cut and paste portions of the code between the two
programs, and then edit it to correct for differences in syntax.

Unlike VBA, which is interpreted code that only runs inside Microsoft Office
applications, Visual Basic 6.0 code can be compiled into a stand-alone
executable.

Chapter 4 Review

Now to review what you learned in Chapter 4:

• You can use Visual Basic for Applications (VBA), which is
included in Excel, to design your own forms and build your
own functions.

• You can add the TekVISA Control to VBA, and then drag it
onto your form just like any other ActiveX control.

• The Excel Help facility contains many useful examples, and
the Object Browser can help you understand the hierarchy of
objects in the Excel object model. The Excel help system
and the Object Browser are closely interwoven.

• The Excel Intellisense feature prompts you with valid
arguments and other choices when you type code in the
Code window

• You can use the Get Waveform program described in this
chapter to insert waveform data into an empty spreadsheet,
or into a spreadsheet that already contains data and formulas.

 Introduction

Oscilloscope Analysis and Connectivity Made Easy 77

Chapter 5. A More Complex Four-Part
Program

Using VBA to get current resource, waveform,
measurement, and other query results

Introduction

You have looked at how to use the TekVISA ActiveX Control to build a
simple dialog box to get waveforms. Now you can go a step further and
become more familiar with the TekVISA ActiveX control.

This chapter uses Excel VBA to build a more complicated multifunction
dialog box than the previous chapter. As in Chapter 4, this four-part program
allows you to get the currently active resource device and obtain waveform
data. In addition, the program lets you send GPIB commands to capture
oscilloscope measurements, or send other kinds of GPIB commands and
queries and get back results.

The program you build in this chapter introduces more core properties and
methods of the TekVISA ActiveX Control. In addition, you may find some
practical applications for using this program, especially since you can
customize it yourself.

What You Need to Get Started
You can work this example either on a separate PC or on your Windows-
based oscilloscope, using either Excel’s built-in VBA or Visual Basic 6.0. To
get started, you will need the following:

• A Windows-based Tektronix oscilloscope (an external
monitor is recommended if you are working the example on
your oscilloscope)

• Excel 2000 or XP (or Visual Basic 6.0) installed on your
oscilloscope or on an external PC

• The TekVISA connectivity software described in Chapter 1
(see page 323 for the location of the completed example)

Introduction

78 Oscilloscope Analysis and Connectivity Made Easy

What You Will Do
In this chapter, you will build a sample VBA program that

• issues native GPIB commands to capture immediate
measurement data

• issues other native GPIB commands and queries to control
the instrument

• captures raw waveform data

• finds resource devices recognized by TekVISA

Figure 19 shows the design-time interface that you will create. As you can
see, the user interface is divided into parts to accomplish these tasks. The
VBA form consists of three frames and one unframed list box. This user
form allows you to interact with your oscilloscope in the following ways:

• the top left frame sends measurement commands and gets
results

• the lower left frame sends native GPIB commands and
queries and gets results, if any

• the top right frame gets waveform data at the current
settings, along with the record length, sample interval, and
trigger position

• the lower right list box shows currently available devices
(GPIB and serial resources on your instrument) that are
recognized by the TekVISA ActiveX Control

 Introduction

Oscilloscope Analysis and Connectivity Made Easy 79

�

�
Figure 19: The form you will design for the Test Run example

Figure 20 shows the same UserForm at runtime after fields have been
populated with results in all four quadrants of the form.

Introduction

80 Oscilloscope Analysis and Connectivity Made Easy

�
Figure 20: The Test Run form at runtime

What You Will Learn
The purpose of this chapter is to illustrate more operations of the TekVISA
ActiveX Control and familiarize you with more features of the OCX
interface. In this chapter, you will:

• build a form with more expanded functionality than the
previous example including multiple frames, a text box,
and multiple check boxes, list boxes, command buttons, and
labels

• use TekVISA ActiveX Control operations to send native
GPIB measurement queries and other kinds of GPIB
commands and queries to your oscilloscope and get back
results

• review the TekVISA method used to get waveform data

• review the TekVISA properties used to find resource devices

• add a button to run this VBA program from your Excel
spreadsheet

• find out the changes you will need to make if you want the
program to run in Visual Basic 6.0 instead of Excel VBA

 The TekVISA Test Run Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 81

The TekVISA Test Run Example in Excel VBA

Building the Form
This chapter focuses primarily on the VBA code and assumes you are
already familiar with VBA visual editing tools for constructing dialog
interfaces. For step-by-step instructions on designing a form for the VBA
design environment, refer to page 48.

To begin building the UserForm:

1. Open Excel and save the spreadsheet under the name
TestRun.xls.

2. Press ALT+F11 to access the Visual Basic for Applications
design environment from within Excel.

3. Insert a UserForm by clicking the Insert UserForm icon on
the VBA Standard Toolbar.

4. Rename the UserForm TekVISA Test Run.

5. If necessary, follow the instructions on page 51 to add the
TekVISA ActiveX Control to the Controls Toolbox.

6. Drag the TekVISA Control icon onto the lower right
quadrant of the Userform where it appears as an icon at
design time but is invisible at runtime.

7. Using your chosen method, insert three frames into the
Userform from left to right. VBA automatically names them
Frame1, Frame2, and Frame3.

8. Drag a label and a list box into the lower right-hand corner
of the Userform. VBA automatically names them Label1 and
ListBox1.

9. Similarly, drag the rest of the needed controls onto the form,
making sure that each control is placed as shown in Figure
21.

Note: It is not necessary to drag the controls onto the form in the
exact order shown; however, doing so will help you verify that
you have changed all the properties correctly.

�

Changing Properties in the Properties Window

Table 8, Table 9, Table 11, and Table 12 (which appear later in this chapter)
summarize all the changes to make in the Properties window to convert the
UserForm from its appearance in Figure 21 to its final appearance.

The TekVISA Test Run Example in Excel VBA

82 Oscilloscope Analysis and Connectivity Made Easy

Figure 21: TekVISA Test Run form before changing default captions and
appearance of controls

After changing the name, captions, and other properties itemized in those
tables and resizing controls, the form will look like Figure 22.

Figure 22: The redesigned form for TekVISA Test Run

 The TekVISA Test Run Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 83

The Current Devices List Box

The Current Devices List Box Design
Table 8 summarizes the changes to make to the UserForm in areas not
enclosed by frames.

Table 8: Property changes to make outside of frames in TekVISA Test Run

Control Property Change from Change to

UserForm1 Caption UserForm1 TekVISA Test Run

Label1 Caption Label1 Current Device:

Listbox1 (Name) Listbox1 lstDevices

Figure 23 shows the portion of the form detailed in Table 8.

Figure 23: The Current Devices list box

The UserForm Initialize Routine
This code executes immediately before the UserForm is first displayed. It
uses TekVISA calls to find all the available device resources automatically,
and is identical to the code explained in Chapter 4 beginning on page 61.
Refer back to that explanation for a line-by-line discussion. The ActiveX
Control properties used in this subroutine are SearchCriterion, FindList, and
Descriptor.

1. Press F7 to switch to the Code window.

2. Type the following statement so VBA will ensure that
variables are defined before you use them:

Option Explicit

3. Add the following code, or copy and paste it from the Get

Waveform program:

Private Sub UserForm_Initialize()
 Dim dev As Variant ’ array that holds devices detected by
 ’ the OCX control
 Dim i As Integer

lstRow.ListIndex = 0
 Tvc1.SearchCriterion = 0 ’search all devices
 ’ get detected VISA devices
 dev = Tvc1.FindList
 ’ populate devices listbox
 If IsArray(dev) Then
 For i = LBound(dev) To UBound(dev)

The TekVISA Test Run Example in Excel VBA

84 Oscilloscope Analysis and Connectivity Made Easy

 lstDevices.AddItem dev(i)
 Next
 End If

 For i = 0 To lstDevices.ListCount - 1
 If Left(lstDevices.List(i), 5) = "GPIB8" Then
 ’ default to virtual GPIB device
 lstDevices.ListIndex = i
 Tvc1.Descriptor = lstDevices.Text
 Exit For
 End If
 Next

End Sub

The Measurement Commands Frame

The Measurement Commands Frame Design
Table 9 shows the property changes to make in the Measurement Commands
frame.

Table 9 Property changes to make in the Measurement Commands frame

Control Property Change from Change to

Measurement Commands frame (top left)

Frame1 Caption Frame1 Measurement Commands

Label3 Caption Label3 Result

(Name) Label7 lblDisplay

Caption Label7 (no Caption)

BackColor Button Face Button Light Shadow

Label7

Special Effect Flat Sunken

(Name) CommandButton1 cmdMeasure CommandButton1
 Caption CommandButton1 Get IMM Measurement

Listbox2 (Name) Listbox2 lstMeasurement

Figure 24 shows the portion of the form detailed in Table 9.

 The TekVISA Test Run Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 85

Figure 24: The Measurement Commands frame

This frame groups the controls that allow the user to obtain any of the
immediate measurements summarized in Table 10.

Table 10: Measurements available in the Measurement Commands frame

AMPLITUDE HIGH PERIOD
AREA LOW PHASE
BURST MAXIMUM PK2PK
CAREA MINIMUM POVERSHOOT
CRMS NDUTY PWIDTH
DELAY NOVERSHOOT RISE
FALL NWIDTH RMS
FREQUENCY PDUTY PERIOD

Additions to the UserForm Initialize Routine
Next you will add the code that initializes the list box containing the
Measurement commands to choose from.

1. Add the following code to the UserForm_Initialize
subroutine, just after the subroutine declaration:

’ add GPIB immediate measurement commands to the list box
 With lstMeasurement
 .AddItem "AMPLITUDE"
 .AddItem "AREA"
 .AddItem "BURST"
 .AddItem "CAREA"
 .AddItem "CRMS"
 .AddItem "DELAY"
 .AddItem "FALL"
 .AddItem "FREQUENCY"
 .AddItem "HIGH"
 .AddItem "LOW"
 .AddItem "MAXIMUM"
 .AddItem "MINIMUM"
 .AddItem "NDUTY"
 .AddItem "NOVERSHOOT"
 .AddItem "NWIDTH"
 .AddItem "PDUTY"
 .AddItem "PERIOD"
 .AddItem "PHASE"
 .AddItem "PK2PK"
 .AddItem "POVERSHOOT"
 .AddItem "PWIDTH"

The TekVISA Test Run Example in Excel VBA

86 Oscilloscope Analysis and Connectivity Made Easy

 .AddItem "RISE"
 .AddItem "RMS"

 .ListIndex = 0

 End With

When the UserForm is initialized before it first displays, this code:

a. Uses the Excel AddItem method to populate the
lstMeasurement list box with literal items to choose
from.

Note: In this case, the items correspond to measurement
commands that are valid with Tektronix TDS7000 Series
oscilloscopes. Your Windows-based oscilloscope may use a
slightly different command set.

b. Uses the Excel ListIndex property to set the first row in

the list as the currently selected item in the list box, so
that it appears preselected on the form.

The Get Immediate Measurement Button Routine
Next you will tackle the logic invoked when a user selects a measurement
type from the list box, and then clicks the Get IMM Measurement button in
the Measurement Commands frame.

1. Press Shift+F7 to switch to the UserForm, and double-click
the Get IMM Measurement button.

VBA inserts the following code block:

Private Sub cmdMeasure_Click()

End Sub

2. Type the following code inside the cmdMeasure_Click

subroutine code block.

 Dim strID As String
 Dim s1 As String

 s1 = lstMeasurement.List(lstMeasurement.ListIndex)

 lblDisplay.Caption = "" ’ clear the label which will
 ’ display the result
 ’ construct the GPIB command
 strID = "MEASUREMENT:IMMED:TYPE " & s1 & "; VAL?;:HEADER OFF"
 ’ send the command
 Tvc1.WriteString strID
 ’ read the result and display it
 lblDisplay.Caption = Tvc1.ReadString

 The TekVISA Test Run Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 87

When the Get IMM Measurement button is clicked, this code does
the following:

a. Declares a string variable to hold the GPIB measurement
command.

b. Uses the Caption property of an Excel Label control to
clear the caption of the result Label, where the result of
the measurement command will display.

c. Builds a string containing compound native GPIB
commands, with components separated by semicolons
(;).

1) The MEASUrement:IMMed:TYPE command sets the
measurement type. The runtime value returned by
the lstMeasurement list box’s Text property is
concatenated with this command string.

2) The VAL? query requests the oscilloscope to return
the value of the measurement specified by the
MEASUrement:IMMed:TYPe command, over the
currently selected channel.

3) The HEADER OFF command requests that query
results be returned without the header.

d. Uses the WriteString method of the TekVISA ActiveX
Control to send the measurement command string to the
instrument.

e. Uses the ReadString method of the TekVISA ActiveX
Control to read the result of the query sent with the
WriteString method

f. Assigns that result to the Caption property of the
lblDisplay Label control, so that it will appear on the
form.

The Waveform Data Frame

The Waveform Data Frame Design
The Waveform Data frame allows immediate capture of waveform data at the
current instrument settings. A check box gives users the option of displaying
or omitting additional waveform values (record length, sample interval, and
trigger position). Table 11 summarizes the property changes to make to
controls in the Waveform Data frame.

The TekVISA Test Run Example in Excel VBA

88 Oscilloscope Analysis and Connectivity Made Easy

Table 11: Property changes to make in the Waveform Data frame

Control Property Change from Change to

Waveform Data frame (top right)

Frame2 Caption Frame2 Waveform Data

Label4 Caption Label4 Record Length

Label5 Caption Label5 Interval

Label6 Caption Label6 Trigger Position

(Name) Label9 lblRecLength

Caption Label9 (no Caption)

BackColor Button Face Button Light Shadow

Label9

Special Effect Flat Sunken

(Name) Label10 lblInterval

Caption Label10 (no Caption)

BackColor Button Face Button Light Shadow

Label10

Special Effect Flat Sunken

(Name) Label11 lblTrigPos

Caption Label11 (no Caption)

BackColor Button Face Button Light Shadow

Label11

Special Effect Flat Sunken

Label12 Caption Label12 ActiveSheet Starting
Column

Label13 Caption Label13 ActiveSheet Starting Row

Listbox3 (Name) Listbox3 lstColumn

Listbox4 (Name) Listbox4 lstRow

(Name) CommandButton2 cmdClear CommandButton2
 Caption CommandButton2 Clear

(Name) CommandButton3 cmdGetWaveform CommandButton3
 Caption CommandButton3 Get Waveform

(Name) Checkbox1 chkDisplayWF

Caption Checkbox1 Display Waveform Value

Checkbox2

Value False True

Figure 25 shows the portion of the form detailed in Table 11.

 The TekVISA Test Run Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 89

Figure 25: The Waveform Data frame

Additions to the UserForm Initialize Routine
Next you will add the code that initializes the column and row list boxes.
From these lists, the user chooses the starting column and row in which to
display waveform data points and associated times.

Note: You could also have implemented this feature with a spin box.
See the next chapter for an example that incorporates a spin box
control.

1. Add the following code to the UserForm_Initialize

subroutine:

’ populate listboxes for Range specification of Waveform Data
 For i = 1 To 52
 If i <= 26 Then
 lstColumn.AddItem Chr$(i + 64)
 Else
 lstColumn.AddItem "A" & Chr$(i + 38)
 End If
 Next
 lstColumn.ListIndex = 2
 For i = 1 To 500
 lstRow.AddItem (i)
 Next

When the UserForm is initialized before it first displays, this code
does the following:

a. Uses the Excel AddItem method in a loop that fills in the
lstColumn list box with the letters A through Z and AA
through AZ.

b. Uses the Excel ListIndex property to set column C as the
currently selected item in the lstColumn list box, so that
it appears preselected on the form.

c. Uses the Excel AddItem method in a loop that fills in the
lstRow list box with the numbers 1 through 500.

The TekVISA Test Run Example in Excel VBA

90 Oscilloscope Analysis and Connectivity Made Easy

The Clear Button Routine
When the user clicks the Clear button in the Get Waveform frame, this code
clears the range of cells where waveform data points and times appear, and
clears the label captions where additional waveform values appear (if the
check box is checked). This code is very similar to the code explained in the
last chapter beginning on page 63. Refer back to that explanation for a line-
by-line discussion.

1. Just below the Option Explicit statement entered earlier, type
the following to declare a module-scoped variable:

’ module-scoped variable to hold reference to range specified
 ’ by user
Dim HoldRange As Range

2. Type the following cmdClear_Click subroutine.

Private Sub cmdClear_Click()
 ’ clear controls that display waveform data
 If Not HoldRange Is Nothing Then
 HoldRange.Clear
 HoldRange.ClearContents
 HoldRange.ClearFormats
 End If

 lblRecLength.Caption = ""
 lblInterval.Caption = ""
 lblTrigPos.Caption = ""

End Sub

The Get Waveform Button Routine
Next you will work on the logic that executes when the user clicks the Get
Waveform button. This code is very similar to the code explained in Chapter
4 beginning on page 65. Refer to that explanation for a line-by-line
discussion.

The main addition here is some logic that allows the user to check a box if
associated waveform fields (record length, interval, and trigger position)
should be displayed. This example also illustrates some other Excel features,
such as use of the Cells property and NumberFormat property of the Range
object.

1. Type the following portion of the cmdGetWaveForm_Click
subroutine, which initializes some variables, gets a
waveform, and stores associated waveform fields:

Private Sub cmdGetWaveForm_Click()
’ declare variables
 Dim arrWF As Variant ’array variable which will hold
 ’ waveform values
 Dim xinc As Double ’ variable which will hold the x axis
 ’ increment
 Dim trigpos As Long ’ variable which hold the timing trigger
 ’ position
 Dim i As Long, tracker As Long ’ counter variables
 Dim arrLength As Long
 Dim StartRow As Long, StartCol As Long, ValCol As Long

 The TekVISA Test Run Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 91

 Dim HoldCol As String, hUnits As String, vUnits As String
 Dim t As Double
 Dim r As Range
 On Error GoTo cmdGetWFMErr

 ’CH1 is the OCX built-in constant specifying Channel 1

 Application.Cursor = xlWait
 Call Tvc1.GetWaveform(CH1, arrWF, xinc, trigpos, vUnits,
 hUnits)
 arrLength = UBound(arrWF) - LBound(arrWF) + 1
 If IsArray(arrWF) Then ’ check to be sure returned value is
 ’ an array
 lblRecLength.Caption = arrLength
 Else
 Exit Sub
 End If
 lblInterval.Caption = xinc
 lblTrigPos.Caption = trigpos

2. Type the following logic that only executes if the user

selected the check box:

 If chkDisplayWF.Value = True Then ’ if user wants values
 ’ displayed, loop through
 ’ the array
 ’ Check to see if range values are specified.
 If lstColumn.ListIndex <> -1 Then
 StartCol = lstColumn.ListIndex + 1
 ValCol = StartCol + 1
 Else
 GoTo SkipDisplay
 End If
 If lstRow.ListIndex <> -1 Then
 StartRow = lstRow.ListIndex + 1
 Else
 StartRow = 1
 End If

This code does the following:

a. Checks the Value property of the chkDisplayWF check
box to see if the box was selected.

b. Checks the runtime ListIndex property of the lstColumn
and lstRow list boxes to see if the user has selected items
(value not equal to -1).

c. If the check box was selected and items were selected,
this code:

1) Adds 1 to the selected column location (since the list
is 0-based) and saves it as ValCol.

2) Adds 1 to the selected row location (since the list is
0-based) and saves it as StartRow.

The TekVISA Test Run Example in Excel VBA

92 Oscilloscope Analysis and Connectivity Made Easy

3. Type the next part of the cmdGetWaveForm_Click
subroutine:

’ clear range reference
 Set HoldRange = Nothing
 ’ set up header info
 ActiveSheet.Cells(StartRow, StartCol).Value = "Time"
 ActiveSheet.Cells(StartRow, StartCol).Font.Bold = True
 ActiveSheet.Cells(StartRow, ValCol).Value = "Value"
 ActiveSheet.Cells(StartRow, ValCol).Font.Bold = True
 tracker = StartRow + 1
 ’ set number format to show all the decimal points

 Set r = ActiveSheet.Range(Cells(tracker, StartCol),
 Cells(tracker + arrLength, StartCol))
 r.NumberFormat = "#####.############"

 Application.ScreenUpdating = False
 For i = LBound(arrWF) To UBound(arrWF)
 t = (i - trigpos) * xinc
 ActiveSheet.Cells(tracker, StartCol).Value = t
 ActiveSheet.Cells(tracker, ValCol).Value = arrWF(i)
 tracker = tracker + 1
 Next
 Application.ScreenUpdating = True
 Set HoldRange = ActiveSheet.Range(Cells(StartRow,
 StartCol), Cells(tracker, ValCol))
 End If

This code

a. Initializes the range reference, then stores the headings
in the spreadsheet, using the Cells property of the
ActiveSheet object to access cell locations.

Note: The Cells property uses R1C1-style (row/column)
references. For example, cell C5 would be “C5” in A1
notation, but “R5C3” in R1C1 notation.

b. Using the Cells property of the Range object, stores the

single-column range of cells that will hold wavepoint
data points in range variable r, then sets the
NumberFormat property of that Range object to display
all the decimal points.

c. Turns off screen updating, stores the waveform times
and data points in the active sheet, then turns screen
updating back on.

d. Assigns the two-column range holding the waveform
times and data points to range variable HoldRange,
which is accessed and cleared by the cmdClear_Click
subroutine.

 The TekVISA Test Run Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 93

4. Type the last part of the cmdGetWaveForm_Click
subroutine, which handles exception cases by changing the
mouse pointer cursor from the hourglass back to the default
arrow pointer, and reenabling screen updating:

SkipDisplay:
 Application.Cursor = xlDefault
 Application.ScreenUpdating = True
 Exit Sub
’ rudimentary error trapping
cmdGetWFMErr:
 Application.Cursor = xlDefault
 Application.ScreenUpdating = True
 MsgBox "Error: " & Err.Number & ", " & Err.Description
End Sub

The Send GPIB Commands Frame

The Send GPIB Commands Frame Design
The Send GPIB Commands frame allows the user to send any valid GPIB
command or query to the instrument. If the user types a GPIB query that
returns a value, the user must check a check box. Table 12 summarizes the
property changes to make to controls in the Send GPIB Commands frame.

Table 12: Property changes to make in the Send GPIB Commands frame

Control Property Change from Change to

Send GPIB Commands frame (bottom left)

Frame3 Caption Frame3 Send GPIB Commands

Textbox1 (Name) Textbox1 txtGPIB

Label2 Caption Label2 Result

(Name) Label8 lblManualResults

Caption Label8 (no Caption)

BackColor Button Face Button Light Shadow

Label8

Special Effect Flat Sunken

(Name) CommandButton4 cmdSendCmd CommandButton4
 Caption CommandButton4 Send Command

(Name) CommandButton5 cmdClearMResults CommandButton5
 Caption CommandButton5 Clear

(Name) Checkbox1 chkHasReturn Checkbox1
 Caption Checkbox1 Has Return Value

The TekVISA Test Run Example in Excel VBA

94 Oscilloscope Analysis and Connectivity Made Easy

Figure 26 shows the portion of the form detailed in Table 12.

�
Figure 26: The Send GPIB Commands frame

The Clear Button Routine
When the user clicks the Clear button in the Send GPIB Commands frame,
this routine clears the txtGPIB text box where GPIB commands and queries
are typed, and clears the lblManualResults label caption where query results
appear (if the check box is selected).

1. Type the following cmdClearMResults_Click subroutine:

Private Sub cmdClearMResults_Click()
 ’ clear GPIB command controls
 txtGPIB.Text = ""
 lblManualResults.Caption = ""
End Sub

The Send Command Button Routine
Your next task is to address the logic invoked when the user types a GPIB
command or query and then clicks the Send Command button.

1. Type the following cmdSendCmd_Click subroutine:

Private Sub cmdSendCmd_Click()
 Dim strCmd As String, strResult As String
 On Error GoTo cmdSendCmdErr

 ’send the user’s GPIB command
 strCmd = txtGPIB.Text
 Tvc1.WriteString strCmd
 ’ check to see if the user expects a return value
 If chkHasReturn.Value = True Then
 strResult = Tvc1.ReadString
 lblManualResults.Caption = strResult
 Else
 lblManualResults.Caption = ""
 End If

Exit Sub

cmdSendCmdErr:
 MsgBox "Error: " & Err.Number & ", " & Err.Description
End Sub

 The TekVISA Test Run Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 95

When the user clicks the Send Command button, this code does the
following:

a. Declares a string variable to hold the GPIB command or
query and another string variable to hold the query
result, if any.

b. Assigns the runtime value returned by the Text property
of the txtGPIB text box to the GPIB command string
variable.

c. Uses the WriteString method of the TekVISA ActiveX
Control to send the command string to the instrument.

d. Checks the runtime Value property of the chkHasReturn
check box to see if the user expects a result. If so, uses
the ReadString method of the TekVISA ActiveX Control
to read the result of the query sent with the WriteString
method.

f. Assigns that result to the Caption property of the
lblManualResults Label control, so that it will appear on
the form.

g. If the check box wasn’t selected, stores a blank string in
the Caption property of the lblManualResults Label
control.

h. If clicking the WriteString button causes an error,
control passes to the cmdSendCmdErr error routine,
which prints an error message.

Running the TekVISA Test Run Program

The Show Form Routine
Now that you have created the form, the next step is to create a short routine
that displays it when the user clicks a button on the spreadsheet.

1. Expand the Modules folder in the Project Explorer window
and double-click Module1.

2. An empty page in the Code window appears.

3. Type the following:

Option Explicit

Sub btnShowForm()
 frmTekVISATestRun.Show vbModeless
End Sub

The TekVISA Test Run Example in Excel VBA

96 Oscilloscope Analysis and Connectivity Made Easy

This code displays the TekVISA Test Run form with the display style
set to the constant vbModeless, meaning that the form is not modal.
Since it is modeless, no applications are suspended when the form is
displayed, so the user need not respond to the form before using any
other part of the application.

To add a button to the spreadsheet so you can run the program you just
created:

1. Press Alt+F11 to switch from VBA to the Excel spreadsheet.

2. If the Excel Forms Toolbar is not visible, select View >
Toolbar > Forms to display it.

3. Double-click the Button icon and click in or near cell A4, the
spot in the spreadsheet where you want to insert it.

The Assign Macro dialog box appears.

4. Select the ShowForm module as the macro name and click
OK.

5. Right-click the button, select Edit Text, and change the
button caption from Button1 to Show Form.

6. Select File > Save to save the TekVISA Test Run.xls
spreadsheet, along with the VBA program you just created.

7. Click away from the button if necessary to exit Design
mode, and then click the Show Form button to run the
program.

The TekVISA Test Run dialog box appears.

Note: Even if you do not have a waveform source connected to
Channel 1 of your oscilloscope, you will still be able to pick up
enough random noise to generate some data to verify that your
program works.

8. Modify your oscilloscope settings to prepare for a data

transfer. Be sure to set the record length as part of this step.

9. Click the buttons on the form.

You will see results similar to Figure 20. If an error occurs, switch to
VBA and debug the program.

 Using VB Instead of VBA

Oscilloscope Analysis and Connectivity Made Easy 97

Using VB Instead of VBA

If you want to work this exercise using Visual Basic 6.0, you will need to
create the form using that tool instead of Excel VBA. Refer to Chapter 8 for
an example of how to use Visual Basic 6.0 controls to design a form.

Figure 27 shows a VB 6.0 version of the four-part TekVISA Test Run
example discussed in this chapter. This program was saved under the project
name p_CH5VB.vbp on the CD that accompanies this book. Notice that a list
box has been used to display the waveform data points in this example, since
there is no spreadsheet.

Figure 27: Visual Basic 6.0 version of the TekVISA Test Run program

You will also have to make some changes to the code. Where you used the
VBA UserForm class with the Initialize event, substitute the VB Form class
with the Load event. Therefore, instead of creating a UserForm_Initialize()
subroutine, you will create a Form_Load() subroutine in VB 6.0 as shown
here:

Private Sub Form_Load()

Instead of using a spreadsheet to store the waveform data points, you will use
a list box named lstWF in the form. The GetWaveform routine is shown here:

Private Sub cmdGetWaveForm_Click()
 ’ declare variables
 Dim arrWF As Variant ’array variable which will hold waveform values
 Dim xinc As Double ’ variable which will hold the x axis increment
 Dim trigpos As Long ’ variable which hold the timing trigger
 ’ position
 Dim i As Long ’ counter variable
 Dim vUnits As String, hUnits As String

 On Error GoTo cmdGetWFMErr

 ’CH1 is the OCX built-in constant specifying Channel 1

Chapter 5 Review

98 Oscilloscope Analysis and Connectivity Made Easy

 Call Tvc1.GetWaveform(CH1, arrWF, xinc, trigpos, vUnits, hUnits)

 If IsArray(arrWF) Then ’ check to be sure returned value is an
 ’ array
 lblRecLength.Caption = UBound(arrWF) - LBound(arrWF) + 1
 Else
 Exit Sub
 End If
 lblInterval.Caption = xinc
 lblTrigPos.Caption = trigpos

 If chkDisplayWF.Value = vbChecked Then ’ if user wants values
 ’ displayed, loop through the array
 For i = LBound(arrWF) To UBound(arrWF)
 lstWF.AddItem arrWF(i)
 Next
 End If

 Exit Sub

cmdGetWFMErr:
 MsgBox "Error: " & Err.Number & ", " & Err.Description
End Sub

Chapter 5 Review

To review what you learned in Chapter 5:

• The TekVISA Control includes methods and properties that
allow you to find resources, get waveforms, send commands,
and get results.

• The Excel object model includes objects and properties that
allow you to access and insert values into cell ranges
programmatically.

• You can check Runtime properties of VBA controls to
determine user interaction with a VBA form

• You can use the TekVISA Test Run program designed in this
chapter to send a variety of commands and display the
results on a form, and to get waveforms and display them in
your spreadsheet or on the form itself (in the case of the VB
version).

 Introduction

Oscilloscope Analysis and Connectivity Made Easy 99

Chapter 6:
A Measurement Charting Example

Using VBA to write a program that plots
measurement against time

Introduction

The purpose of this chapter is to demonstrate how to perform real-time
capture and charting in an Excel VBA or VB 6.0 application. In this chapter,
you will build a program that repeatedly gets measurements at specified
intervals for a specified length of time, and then plots those results in a chart.

The program builds on information learned in previous chapters, and
introduces some new controls and programming techniques. Most of the code
has to do with setting up the chart and controlling the timer control. Unlike
previous examples, the program includes several subroutines that are
triggered by calls from other routines, rather than by user actions or system
events.

Besides teaching you more about VBA programming, this example may
prove useful in your daily work, since you can easily customize it.

What You Need to Get Started
You can work this example either on a separate PC or on your Windows-
based oscilloscope, using either Excel’s built-in VBA or Visual Basic 6.0. To
get started, you will need the following:

• A Windows-based Tektronix oscilloscope (an external
monitor is recommended if you are working the example on
your oscilloscope)

• Excel 2000 or XP (or Visual Basic 6.0) installed on your
oscilloscope or on an external PC

• The TekVISA connectivity software described in Chapter 1
(see page 323 for the location of the completed example)

Introduction

100 Oscilloscope Analysis and Connectivity Made Easy

What You Will Do
In this chapter, you will build a sample VBA program that

• issues native GPIB commands to capture immediate
measurement data

• sets the time interval for repeatedly capturing data

• sets the length of time for the data capture

• plots the results in an Excel spreadsheet and chart.

Figure 28 shows the design-time interface that you will create. As you can
see, the user interface includes some list boxes, check boxes, labels,
command buttons, and a frame that groups some new controls called spin
buttons. This user form allows you to interact with your oscilloscope in the
following ways:

• in the first list box, you can choose a measurement
command to send

• in the second list box, you can choose the time interval (for
example, every 30 seconds) for sending the measurement
command

• in the third list box, you can choose the duration (for
example, 2 seconds) for sending the measurement command

• in the labels next to the spin buttons, you can choose the
spreadsheet row and column location to begin inserting the
measurement data

• in the two check boxes, you can decide whether or not to
chart the results and whether or not to display the chart
results once after the duration of the measurement period has
expired or continuously as each measurement is taken

• the command buttons allow you to start and stop sending
the measurement command, and close the form

 Introduction

Oscilloscope Analysis and Connectivity Made Easy 101

�
�

�
Figure 28: The form you will design for the Chart Measurements example

Figure 29 shows the same UserForm at runtime after fields have been filled
in with results in all areas of the form.

Introduction

102 Oscilloscope Analysis and Connectivity Made Easy

�

�
Figure 29: The Chart Measurements form at runtime

Figure 30 shows the measurement data in the spreadsheet and the charted
results. The measurement data is plotted if the Chart Measurements check
box is selected on the form. The display doesn’t take place until data capture
has completed if the Display At Completion check box is selected.

 Introduction

Oscilloscope Analysis and Connectivity Made Easy 103

�
Figure 30: Chart Measurements plotted results

What You Will Learn
In this chapter, you will:

• build a form with more expanded functionality than the
previous example including the use of spin button controls
and a Close button

• learn how to use the Excel ChartObject

• learn how to add timing considerations to your solutions

• learn how to hide or show a frame on a form

• learn how to close a form

• review the use TekVISA ActiveX Control operations to send
native GPIB measurement commands and queries to your
oscilloscope and get back results

The Chart Measurements Example in Excel VBA

104 Oscilloscope Analysis and Connectivity Made Easy

• add a button to run this VBA program from your Excel
spreadsheet

• find out the changes you will need to make if you want the
program to run in Visual Basic 6.0 instead of Excel

The Chart Measurements Example in Excel VBA

Building the Form
This chapter focuses primarily on the VBA code and assumes you are
already familiar with VBA visual editing tools for constructing dialog
interfaces. For step-by-step instructions on designing a form for the VBA
design environment, refer to page 48.

To begin building the UserForm:

1. Open Excel and save the spreadsheet under the name
ChartMeasurement.xls.

2. Press ALT+F11 to access the Visual Basic for Applications
design environment from within Excel.

3. Insert a UserForm by clicking the Insert UserForm icon on
the VBA Standard Toolbar.

4. Rename the UserForm Measurement Demo.

5. If necessary, follow the instructions on page 51 to add the
TekVISA ActiveX Control to the Controls Toolbox.

6. Drag the TekVISA Control icon onto the Userform.

7. Add controls to design the Userform, making sure that each
control is placed as shown in Figure 31. Note the use of two
spin button controls inside Frame1.

Note: It is not necessary to drag the controls onto the form in the
exact order shown; however, doing so will help you verify that
you have changed all the properties correctly.

�

Changing Properties in the Properties Window

 Table 13 summarizes all the changes to make in the Properties window to
convert the UserForm from its appearance in Figure 31 to its final
appearance.

 The Chart Measurements Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 105

Figure 31: Chart Measurements form before changing default captions and
appearance of controls

After changing the name, captions, and other properties itemized in the table
and resizing controls, the form will look like Figure 32 (the TekVISA control
icon is hidden behind one of the list boxes).

Figure 32: The redesigned form for Chart Measurements

Table 13: Changes to make in the Properties window to Chart Measurements

Control Property Change from Change to

UserForm1 Caption UserForm1 Measurement Demo

tvc (TekVISA) (Name) Tvc1 Tvc1 (no change needed)

Label1 Caption Label1 Measurement

Label2 Caption Label2 Second Intervals

Label3 Caption Label3 Duration (min.)

Label4 Caption Label4 Record Length

(Name) Label10 lblRL

Caption Label10 (no Caption)

Label10

Special Effect Flat Sunken

Listbox1 (Name) Listbox1 lstM

Listbox2 (Name) Listbox2 lstInterval

The Chart Measurements Example in Excel VBA

106 Oscilloscope Analysis and Connectivity Made Easy

Control Property Change from Change to

Listbox3 (Name) Listbox3 lstDuration

(Name) CommandButton1 cmdStart CommandButton1
 Caption CommandButton1 Start Measurement

(Name) CommandButton2 cmdStop CommandButton2
 Caption CommandButton2 Stop Measurement

(Name) CommandButton3 cmdClose CommandButton3
 Caption CommandButton3 Close

(Name) Checkbox1 chkPaintOnce Checkbox1

Caption Checkbox1 Display At Completion

(Name) Checkbox2 chkMakeChart Checkbox2

Caption Checkbox2 Chart Measurements

Starting Cell Selection frame

Frame1 Caption Frame1 Starting Cell Selection

Label5 Caption Label5 Column

Label6 Caption Label6 Row

(Name) Label7 lblCol

Caption Label7 (no Caption)

Label7

Special Effect Flat Sunken

(Name) Label8 lblRow

Caption Label8 (no Caption)

Label8

Special Effect Flat Sunken

(Name) Label9 lblCell

Caption Label9 (no Caption)

Special Effect Flat Sunken

Label9

ForeColor Black Blue (select from Palette)

(Name) SpinButton1 spnCol

Max 100 52

SpinButton1

Min 0 1

(Name) SpinButton2 spnRow

Max 100 300

SpinButton2

Min 0 1

 The Chart Measurements Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 107

Initialization

Module Level Variable Declarations
First you will define some variables that can be accessed by all the
subroutines in the code module:

1. Press F7 to switch to the Code window.

2. Type the following statement so VBA will ensure that
variables are defined before you use them:

Option Explicit

3. Type the following variable declarations, whose purposes

are well commented in the code:

Dim StopTimerCount As Long ’ variable for holding when timer
 ’ should stop
Dim tInterval As Double ’ variable for holding user-specified
 ’ capture interval
Dim strMeas As String ’ variable for sending immediate
 ’ measurement command to scope
Dim blnStopFlag As Boolean ’ variable to flag whether the user
 ’ wished to halt measurements
Dim RefChart As Chart ’ reference variable for inserted chart
’ Windows API function used to create a timed interval for
’ measurement capture
Private Declare Function GetTickCount Lib "kernel32" () As Long

Since GetTickCount is a Windows API function, you need only
declare it before you can use it.

The UserForm Initialize Routine
This code executes immediately before the UserForm is first displayed. It
initializes spin controls, list boxes and result label captions.

1. Type the following statements to set default spin control
values and associated result label captions:

Private Sub UserForm_Initialize()

 Dim i As Integer
 ’ initialize the spin control values and default cell
 ’ for measurement capture
 spnCol.Value = 3
 lblCol.Caption = "C"
 spnRow.Value = 1
 lblRow.Caption = "1"
 lblCell.Caption = "C1"

2. Type the following code block to fill in the lstM list box.

This code is similar to the code explained in the last chapter
beginning on page 85. Refer back to that explanation for a
detailed discussion.

 ’ populate the list box with immediate measurement GPIB
 ’ commands
 With lstM

The Chart Measurements Example in Excel VBA

108 Oscilloscope Analysis and Connectivity Made Easy

 .AddItem "AREA"
 .AddItem "BURST"
 .AddItem "CRMS"
 .AddItem "DELAY"
 .AddItem "FALL"
 .AddItem "HIGH"
 .AddItem "FREQUENCY"
 .AddItem "MAXIMUM"
 .AddItem "MINIMUM"
 .AddItem "NDUTY"
 .AddItem "NOVERSHOOT"
 .AddItem "NWIDTH"
 .AddItem "PDUTY"
 .AddItem "PERIOD"
 .AddItem "PK2PK"
 .AddItem "POVERSHOOT"
 .AddItem "PWIDTH"
 .AddItem "RISE"
 .AddItem "RMS"
 .ListIndex = 0

 End With

3. Type the following code block to fill in the lstInterval list

box with values ranging from .25 to 100 minutes:

 ’ populate the interval list box
 With lstInterval
 .AddItem ".25"
 .AddItem ".50"
 For i = 1 To 100
 .AddItem i
 Next
 lstInterval.ListIndex = 1
 End With

4. Type the following code block to fill in the lstDuration list

box with values ranging from 20 seconds to 120 seconds, in
5 second intervals. This code also preselects a duration of 3
minutes in the list box, and sets the default record length that
appears in the lblRL result label caption to 120 records.

’ populate the duration list box
 With lstDuration
 .AddItem ".3333 (20 seconds)"
 .AddItem ".5 (30 seconds)"
 .AddItem ".75 (45 seconds)"
 .AddItem "1"
 For i = 5 To 120 Step 5
 .AddItem i
 Next
 End With
 lstDuration.ListIndex = 3
 lblRL.Caption = "120"

End Sub

 The Chart Measurements Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 109

Choosing Measurements
These routines respond to events triggered by user actions, such as selecting
from a list box or clicking a command button.

Command Button Routines
First you will add the code that is invoked when the user clicks one of the
command buttons on the form.

1. Type the following code, which executes when the user
clicks the Start Measurement button:

Private Sub cmdStart_Click()

 blnStopFlag = False
 ’ build the GPIB command to send
 strMeas = "MEASUREMENT:IMMED:TYPE " &
 lstM.List(lstM.ListIndex) &
 ";VAL?;:HEADER OFF"
 Call CaptureMeasurements
End Sub

This code:

a. Initializes the boolean stop flag to False.

b. Builds the measurement command to send (see similar
code on page 86 for details). In this case, you
concatenate the command string with the runtime value
returned by the list box’s List property. This
concatenated value corresponds to the measurement
command (see Table 10) selected by the user from the
lstM list box.

Note: This code uses the List property rather than the Text
property because Text is not reliably assigned in Microsoft
Office MSForm library list boxes, even if ListIndex <> -1,
indicating that a selection has been made.

c. Calls the CaptureMeasurements subroutine (on page

110) to send the measurement command to the
oscilloscope and get the results.

2. Type the following code that sets the stop flag to True when
the user clicks the Stop Measurement button:

Private Sub cmdStop_Click()

 blnStopFlag = True

End Sub

The Chart Measurements Example in Excel VBA

110 Oscilloscope Analysis and Connectivity Made Easy

3. Type the following code, which unloads the form (removes
it from memory and reclaims all memory associated with the
form) when the user clicks the Close button:

Private Sub cmdClose_Click()
 Unload frmMeasurement
End Sub

Capture Measurements Routine
After the user clicks the Start Measurement button, this routine sends the
measurement command selected by the user to the oscilloscope. It also uses a
Timer function to calculate the interval selected by the user.

1. Type the following variable declarations, which are
explained by program comments:

Private Sub CaptureMeasurements()
 ’ This routine sends measurement commands and uses the
 ’ GetTickCount Windows API function to calculate the interval
 ’ by the user

 Dim ret As Variant ’ gets return value from TekVISA control
 Dim r1 As Range, r2 As Range, r3 As Range ’ Range variables
 ’ variables used to hold return values from the GetTickCount
 ’ function and to calculate whether user-specified interval
 ’ has elapsed
 Dim StartTime As Long
 Dim EndTime As Long
 Dim DiffTime As Long

 ’variable to hold interval in milliseconds
 Dim interval As Long
 ’variable to track the number of captures
 Dim tracker As Long
 ’variables for use in specifying ranges
 Dim RefCol As Long
 Dim RefRow As Long, StartRow As Long
 ’ variable to hold user choice on drawing a chart
 Dim blnDrawChart As Boolean
 ’variable to hold user choice on single or multiple painting
 ’of screen
 Dim blnPaintOnce As Boolean

2. Type the first logic of this routine, which disables screen

updating and changes the cursor to an hourglass symbol if
the user selected the Display at Completion check box:

’ turn off screen updating if we are painting the active sheet
’ only once
 If chkPaintOnce.Value = True Then
 Application.Cursor = xlWait
 Application.ScreenUpdating = False
 blnPaintOnce = True
 End If

3. Type the next code segment, which saves the runtime value

of the Chart Measurements check box. If that value is true
and the Display at Completion check box is false, the
program calls the InsertChart subroutine (on page 118) to
insert an empty chart into the active sheet.

 The Chart Measurements Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 111

blnDrawChart = chkMakeChart.Value

 ’ determine whether to insert chart before we begin
 ’ measurement captures
 If blnDrawChart = True And blnPaintOnce = False Then
 Call InsertChart
 End If

4. Type the next code segment:

’bind range to user specified starting cell
 Set r1 = ActiveSheet.Range(lblCell.Caption)
 ’ assign measurement selection to starting cell and make bold
 r1.Value = lstM.List(lstM.ListIndex)
 r1.Font.Bold = True
 ’ get row and column values for use in loop below
 StartRow = r1.Row
 RefRow = r1.Row
 RefCol = r1.Column

This code:

a. Gets the runtime value of the Caption property of the
lblCell label, which contains the starting spreadsheet cell
location selected by the user.

b. Returns a Range object with the user-selected location
as an absolute cell value in the active worksheet.

c. Assigns that result to r1, a variable of data type Range.

d. Sets the cell location in r1 to the runtime value selected
in the lstM list box (for example, if the user selected the
“Period” measurement command, that name is stored as
a header).

e. Sets the Font property to Bold for the cell location stored
in r1.

f. Assigns the number of the first row in the first area in
Range r1 to counter variables StartRow and RefRow.

g. Assigns the number of the first column in the first area
in Range r1 to a counter variable named RefCol.

5. Type the next code segment:

 ’ The GetTickCount function returns the number of
 ’ milliseconds elapsed since midnight. The second specified
 ’ by user must be multiplied by 1000 for use below
 interval = tInterval * 1000
 StartTime = GetTickCount() ’ get out first startng time
 tracker = 0

The Chart Measurements Example in Excel VBA

112 Oscilloscope Analysis and Connectivity Made Easy

This code:

a. Multiplies the user-specified capture interval (obtained
from the CalcRecordLength routine on page 115) by
1000 since the GetTickCount function deals in
milliseconds, and stores the result in the interval
variable.

b. Saves the output from the GetTickCount function in the
StartTime counter variable.

c. Initializes the counter variable that tracks the number of
data captures performed.

6. Type the next code segment:

Do While tracker < StopTimerCount
 If blnStopFlag Then GoTo StopFlag ’ exit but leave form
 ’ open if user flags a stop
 EndTime = GetTickCount
 DiffTime = EndTime - StartTime

 If DiffTime >= interval Then ’ time to get a measurement
 ’ send command
 Tvc1.WriteString strMeas
 ’ get results and format them
 ret = Tvc1.ReadString
 ret = Format(ret, "#.#######")
 ’ increment the row for assigning measurement value
 RefRow = RefRow + 1
 Set r2 = ActiveSheet.Cells(RefRow, RefCol)
 r2.Value = ret
 If blnDrawChart = True And blnPaintOnce = False Then
 ’ bind a new Range variable to all currently
 ’ captured measurements
 Set r3 = ActiveSheet.Range(Cells(StartRow, RefCol),
 Cells(RefRow, RefCol))
 Call DrawChart(r3) ’ update the chart
 End If
 StartTime = EndTime ’ assign the EndTime as the new
 ’ StartTime for a new interval
 tracker = tracker + 1 ’ increment the tracking
 ’ variable
 End If
 ’ make sure Windows messages are processed so stop
 ’ request by user (cmdStop_Click event) can be captured
 DoEvents

 Loop
 ’ Build chart at end if requested by user
 If blnDrawChart = True And blnPaintOnce = True Then
 Call InsertChart
 Set r3 = ActiveSheet.Range(Cells(StartRow, RefCol),
 Cells(RefRow, RefCol))
 Call DrawChart(r3)
 End If
 ’ make sure to set cursor and screen updating back
 Application.Cursor = xlDefault
 Application.ScreenUpdating = True
 ’ ensure we draw everything

Unload frmMeasurement
StopFlag:
Exit Sub

 The Chart Measurements Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 113

While the counter that tracks the number of data captures is less than
the value of StopTimerCount (set in the CalcRecordLength routine
on page 115), this code executes a DO loop that:

a. Jumps to the end of the CaptureMeasurements routine if
the Stop Measurement button was clicked (which sets
the stop flag to True).

b. Gets the current time from the GetTickCount function,
decrements the starting time from it and saves the
difference.

c. If the difference is greater than or equal to the value of
interval, the program.

1) Sends the measurement command selected by the
user, gets the query result, formats it with the correct
number of decimal points, and stores it in the ret
variable.

2) Increments the row value by 1 and uses it to obtain
an R1C1-style cell value, returned by the Cells
property of the active sheet.

3) Converts the R1C1-style value to an A1-style value
by storing it in intermediate Range variable r2.

4) Assigns the query returned value in ret to the cell in
r2.

5) If the Chart Measurements check box is selected
and the Display on Completion check box is cleared:

a) Gets the Range object containing data captured
so far.

b) Saves it in Range variable r3.

c) Passes it to the DrawChart routine (on page 119)
to do an interim update of the chart display.

d. Assigns the EndTime value returned by the
GetTickCount function as the new starting time for a
new interval.

e. Increments the tracker counter that tracks the number of
data captures.

f. Uses the DoEvents function to pass control to the
operating system, to make sure Windows messages are
processed so the program can detect whether the user
clicked the Stop Measurements button.

The Chart Measurements Example in Excel VBA

114 Oscilloscope Analysis and Connectivity Made Easy

g. After the time interval has elapsed, if both check boxes
were selected:

1) Calls the InsertChart routine (on page 118) to insert
an empty chart into the active sheet.

2) Gets the Range object containing all the data
captured.

3) Saves it in Range variable r3.

4) Passes it to the DrawChart routine (on page 119) to
plot all the captured measurements.

h. Sets the cursor back to the default mouse pointer arrow
and reenables screen updating to ensure that the chart
appears on the screen.

i. Unloads the form, which removes it from memory and
reclaims all memory associated with the form.

7. Type the last code segment, which provides a code block
that is called by the VBA runtime for error handling when an
error occurs:

CaptureMSErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description
 Application.Cursor = xlDefault
 Application.ScreenUpdating = True

End Sub

List Box Routines
Now you will add the code that is invoked when the user makes a selection
from one of the list boxes on the form.

1. Type the following code, which calls the CalcRecordLength
function (on page 115) when the user selects a data capture
time duration from the lstDuration list box:

Private Sub lstDuration_Click()
 CalcRecordLength
End Sub

2. Type the following code, which calls the CalcRecordLength

function when the user selects a time interval between data
captures from the lstInterval list box:

Private Sub lstInterval_Click()
 CalcRecordLength
End Sub

 The Chart Measurements Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 115

3. Type the following code, which calls the CalcRecordLength
function when the user selects a measurement command
from the lstM list box:

Private Sub lstM_Click()
 CalcRecordLength
End Sub

Calculate Record Length Routine
Next you will look at the logic used to calculate the record length of the
captured data, based on user selections from list boxes.

1. Type the following code, which initializes variables and tests
to see if the user has selected anything from the lstInterval or
lstDuration list boxes:

Private Sub CalcRecordLength()
 Dim rLength As Long
 Dim duration As Double
 Dim strD As String
 ’ routine which calculates the appropriate interval for the
 ’ timer and calculates the number of times the timer will
 ’ fire; called in control events which change the interval
 ’ and duration of the measurements

 ’ items not selected in list boxes
 If lstInterval.ListIndex = -1 Then Exit Sub
 If lstDuration.ListIndex = -1 Then Exit Sub

2. Type the next code segment:

 ’ code below uses the List property rather than the
 ’ Text property because Text is not reliably assigned in
 ’ MSForm listboxes even if ListIndex <> -1

 tInterval = Val(lstInterval.List(lstInterval.ListIndex))
 strD = lstDuration.Text
 ’ calculate the record length; need to accommodate
 ’ subminute durations
 Select Case strD
 Case ".3333 (20 seconds)"
 duration = 20

 Case ".5 (30 seconds)"

 duration = 30

 Case ".75 (45 seconds)"
 duration = 45
 Case Else
 duration =
 CLng(lstDuration.List(lstDuration.ListIndex)) * 60
 End Select

This code:

a. Assigns the numeric value of the currently selected entry
in the lstInterval list box to a variable named tInterval.

The Chart Measurements Example in Excel VBA

116 Oscilloscope Analysis and Connectivity Made Easy

b. Assigns the text in the currently selected entry in the
lstDuration list box to a variable evaluated in subsequent
CASE statements.

c. Handles special cases where the duration is less than a
minute.

d. For all other cases, calculates the record length by
converting and rounding up the currently selected entry
in the lstDuration list box to a long integer value,
multiplying the value times 60 seconds, and storing the
result in a variable named duration.

3. Type the following:

 rLength = CLng(duration / tInterval)
 StopTimerCount = rLength ’ assign value to variable used
 ’ by CaptureMeasurements routine
 lblRL.Caption = rLength ’ display record length

End Sub

 This code:

a. Divides the duration by the time interval, converts and
rounds up the result to a long integer, and stores the
result as the record length.

b. Uses the result as the upper limit that ends the DO loop
in the CaptureMeasurements routine on page 110.

c. Assigns the result to the Caption property of the lblRL
Label control, so that it will appear on the form.

Displaying Results
This set of routines handles the display of measurement results in spreadsheet
cells and in an Excel chart.

Check Box Routine
This routine evaluates whether the user selected the Chart Measurements
check box, and hides or shows the related frame on the form based on the
result.

1. Type the following code, which sets the Visible property of
the fraCellSelection frame, based on the value of the
chkMakeGraph check box:

Private Sub chkMakeGraph_Click()
 If chkMakeGraph.Value = True Then
 fraCellSelection.Visible = True
 Else
 fraCellSelection.Visible = False
 End If

End Sub

 The Chart Measurements Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 117

Spin Button Routines
The next few code blocks handle the spin buttons from which the user selects
starting spreadsheet row and column values.

1. Type the following:

Private Sub spnCol_SpinDown()
 ’ user may choose columns from A to AZ
 Dim i As Integer
 i = spnCol.Value
 If i <= 26 Then
 lblCol.Caption = Chr$(i + 64)
 Else
 lblCol.Caption = "A" & Chr$(i + 38)
 End If
 BuildCell
End Sub

When the user selects a column value from the spnCol spin button by
clicking the lower button, this code

a. converts the selected column value to an alphabetic character
between A and AZ

b. assigns the result to the Caption property of the lblCol label
control, so that it appears on the form

c. calls the BuildCell subroutine, which uses this column component
to build a row/column cell value

2. Type the following similar code, which executes when the
user selects a column value by clicking the upper button of
the spnCol control:

Private Sub spnCol_SpinUp()
 ’ user may choose columns from A to AZ
 Dim i As Integer
 i = spnCol.Value
 If i <= 26 Then
 lblCol.Caption = Chr$(i + 64)
 Else
 lblCol.Caption = "A" & Chr$(i + 38)
 End If
 BuildCell
End Sub

3. Type the following:

Private Sub spnRow_SpinDown()
 ’ row values specified by the Min and Max range properties
 ’ of the spnRow control
 lblRow.Caption = spnRow.Value
 Call BuildCell
End Sub

The Chart Measurements Example in Excel VBA

118 Oscilloscope Analysis and Connectivity Made Easy

When the user selects a row value from the spnRow spin button by
clicking the lower button, this code

a. assigns the selected row value to the Caption property of the
lblRow label control, so that it appears on the form

b. calls the BuildCell subroutine, which uses this row component to
build a row/column cell value

4. Type the following similar code, which executes when the
user selects a row value by clicking the upper button of the
spnRow control:

Private Sub spnRow_SpinUp()
 ’ row values specified by the Min and Max range properties of
 ’ the spnRow control
 lblRow.Caption = spnRow.Value
 Call BuildCell
End Sub

5. Type the following code, which concatenates the row and

column captions to form the caption of the lblCell label,
where the starting cell value appears on the form:

Private Sub BuildCell()
 ’Concatenate label captions to specify starting cell
 lblCell.Caption = lblCol.Caption & lblRow.Caption
End Sub

Insert Chart Routine
This routine is called into play when the user decides to chart the captured
measurement results.

Figure 33 shows how charts are incorporated in the Excel object model. A
chart can appear as its own sheet or on a worksheet. A ChartObjects
collection on a worksheet is made up of ChartObject objects, each of which
represents an embedded chart on a specified sheet and acts as a container for
a Chart object. You can use properties and methods for the ChartObject
object to control the appearance and size of an embedded chart on a sheet.

Figure 33: How the Excel model incorporates charts

 The Chart Measurements Example in Excel VBA

Oscilloscope Analysis and Connectivity Made Easy 119

1. Type the following:

Sub InsertChart()
 ’ this code inserts a chart into the activesheet
 Dim ws As Worksheet
 Dim cos As ChartObjects
 Dim co As ChartObject
 Dim c As Chart
 Set ws = ActiveSheet
 Set cos = ws.ChartObjects
 Set co = cos.Add(Left:=20, Top:=50, Width:=400,
 Height:=250)
 Set RefChart = co.Chart
 RefChart.ChartType = xlLineStacked
End Sub

This code:

a. Declares array variables that represent parts of the Excel
object model, including a Worksheet object, a
ChartObjects collection, a ChartObject object, and a
Chart object.

b. Assigns the active sheet in the active workbook to the
Worksheet variable named ws.

c. Assigns the ChartObjects collection on the active
worksheet to the variable named cos.

d. Uses the Add method with the ChartObjects collection to
return a ChartObject named co, which is an empty
embedded chart whose location and size are specified in
points and are relative to the A1 cell position (note the
use of named arguments syntax with the assignment
symbol :=).

e. Uses the Chart property to return the Chart contained in
the ChartObject named co, and creates an object
reference by assigning the returned Chart to the variable
RefChart.

f. Sets the ChartType property of the referenced chart to
the Excel constant xlLineStacked, which makes it a
stacked line chart.

Draw Chart Routine
This code draws the plotted measurements chart, either in its entirety or by
updating it in stages, depending on whether the Display at Completion check
box was selected.

The Chart Measurements Example in Excel VBA

120 Oscilloscope Analysis and Connectivity Made Easy

1. Type the following:

Sub DrawChart(r As Range)
 ’ Update the chart
 RefChart.SetSourceData Source:=r, PlotBy:=xlColumns

End Sub

This code uses named argument syntax with the SetSourceData
method to:

a. Set the source data range of the referenced chart to the
range passed to the DrawChart routine, and

b. Specify that the chart will be plotted by column.

Running the Chart Measurements Program

The Show Form Routine
Now that you have created the form, it is time to create a short routine that
displays it when the user clicks a button on the spreadsheet.

1. Expand the Modules folder in the Project Explorer window
and double-click Module1.

2. An empty page in the Code window appears.

3. Type the following:

Option Explicit

Sub btnShowForm()
 frmMeasurement.Show vbModeless
End Sub

This code displays the Measurement form with the display style set
to the constant vbModeless, meaning that the form is not modal.
Since it is modeless, no applications are suspended when the form is
displayed, so the user need not respond to the form before using any
other part of the application.

To add a button to the spreadsheet to run this program:

1. Press Alt+F11 to switch from VBA to the Excel spreadsheet.

2. If the Excel Forms Toolbar is not visible, select View >
Toolbar > Forms to display it.

3. Double-click the Button icon and click in or near cell A4, the
spot in the spreadsheet where you want to insert it.

The Assign Macro dialog box appears.

4. Select the ShowForm module as the macro name and click
OK.

 Using VB Instead of VBA

Oscilloscope Analysis and Connectivity Made Easy 121

5. Right-click the button, select Edit Text, and change the
button caption from Button1 to Show Form.

6. Select File > Save to save the Measurement.xls spreadsheet,
along with the VBA program you just created.

7. Click away from the button if necessary to exit Design
mode, and then click the Show Form button to run the
program.

The Measurement Demo dialog box appears.

Note: Even if you do not have a waveform source connected to
Channel 1 of your oscilloscope, you will still be able to pick up
enough random noise to generate some data to verify that your
program works.

8. Click the buttons on the form.

You will see results similar to Figure 29 and Figure 30. If an error occurs,
switch to VBA and debug the program

Using VB Instead of VBA

If you want to work this exercise using Visual Basic 6.0, you will need to
create the form using that tool instead of Excel VBA. Refer to Chapter 7 for
an example of how to use Visual Basic 6.0 controls to design a form.

Figure 34 shows a VB 6.0 version of the Chart Measurement program
discussed in this chapter. This program was saved under the project name
p_CH6VB.vbp on the CD that accompanies this book.

Using VB Instead of VBA

122 Oscilloscope Analysis and Connectivity Made Easy

Figure 34: Visual Basic 6.0 version of Chart Measurement program

This version of the program differs from the VBA version in a number of
ways:

• Where you used the VBA UserForm class with the Initialize
event, substitute the VB Form class with the Load event.
Therefore, instead of creating a UserForm_Initialize()
subroutine, you will create a Form_Load() subroutine in VB
6.0 as shown here:

Private Sub Form_Load()

• This version of the program uses combo boxes instead of list

boxes to hold duration and interval information. In this
example, the record length is recalculated if the user changes
values inside the combo box by clicking or entering a new
value:

Private Sub cboDuration_Click()
 CalcRecordLength
End Sub

Private Sub cboDuration_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then CalcRecordLength
End Sub

Private Sub cboDuration_LostFocus()
 CalcRecordLength
End Sub

Private Sub cboMeasurement_Click()
 CalcRecordLength
End Sub

Private Sub cboTimerInterval_Click()
 CalcRecordLength
End Sub

 Using VB Instead of VBA

Oscilloscope Analysis and Connectivity Made Easy 123

Private Sub cboTimerInterval_KeyPress(KeyAscii As Integer)
 If KeyAscii = 13 Then CalcRecordLength
End Sub

Private Sub cboTimerInterval_LostFocus()
 CalcRecordLength
End Sub

• Instead of using a spreadsheet to store the measurement data

point results, this version uses a list box named lstResults to
display the data in the form itself:

Private Sub timMEAS_Timer()
 Dim r

 If NotifyCount >= StopTimerCount Then
 timMEAS.Enabled = False
 DrawChart

 Exit Sub
 End If

 Tvc1.WriteString strID
 r = Tvc1.ReadString
 r = Format(r, "#.#######")
 If chkShowData.Value = 1 Then
 lstResults.AddItem r
 End If
 arr(NotifyCount, 0) = r
 NotifyCount = NotifyCount + 1

 Call DrawChart
 DoEvents

End Sub

• The Clear button is used to clear this list (as well as the

related chart):

Private Sub cmdClear_Click()
 Call cmdStop_Click
 lstResults.Clear
 ReDim arr(0, 0)
 arr(0, 0) = 0
 DrawChart
End Sub

• The form also contains an MSChart control (included with

Visual Basic) for charting captured measurements:

Private Sub Form_Load()
 Dim i As Long
 Dim axisID As VtChAxisId
 timMEAS.Enabled = False

axisID = VtChAxisIdX
 With TVCChart
 .chartType = VtChChartType2dLine
 .Plot.Axis(axisID).AxisScale.Type = VtChScaleTypeLinear
 .Plot.Axis(axisID).AxisScale.Hide = True

Chapter 6 Review

124 Oscilloscope Analysis and Connectivity Made Easy

 .Plot.Axis(axisID).AxisGrid.MajorPen.Style =
 VtPenStyleNull
 .Plot.Axis(axisID).AxisGrid.MinorPen.Style =
 VtPenStyleNull
 End With

Private Sub DrawChart()

 TVCChart.Repaint = False
 TVCChart.ChartData = arr
 TVCChart.Repaint = True

End Sub

• This chart control requires related code to handle a

2-dimensional array:

Option Explicit
Dim arr() ’ array for holding measurement values that are
 ’ charted, chart requires a two-dimensional array
Dim NotifyCount As Long ’ counter variable for tracking
 ’ measurements

Private Sub cmdMeasure_Click()
 Dim arrnum As Long
 If StopTimerCount = 0 Then
 MsgBox "Please reenter interval and duration data",
 vbOKOnly, "TekVISA Demo"
 Exit Sub
 End If
 NotifyCount = 0
 arrnum = StopTimerCount

 ReDim arr(arrnum, 0)
 strID = "MEASUREMENT:IMMED:TYPE " & cboMeasurement.Text &
 "; VAL?;:HEADER OFF"
 timMEAS.Enabled = True

End Sub

Chapter 6 Review

To review what you learned in Chapter 6:

• You can use the Chart Measurement program designed in
this chapter to capture measurements at a desired frequency
and plot those results in an Excel chart or on the form itself
(in the case of the VB version).

• You can make other VB programs available to your program
by adding them as Additional Controls or References from
the VBA Tools menu.

 Chapter 6 Review

Oscilloscope Analysis and Connectivity Made Easy 125

• You can

• make frames within a form visible or invisible
depending on code logic

• close a form by unloading it when the user clicks a
Close button

• allow users to choose items from label controls
associated with spin buttons

In Chapter 7, you will find out how to build a program that logs on a
triggered program event.

Chapter 6 Review

126 Oscilloscope Analysis and Connectivity Made Easy

 Introduction

Oscilloscope Analysis and Connectivity Made Easy 127

Chapter 7:
A Triggered Waveform Capture Example

Using VB to write a program that gets waveforms
and measurements on a triggered event

Introduction

The extended example presented in this chapter shows how to capture
waveform and measurement data from oscilloscopes when a trigger is
defined and then executed. It includes code for use with Tektronix TDS7000
and TDS/CSA8000 and similar Windows-based oscilloscopes. In addition to
capturing data, the program shows how to display the data on a grid and save
it to a file on disk.

The example is written in Visual Basic 6.0 (included in Microsoft Visual
Studio) rather than Excel VBA, because VB can accommodate larger
waveforms and because VB programs run independently as separately
compiled executables rather than as interpreted add-ons to Excel. If you do
not have VB 6.0 but do have Excel, refer to the source code for the
TriggerCapture button on the TekVISA Toolbar. That code presents many
features that are similar to those discussed here.

Getting Started

What You Need to Get Started
You can work this example either on a separate PC or on your Windows-
based oscilloscope, using Visual Basic 6.0. To get started, you will need the
following:

• A Windows-based Tektronix oscilloscope (an external
monitor is recommended if you are working the example on
your oscilloscope)

• Visual Basic 6.0 installed on your oscilloscope or on an
external PC

• The TekVISA connectivity software described in Chapter 1
(see page 323 for the location of the completed example)

Getting Started

128 Oscilloscope Analysis and Connectivity Made Easy

What You Will Do
In this chapter, you will review how to use Visual Basic 6.0 controls and
learn to build a program similar to the one that runs when you click the
TriggerCapture icon on the TekVISA Toolbar. This sample program
illustrates how to capture triggered waveform and measurement data at the
current oscilloscope settings, display it on a grid, and save it to a file.

Figure 35 shows the design-time interface that you will create. The user
interface consists of a VB Form with four tabs. Depending on whether you
are connecting to a TDS/CSA8000 or to a TDS7000 Series oscilloscope or
similar model, either the second or the third tab displays measurement data at
runtime.

• The Settings tab allows the user to specify the VISA device
to connect to, indicate channel sources for waveform
captures, set display and save options, and specify whether
measurement data should be included (see Figure 37)

• If the user elects to capture measurement data, a
Measurement tab appears so the user can select
measurement(s) to be captured. Either the second or the third
tab displays measurement data at runtime, depending on the
oscilloscope type. For most TDS Series real-time
oscilloscopes, a list of measurements appears (see Figure
38). For TDS/CSA8000 sampling oscilloscopes, a list of
eight possible measurements appears (see Figure 39).

• If the user chooses to display data, processing results appear
on the Data tab (see Figure 40).

 Getting Started

Oscilloscope Analysis and Connectivity Made Easy 129

�
Figure 35: The form you will design for the Triggered Waveform Capture example

This Form allows users to:

• view all connected local and remote TekVISA resource
devices and assign one to be used for the triggered capture

• view active channels on the assigned device (and their
different timebases on TDS/CSA8000 sampling
oscilloscopes) and select one or more of them to be used for
waveform captures

• identify the measurement channel for collecting
measurements on TDS7000 real-time oscilloscopes

• display active measurement types and active
measurements for TDS/CSA8000 sampling oscilloscopes
and select one or more of them to be used for measurement
capture

• view the captured results on a row/column grid

The Triggered Waveform Capture Example in VB

130 Oscilloscope Analysis and Connectivity Made Easy

Figure 36 shows the first tab of the Form at runtime after fields have been
populated with results from a TDS/CSA8000 Series oscilloscope.

Figure 36: The Triggered Waveform Capture form at runtime

See page 158 for more about running this program.

What You Will Learn
The purpose of this chapter is to illustrate some basic operations of the
TekVISA ActiveX Control with respect to triggered events. Once you have
gone through this chapter, you will know how to:

• add the TekVISA ActiveX Control to the list of available
ActiveX controls in Visual Basic 6.0, and use some of its
properties and methods

• design and create a Form in Visual Basic 6.0 by dragging
and dropping controls

• modify controls on the Form by changing properties in the
Properties window

• understand the workings of the Triggered Waveform Capture
program, so you can modify it if needed or use it as a
template for other programs

The Triggered Waveform Capture Example in VB

Building the Form
This chapter focuses primarily on the VB code and assumes you are already
familiar with visual editing tools for constructing dialog interfaces.

Table 5 shows some useful icons on VB’s Standard Toolbar.

 The Triggered Waveform Capture Example in VB

Oscilloscope Analysis and Connectivity Made Easy 131

Table 14: Useful icons on the VB Standard Toolbar

Icon Icon Name Select from

Insert Form Standard Toolbar

Object Browser Standard Toolbar

Project Explorer Standard Toolbar

 Properties Standard Toolbar

Toolbox Standard Toolbar

To begin building the Form:

1. Open a new Standard EXE project in Visual Basic 6.0.

The Microsoft Visual Basic screen appears with the Project Explorer
window, the Properties window, and space for the Code window or
Object Browser to display. You will also see a blank form.

2. If you do not see the Project Explorer or Properties window,
display them by selecting icons from the Standard Toolbar
(see Table 5).

3. If you do not see a blank form, insert one by clicking the
Insert Form icon on the VB Standard Toolbar.

4. Click Save Project As and save the form as frmTC.frm and
the project as p_Trig.vbp.

5. Rename the Form Triggered Waveform Capture.

6. If necessary, add the TekVISA ActiveX Control to the
Toolbox. To do this:

a. Select Project > Components…

The Components dialog box appears.

b. Place a � in the box next to TekVISA Control and click
OK.

The Triggered Waveform Capture Example in VB

132 Oscilloscope Analysis and Connectivity Made Easy

The TekVISA Control icon is added to the Toolbox.

7. Drag the TekVISA Control icon from the Toolbox onto the
Form, where it appears as an icon at design time, but is
invisible at runtime.

By adding this Control to the Form, you have made all its methods
and properties available to be called by your code.

In addition to the TekVISA Control, this example employs several
Visual Basic custom controls:

• the Microsoft Tabbed Dialog control

• the Microsoft Common Dialog control

• the MSFlexGrid

• the TreeView control included in the Microsoft
Windows Common Controls

All of these custom controls are included with Visual Basic 6.0 and
need to be checked as well.

8. Repeat steps 6 and 7 for all of the Visual Basic custom
controls that will be used in this example.

 The Triggered Waveform Capture Example in VB

Oscilloscope Analysis and Connectivity Made Easy 133

Table 6 shows icons on the Toolbox for VB controls that are relevant to this
example.

Table 15: Icons for VB controls used in this example

Icon Icon Name Select from

Checkbox Toolbox

Combobox Toolbox

CommandButton Toolbox

CommonDialog Toolbox

Frame Toolbox

Label Toolbox

Listbox Toolbox

MSFlexGrid Toolbox

SSTab Toolbox

TekVISA Toolbox

TreeView Toolbox

The Settings Tab
Add controls to design the Settings tab of the form, making sure that each
control is placed as shown in Figure 37.

Note: It is not necessary to drag the controls onto the form in the
exact order shown; however, doing so will help you verify that you
have changed all the properties correctly.

The Triggered Waveform Capture Example in VB

134 Oscilloscope Analysis and Connectivity Made Easy

�
Figure 37: The Settings tab at design time

Table 16 summarizes all the changes to make in the Properties window to
convert the Settings tab to its final appearance.

Note: When working with the SSTabTVC tab, click the icon, draw a
box the size of the set of tabs you want, then adjust the Tabs and
TabsPerRow properties to create 4 tabs. For each tab, the Caption
and Tab properties vary. For example, Tab 0 is the Settings tab.

 The Triggered Waveform Capture Example in VB

Oscilloscope Analysis and Connectivity Made Easy 135

Note: When working with the properties of the lblRS label

the drop-down arrow () for the BackColor property will not be
visible until you click inside that row.

Changes to names are underlined in the table, to help distinguish them from
captions. A control’s name corresponds to its subroutine name or variable
name in the code. A control’s caption appears on the Form and affects how
the form looks, but has nothing to do with the code.

Table 16: Changes to make in the Properties window to the Settings tab

Control Property Change to

Triggered Waveform Capture form

(Name) frmTC Form

Caption Triggered Waveform
Capture

tvc (TekVISA) (Name) Tvc1 (no change needed)

CommonDialog (Name) dlgTVC

Caption Record Size: Label

(Name) lblRS

Caption (no Caption)

BackColor Button Light Shadow

Label

BorderStyle Fixed Single

(Name) cmdOK CommandButton
 Caption OK

(Name) cmdCancel CommandButton
 Caption Cancel

(Name) cmdClose CommandButton
 Caption Close

The Triggered Waveform Capture Example in VB

136 Oscilloscope Analysis and Connectivity Made Easy

Control Property Change to

Settings Tab (First Tab)

(Name) SSTabTVC

Caption Settings

Tabs 4

SSTab

TabsPerRow 4

(Name) chkWFM

Caption Waveform Data

Checkbox

Value 1 (checked)

(Name) chkM Checkbox
 Caption Measurement Data

(Name) chkSave Checkbox
 Caption Save to File

(Name) chkDisplay Checkbox
 Caption Display in Grid

Devices Frame (Top Left)

(Name) fraDevice Frame

Caption Devices

(Name) cmdRefreshDevices CommandButton
 Caption Refresh Devices

(Name) cmdAssignDevices CommandButton
 Caption Assign Device

Listbox (Name) lstDevices

Captures Frame

Frame Caption Captures

Label Caption # of Captures

Combobox (Name) cboNumCaptures

Channel Selection Frame

Frame Caption Channel Selection

Label Caption Select from active
channels

TreeView (Name) TV1

(Name) cmdRefreshChannels CommandButton
 Caption Refresh Channels

 The Triggered Waveform Capture Example in VB

Oscilloscope Analysis and Connectivity Made Easy 137

Control Property Change to

Label Caption Selected Channels

Listbox (Name) lstCH

(Name) cmdClearCH CommandButton
 Caption Clear

The Measurements Tabs
Depending on whether you are connecting to a TDS7000 Series oscilloscope
or similar real-time model, or to a TDS/CSA8000 sampling oscilloscope,
either the second or the third tab displays measurement data at runtime.
Therefore, two tabs must be created at design time to account for these
differences.

Add controls to design the TDS7000 Series Measurements tab of the form,
making sure that each control is placed as shown in Figure 38.

Figure 38: The TDS7000 Series Measurements tab at design time

Table 17 summarizes all the changes to make in the Properties window to
convert the TDS7000 Series Measurements tab to its final appearance.

The Triggered Waveform Capture Example in VB

138 Oscilloscope Analysis and Connectivity Made Easy

Table 17: Changes to make in the Properties window to the TDS7000 Series
Measurements tab

Control Property Change to

Measurements Tab (Second Tab - 7000 Version)

SSTab Caption Measurements

Label Caption Select Measurements

Listbox1 (Name) lstMeas

Label Caption 7000

Add controls to design the TDS8000Series Measurements tab of the form,
making sure that each control is placed as shown in Figure 39.

Figure 39: The TDS8000 Series Measurements tab at design time

Table 18 summarizes all the changes to make in the Properties window to
convert the TDS8000 Series Measurements tab to its final appearance.

 The Triggered Waveform Capture Example in VB

Oscilloscope Analysis and Connectivity Made Easy 139

Table 18: Changes to make in the Properties window to the TDS8000 Series
Measurements tab

Control Property Change to

Measurements Tab (Third Tab - 8000 Version)

SSTab Caption Measurements

Label Caption Select

Label Caption TYPE: WFM SOURCE:
DISPLAY STATE

(Name) chkMeas(0) Checkbox
 Caption Measure 1

Caption lblMDesc(0)

Caption (no Caption)

BackColor Button Light Shadow

Label

BorderStyle Fixed Single

(Name) cmdShowMeas CommandButton
 Caption Refresh Setup Info

The Data Tab
The Data tab holds an MSFlexGrid control. Add controls to design this tab of
the form, making sure that each control is placed as shown in Figure 40.

The Triggered Waveform Capture Example in VB

140 Oscilloscope Analysis and Connectivity Made Easy

Figure 40: The Data tab at design time

Table 19 summarizes all the changes to make in the Properties window to
convert the Data tab to its final appearance.

Table 19: Changes to make in the Properties window to the Data tab

Control Property Change to

Data Tab (Third Tab)

SSTab Caption Data

(Name) grdData

FixedCols 0

FixedRows 1

MSFlexGrid

Rows 2

(Name) lblStatus

Caption (no Caption)

BackColor Button Face

Label

BorderStyle Fixed Single

(Name) cmdClear CommandButton
 Caption Clear Grid

 The Triggered Waveform Capture Example in VB

Oscilloscope Analysis and Connectivity Made Easy 141

Getting Help
You can find out more about using various controls by taking a look at the
Help facility. For example, to find out more about the Label control:

1. From the Microsoft Visual Basic menu bar, select Help >
Contents… > MSDN Library > Visual Studio 6.0
Documentation > Visual Basic Documentation > Reference
> Language Reference > Objects > L > Label Control.

2. Other approaches might be to:

• select Help > Index… and scroll down
alphabetically to find Label Control

• select Help > Search… and type Label Control as
the words to search for

Using the Object Browser (F2)
In addition to using online help, you can use the Object Browser to learn
more about the classes and members of Visual Basic’s core and custom
components.

By pressing F2 or clicking the Object Browser icon on the Standard Toolbar,
you can browse to find out which methods, properties, and events to use with
object components, so you can make the correct calls and references in your
code.

For example, to find out more about the TekVISA TVC control:

1. Press F2 to bring up the Object Browser.

2. Select <All Libraries> from the upper drop-down list.

3. Type tvc in the lower drop-down list as the object to search
for.

4. Press Enter.

You will see the screen shown in Figure 41. You can then click
various library entries in the Search Results to see how the TVC
control relates to other components of the project.

The Triggered Waveform Capture Example in VB

142 Oscilloscope Analysis and Connectivity Made Easy

Figure 41 Using the Object Browser with Visual Basic 6.0

From the Object Browser, you can immediately jump to a context-
sensitive online help topic by pressing the F1 function key (or right-
click and select Help).

The VB Intellisense Feature
As you type the code, you will notice some helpful features. For example,
when you type a period after a COM object such as the TekVISA ActiveX
Control, VB’s Intellisense feature opens a list that prompts you with choices.
Valid properties, methods, and events exposed by the COM object as public
are preceded by a green icon, like the top choice in the following list:

 The Triggered Waveform Capture Example in VB

Oscilloscope Analysis and Connectivity Made Easy 143

Similarly, after you type an opening parenthesis, the Intellisense feature
prompts you with the syntax for arguments, and displays valid choices:

Reviewing the Code
This example permits the user to specify which measurements to capture and
which channel waveforms to capture when a trigger event occurs. It also
allows the user to display the captured data in a grid.

Triggered data is typically captured by the TekVISA Control’s
ServiceRequest event. First the oscilloscope’s status and event registers are
cleared, then event and status bits are set to await a triggered event. Once a
trigger occurs, the register bits are changed and a ServiceRequest event is
raised in the TekVISA Control. This coding example illustrates the use of
TekVISA ActiveX Control calls and GPIB command strings to set up and
capture these events.

Note: Because of the length of this exercise, step-by-step instructions
for entering code and detailed line-by-line explanations are not given
here. Instead, this chapter summarizes routines in tables and focuses
on core routines for controlling the oscilloscope. All source code, of
course, is included on the companion CD that accompanies this
book.

Code Organization
The code is contained in two modules:

• a form module

• a standard code module

The form module is named frmTC.frm and the code module is named
modTrig.bas. Mostly by acting on events, the code on the form describes
what should happen when the form is initialized and when the user clicks
each button on the form.

Most code is held in the code module. Code on the form handles simple user
events and calls procedures held in the code module.

Figure 42 shows the two modules in separate Code Windows in VB.

The Triggered Waveform Capture Example in VB

144 Oscilloscope Analysis and Connectivity Made Easy

Figure 42: The form module and code module in separate Code Windows of VB

The flow diagram in Figure 43 shows how key modules in the program
interact with one another and the oscilloscope. TekVISA ActiveX Control
methods and events appear shaded in the diagram.

 The Triggered Waveform Capture Example in VB

Oscilloscope Analysis and Connectivity Made Easy 145

Figure 43: Triggered Waveform Capture example flow diagram

Initialization Routines
These preliminary routines load the form, initialize the combo box for
number of captures and the list box for TDS7000 measurements, and format
the tree view control for selecting channel(s). Table 20 summarizes
Initialization routines.

Table 20: List of Initialization routines

Main() This starting routine loads the form and calls
PopulateNumCaptures to populate the number of
captures choices.

PopulateNumCaptures (c As
ComboBox)

Populates the number of captures choices in the
combo box.

Form_Load() Executes when the Triggered Waveforms Capture form
is initially loaded. Calls FormatTV and
PopulateMeasArray routines to initialize the tree view
and list box.

The Triggered Waveform Capture Example in VB

146 Oscilloscope Analysis and Connectivity Made Easy

FormatTV (tv as TreeView) Formats the tree view control.

PopulateMeasArray() �� Initializes array values for display name and GPIB
commands (see MeasureData data type)

�� Populates the array for actual GPIB measurement
commands.

�� Populates the array for units (V-volts;S-
seconds;VS-voltseconds;P-percentage; HZ hertz)

�� Populates the lstMeas list box

Type MeasureData

 sDisplayName As String

 sGPIB As String

 sUnit As String

 blnSelected As Boolean

End Type

Data type for holding GPIB measurements on the 7000

�� display name in frmTc.lstMeas

�� GPIB command

�� measurement unit

�� selection status

List Devices And Display Channels Routines
Before a triggered event can be captured, the user must specify a device. The
interface provides three buttons on the Settings tab (the first tab) for working
with devices and their active channels: cmdRefreshDevices,
cmdAssignDevices, and cmdRefreshChannels. In addition, the user can
choose one or more active channels from the tree view control, and select the
number of captures from the combo box.

• The cmdRefreshDevices_Click event routine calls the
GetDevices routine, which queries the FindList property of
the TekVISA control and lists connected devices. These
could be local devices or remote systems. The results are
displayed in the lstDevices list box.

• The cmdAssignDevices_Click event routine makes the
currently selected device the active choice and displays all
associated active channels in the TV1 tree view.

• The cmdRefresh Channels_Click event routine:

• Calls the DisplayChannels procedure; checks to see
if this is a TDS/CSA8000 Series oscilloscope; if so,
calls the DisplayChannels8000 routine

• Uses the tree view control to display hierarchical
data. A tree view control is comprised of nodes.
Nodes can have parent, child, and sibling
relationships with other nodes. In the case of the
TDS7000, the control channel is indicated by a child
node. In the case of the TDS/CSA8000, timebases
(Main, Mag1, Mag2) can be displayed for each
channel.

 The Triggered Waveform Capture Example in VB

Oscilloscope Analysis and Connectivity Made Easy 147

• The TV1_NodeClick event executes when the user chooses
channel(s) to capture from the TV1 tree view. It places
chosen channel(s) in the lstCH list box.

• The cboNumCaptures_Click event executes when the user
chooses the number of captures to perform from the
cboNumCaptures combo box.

Table 21 summarizes the routines involved in listing devices, displaying
channels, and selecting the number of captures.

Table 21: Routines involved in listing devices and displaying channels

cmdRefreshDevices_Click() Executes when the Refresh Devices button is
clicked on the Settings tab. Calls the GetDevices
routine.

Get Devices (t As
TVCLib.Tvc, lst As ListBox

Queries the FindList property of the TVC control and
lists connected devices. These could be local or remote
devices.

cmdAssignDevices_Click() Executes when the Assign Device button is clicked
on the Settings tab. Calls GetScopeType and
DisplayChannels routines.

cmdRefreshChannels_Click() Executes when the Refresh Channels button is
clicked on the Settings tab. Calls the DisplayChannels
routine.

TV1_NodeClick (ByVal Node
As MSComctlLib.Node)

Executes when a tree view node is selected on the
Settings tab. Chooses channels for capture and places
chosen channels in the lstCH list box.

DisplayChannels (tv As
TreeView)

Detects which channels are open and which channel is
the active measurement channel. The SELECT? GPIB
command on 7000 Series oscilloscopes returns a
semicolon-separated string with 13 values: 4 channel,
4 math, 4 reference and 1 indicating the measurement
channel at the end of the string. If the channel is active,
a numeral "1" is returned. If it is inactive a numeral "0"
is returned. This routine parses the
semicolon-separated string and uses the values to
build nodes that populate the tree view control. It also
displays the waveform record length in the label
caption at the bottom left part of the Settings tab.

A separate routine is called for TDS/CSA8000 Series
oscilloscopes.

The Triggered Waveform Capture Example in VB

148 Oscilloscope Analysis and Connectivity Made Easy

DisplayChannels8000 (tv As
TreeView)

Very similar to the DisplayChannels routine except it
also tests for MAG1 and MAG2 timebase views in
TDS/CSA8000 Series oscilloscopes; these are added
as child nodes to the active channels.

cmdClearCH_Click() Executes when the Clear button is clicked on the
Settings tab. Clears the lstCH list box.

cboNumCaptures_Click() Executes when the # of Captures combo box is
selected on the Settings tab. Stores the number of
captures to perform.

List Measurements Routines
If the chkM check box on the Settings tab is selected, one of two
measurement tabs is chosen:

• The second tab lists possible measurements for the
TDS7000 and similar scopes. Information about these
measurements ia held in an array of a user-defined type
called MeasureData, which holds

• the DisplayName of the meaurement

• its GPIB command equivalent

• its unit value (such as seconds, volts, or percent)

• whether it is selected

The routine to populate this array and the list box is
PopulateMeasArray, which is called when the form is loaded (see
Table 20).

• The third tab holds measurements for TDS/CSA8000
scopes. Eight measurements are possible. These are set up by
the user on the oscilloscope. Unlike the TDS7000 and
similar models, each timebase (Main, Mag1, Mag2) for each
of eight channels can be identified as the source channel for
measurement. In addition, 8 math measurements are
possible. This means 32 sources are possible (3 timebases on
8 channels plus 8 math channels).

Information about these measurements appears in the chkMeas
control array held by the third tab of the SStab control. This tab is
initially populated with the beginning array elements (a single check
box and a single label) just for positioning purposes. When the code
queries the oscilloscope at runtime for the active measurements that
have been set up, the code finishes populating the array on the form.

 The Triggered Waveform Capture Example in VB

Oscilloscope Analysis and Connectivity Made Easy 149

The Refresh8000Meas routine chooses which of two routines to call
by reading the upperbound of the chkMeas control array: It either
calls the Build8000Controls routine to load the controls, or the
cmdshowMeas_Click event (for the command button labeled Refresh
Setup Info) to query the TDS/CSA8000 oscilloscope for information
on which of the 8 possible measurements are set up.

Table 22 summarizes the routines involved in listing the measurements to
capture.

Table 22: Routines involved in listing measurements to capture

chkM_Click() Executes when the Measurement Data check box
is selected on the Settings tab.

Refresh8000Meas() Loads the display on the 8000 measurement tab or
requeries setup measurements on the oscilloscope.

Build8000Controls() Loads a control array for use with 8000 scopes

cmdShowMeas_Click() Executes when the Refresh Setup Info button is
clicked on the Measurements tab (8000 version).

Wait for Trigger Routine
After all selections have been made on the Settings tab and Measurements
tab, the user clicks the OK button. The cmdOK_Click routine clears status and
event registers and, depending on the oscilloscope type, calls one of two
routines: GetAcquisition or GetAcquisition8000.

Here are extracts from the relevant code:

Private Sub cmdOK_Click()
 Dim i As Integer
 Select Case nScopeType
 Case Is < 8000

 If blnMEAS Then
 .
 . (code omitted)
 .
 Next
 End If

 If blnSaveToFile Then
 .
 . (code omitted)
 .
 End If

 ntracker = 0
 tvcRef.WriteString "DESE 0; *ESE 0; *SRE 0; *CLS"
 Call GetAcquisition
 If blnShowInGrid Then
 .
 . (code omitted)
 .
 End If

The Triggered Waveform Capture Example in VB

150 Oscilloscope Analysis and Connectivity Made Easy

 Case Is >= 8000

 If blnSaveToFile Then
 .
 . (code omitted)
 .

 End If

 ntracker = 0
 tvcRef.WriteString "DESE 0; *ESE 0; *SRE 0; *CLS"
 Call GetAcquisition8000
 If blnShowInGrid Then
 .
 . (code omitted)
 .
 End If
 Call SRQHandler8000
 End Select
End Sub

In this routine:

• Different blocks of code execute depending on whether the
user chooses to

• capture measurement data (blnMEAS = TRUE)

• have the captured data displayed (blnShowInGrid =
TRUE)

• have the data saved to disk (blnSaveToFile = TRUE)

• The four native GPIB commands (DESE, *ESE, *SRE, and
*CLS) disable Service Requests to avoid getting irrelevant
ones. The *CLS command clears the event registers.

• Depending on the type of oscilloscope, this routine calls
either GetAcquisition or GetAcquisition8000 (see page 151).

• If the oscilloscope is a TDS/CSA8000, this routine then calls
the SRQHandler8000 routine directly, rather than waiting for
an oscilloscope trigger to fire the ServiceRequest event
handler.

You can use this method of simulating a trigger event to test your
code, then move the SRQHandler8000 call to the ServiceRequest
handler when working with live data.

Table 23 summarizes the routines involved when the OK button and other
dialog box buttons are clicked.

 The Triggered Waveform Capture Example in VB

Oscilloscope Analysis and Connectivity Made Easy 151

Table 23: Routines involving dialog box buttons

cmdOK_Click() Executes when the OK button is clicked on the
Triggered Waveform Capture form. Checks the
oscilloscope type.

�� If it is a 7000 or similar model, reinitializes the
selection status of entries in the listMeas list box,
clears event registers to await a trigger event, and
calls the GetAcquisition routine.

�� If it is an 8000, clears event registers to await a
trigger event and calls the GetAcquisition8000
routine.

Based on items checked, other fields are reinitialized
as well.

cmdCancel_Click() Executes when the Cancel button is clicked on the
Triggered Waveform Capture form. Cancels the
acquisition or other activity in progress.

cmdClose_Click() Executes when the Close button is clicked on the
Triggered Waveform Capture form. Closes the dialog
box.

Set Registers Routines
The two routines that set up registers to await a trigger event are the
GetAcquisition routine and the GetAcquisition8000 routine.

After setting up registers, they await a trigger event. When an oscilloscope
trigger fires a ServiceRequest event in the TekVISA control, the
ServiceRequest event handler calls one of two event handling routines:
SRQHandler or SRQHandler8000.

Here is the GetAcquisition code:

Sub GetAcquisition()

 ’This code sets the registers in preparation for a trigger which
 ’ activates a ServiceRequest event in the TVC control. See the GPIB
 ’ programmer’s guide for the TDS series scopes.
 Dim sCHCommands As String

 sCHCommands = "DESE 1;*ESE 1;*SRE 32"

 If tvcRef Is Nothing Then Set tvcRef = frmTC.Tvc1

 With tvcRef
 .WriteString "TRIGGER:A:MODE NORMAL"
 .WriteString "ACQUIRE:STATE OFF"
 .WriteString "ACQUIRE:STOPAFTER SEQUENCE"
 .WriteString sCHCommands
 .WriteString "*CLS"
 .WriteString "ACQUIRE:STATE RUN"
 .WriteString "*OPC"
 End With
 End Sub

The Triggered Waveform Capture Example in VB

152 Oscilloscope Analysis and Connectivity Made Easy

The native GPIB commands in this routine do the following:

• The TRIGGER:A:MODE NORMAL command sets the trigger
mode to normal rather than forcing a trigger.

• The ACQUIRE:STATE OFF command stops acquisitions and
is equivalent to pressing the front-panel STOP button.

• The ACQUIRE:STOPAFTER SEQUENCE command tells
the oscilloscope to stop acquisition after acquiring a single
sequence.

• The DESE (Device Event Status Enable) and *ESE (Event
Status Enable) commands set registers to await an Operation
Complete (OPC) event (bit 1) in the event queue. This event
is summarized in the Event Status Bit (ESB) of the Status
Byte Register.

Note: Setting the DESE register and the ESE register to the same
values allows only those codes to be entered into the event queue
and summarized on the ESB bit (bit 5) of the Status Byte
Register. (See the on-line help for your oscilloscope for a full
description of registers.)

• The *SRE (Service Request Enable) command sets the Event

Status Bit (bit 5) to await a Service Request (SRQ).

• The *CLS command clears the event registers.

• The ACQUIRE:STATE RUN command starts acquisitions
and is equivalent to pressing the front-panel RUN button,
unless the STOPAFTER mode is set to SEQUENCE, in
which case this command is equivalent to pressing the front-
panel SINGLE button.

• The *OPC command generates the Operation Complete
message in the Standard Event Status Register (SESR) and
generates a Service Request (SRQ) when all pending
operations complete. This allows you to synchronize
operation of the oscilloscope with your application program.

The TDS/CSA8000 Series is a sampling oscilloscope and uses slightly
different native GPIB codes. For the 8000 Series, The STOPAFTER GPIB
command set requires more definition. You must specify the stopafter mode,
the stopafter condition, and the sample count before a stopafter condition is
met, as shown in the following code:

Sub GetAcquisition8000()

 Dim sCHCommands As String
 Dim nCH As Integer

 The Triggered Waveform Capture Example in VB

Oscilloscope Analysis and Connectivity Made Easy 153

 sCHCommands = "DESE 1;*ESE 1;*SRE 32"
 If tvcRef Is Nothing Then Set tvcRef = frmTC.Tvc1
 With tvcRef
 .WriteString "ACQUIRE:STATE OFF"
 .WriteString "ACQUIRE:STOPAFTER:CONDITION ACQWFS"
 .WriteString "ACQUIRE:STOPAFTER:COUNT 20"
 .WriteString "ACQUIRE:STOPAFTER:MODE CONDITION"
 .WriteString "ACQUIRE:DATA CLEAR"
 .WriteString sCHCommands
 .WriteString "*CLS"
 .WriteString "ACQUIRE:STATE RUN"
 .WriteString "*OPC"
 End With

End Sub

Table 24 summarizes the routines involved in setting registers.

Table 24: Routines involved in setting registers

GetAcquisition () Sets the 7000 oscilloscope registers in preparation for
a trigger, which activates a ServiceRequest event in
the TVC control. See the GPIB programmer’s guide for
TDS7000 Series oscilloscopes and similar models.

ParseQueryResults (s1 As
String, QType As String) As
String

Reads different acquisition parameter data from the
TDS7000 oscilloscope, including the trigger source
channel. The return value indicates PULSE, EDGE, or
LOGIC. Although this is not used in this example, it is
included as sample code for applications that wish to
control trigger parameters more closely.

GetAcquisition8000() Sets the TDS/CSA8000 oscilloscope registers in
preparation for a trigger, which activates a
ServiceRequest event in the TVC control. See the
GPIB programmer’s guide for TDS/CSA8000
oscilloscopes.

Trigger Event Handling Routines
The SRQHandler and SRQHandler8000 event handlers are triggered by the
event being raised by the TVC control after it recognizes a trigger from the
oscilloscope. These handlers must contend with four major options. Did the
user choose to:

• capture waveform data?

• capture measurement data?

• have the captured data displayed?

• have the data saved to disk?

The Triggered Waveform Capture Example in VB

154 Oscilloscope Analysis and Connectivity Made Easy

These choices are not mutually exclusive; any or all are possible. These four
choices are held in global Boolean variables declared in the code module:

Public blnWFM As Boolean
Public blnMEAS As Boolean
Public blnShowInGrid As Boolean
Public blnSaveToFile As Boolean

The two event handler routines test whether measurement and waveform data
are requested. Within these two major tests, other tests are made to find out
whether to display captured data in the grid and/or store the data to disk.

Note: The user sets up the acquisition mode on the oscilloscope. The
GetWaveform or GetWaveform8K method of the TekVISA control
sets the data format to the fastest format (BINARY), and also issues
HEADER OFF commands as needed, so only the argument itself is
returned on query responses.

Here are extracts from the relevant code in SRQHANDLER:

Public Sub SRQHandler()
 .
 . (code omitted)
 .
 ’ stop other service requests
 tvcRef.WriteString "DESE 0; *ESE 0; *SRE 0; *CLS"
 .
 . (code omitted)
 .
 If blnMEAS Then ’ build measurement data first

 ’call routine which builds the GPIB command for
 ’retrieving measurements
 Call BuildCMDString
 tvcRef.WriteString strCMD
 sRet = tvcRef.ReadString

 If blnSaveToFile And sFileName = "" Then
 .
 . (code omitted)
 .
 If blnShowInGrid Then ’ user wishes to display
 ’ measurement data in grid
 .
 . (code omitted)
 .
 frmTC.lblStatus = "Acquiring data..."
 frmTC.Refresh
 DoEvents

 If blnWFM Then ’ get waveform data
 .
 . (code omitted)
 .
 ’get the waveform for the first channel
 Call tvcRef.GetWaveform(nCH, wfm, xinc, trigpos, vUnits,
 hUnits)
 ’ get the record length
 reclength = 0
 sQry = "HORIZONTAL:RECORDLENGTH?"
 tvcRef.WriteString sQry
 reclength = CLng(tvcRef.ReadString)
 .
 . (code omitted)

 The Triggered Waveform Capture Example in VB

Oscilloscope Analysis and Connectivity Made Easy 155

 .
 If blnShowInGrid Then
 .
 . (code omitted)
 .
 frmTC.lblStatus = ""
 frmTC.Refresh
 DoEvents
 ntracker = ntracker + 1
 ’ reset the registers for another trigger
 Call GetAcquisition
 .
 . (code omitted)
 .
End Sub

Note that:

• The handler routine first disables service requests on the
oscilloscope.

• If the user chooses to retrieve measurement data, a GPIB
query command is built, sent to the oscilloscope using the
TekVISA WriteString method, and the response is read using
the TekVISA ReadString method.

• Depending on user selections, the response is displayed
and/or saved to disk. You can examine the relevant code by
opening the program included on the companion disk.

• If the user chooses to retrieve waveform data, the handler
employs the TekVISAGetWaveform method and sends a
HORIZONTAL:RECORDLENGTH? GPIB query to retrieve
waveform data and the information to display it properly.

The SRQHANDLER8000 routine is similar to the SRQHANDLER routine
with a slightly different TekVISA control call to get a waveform:

tvcRef.GetWaveform8K nCH, nTB, wfm, xinc, xoffset, vUnits, hUnits

The GetWaveform8K method includes an extra parameter to identify the
channel timebase of the waveform you are interested in retrieving.

Table 25 summarizes the routines involved in handling trigger events.

The Triggered Waveform Capture Example in VB

156 Oscilloscope Analysis and Connectivity Made Easy

Table 25: Routines involved in handling trigger events

Tvc1_ServiceRequest() Executes when a Service Request needs handling by
the oscilloscope. This is the trigger event handler. It
calls the SRQ Handler routines.

SRQHandler() Handles a call from the TVC control’s Service Request
event on 7000 and similar scopes. Captures and
displays waveforms from user-selected channels as
well as user-specified measurements from the active
measurement channel when a trigger occurs and
service request bits are changed in the oscilloscope.

SRQHandler8000() Handles a call from the TVC control’s Service Request
event on 8000 scopes. Captures and displays
waveforms from user-selected channels as well as
user-specified measurements from the active
measurement channel when a trigger occurs and
service request bits are changed in the oscilloscope.

Get Measurement and Waveform Data Routines
Most of these routines are called from the SRQHandler and
SRQHandler8000 routines to perform helper tasks. Table 26 summarizes the
routines involved in getting measurement and waveform data.

Table 26: Routines involved in getting measurement and waveform data

chkWFM_Click() Executes when the Waveform Data check box is
selected on the Settings tab. Sets a boolean value.

BuildCMDString() Builds the command string for taking measurements
from the 7000 oscilloscope. Concatenates user choices
for measurements. Called by the SRQHandler routine.

GetChannelInt (pass As
String) As Integer

Returns integer for the chosen channel for use in
TVC.GetWaveform method calls.

BuildCMDString8000() Builds the measurement command string for the 8000
oscilloscope by going through the control array. Called
by the SRQHandler8000 routine.

GetChannelInt8K (s1 As
String) As Integer

Returns integer for the chosen channel for use in
TVC.GetWaveform8000 method calls.

GetTimeBaseInt (s1 As
String) As Integer

Returns an integer value for timebase, which is
required on the 8000 scopes.

 The Triggered Waveform Capture Example in VB

Oscilloscope Analysis and Connectivity Made Easy 157

Display Results in Grid Routines
The Data tab holds an MSFlexGrid control for displaying processing results.
Table 27 summarizes the routines involved in displaying results on this grid.

Table 27: Routines involved in displaying results in the grid

chkDisplay_Click() Executes when the Display in Grid check box is
selected on the Settings tab. Sets a boolean value.

DisplayMeasData (sRet As
String, nRow As Long, nCol
As Long, blnFirst As
Boolean, g As
MSFlexGridLib.MSFlexGrid)
As Integer

Displays 7000 measurement data in the grid on the
Data tab. Called from SRQHandler routine if the check
box was selected.

DisplayMeasData8000 (sRet
As String, nRow As Long,
nCol As Long, blnFirst As
Boolean, g As
MSFlexGridLib.MSFlexGrid)
As Integer

Displays 8000 measurement data in the grid on the
Data tab. Called from SRQHandler8000 routine if the
check box was selected.

cmdClear_Click() Executes when the Clear Grid button is clicked on
the Data tab.

Save Data to Disk Routines
These routines perform helper tasks associated with saving data in a file.
Table 28 summarizes the routines involved in saving data to disk.

Table 28: Routines involved in saving data to disk

chkSave_Click() Executes when the Save in File check box is
selected on the Settings tab. Sets a boolean value.

HandleSaveDialog() Uses the MS CommonDialog control to open a file
(using the timestamp as the default name) for saving
captured data to disk. Called from the SRQHandler and
SRQHandler8000 routine if the check box was
selected.

Note: For saving data directly to disk, you may use
the ReadToDisk method of the TekVISA ActiveX
control. See its use in Appendix C.

ConcatInBuffer (ByRef As
String)

Uses CopyMemory (Alias for RtlMoveMemory) API call
to speed up string concatenation when building a string
to write to disk.

The Triggered Waveform Capture Example in VB

158 Oscilloscope Analysis and Connectivity Made Easy

Other General Purpose Routines
Table 29 summarizes other general purpose routines used in this example.

Table 29: General purpose routines

GetScopeType (t As
TVCLibTvc, sst As
TabDlg.SStab) As Boolean

Assigns values to the global variables specifying the
type of oscilloscope to which the application is currently
connected. Calls CheckTabVisibility routine to make
the appropriate Measurement tab visible.

CheckTabVisibility (chkM As
VB.CheckBox, ssTabTVC AS
TabDlg.SSTab)

Makes the appropriate tabs visible based on the
oscilloscope type.

RemoveLF (s1 As String) As
String

Removes the linefeed character from returned GPIB
commands.

GetEUnit (s1 as String, u As
String) As String

Returns a semicolon-separated string. The string to the
left of the semi colon represents the measurements
numeric value. The string to the right of the semicolon
represents the engineering unit.

Multiplies the numeric value by a factor of 1000
depending on the engineering unit detected (eg.
milliseconds (ms), microsoeconds (us),
nanoseconds(ns))

Running the Triggered Waveform Capture Example
To run the program:

1. Select File > Save to save the VBA program you just
created.

2. If you have the necessary hardware, follow the steps in the
Oscilloscope Connectivity Made Easy book (and in
Appendix D on page 321 of this book) to connect the cable
and start the waveform generator. You can adjust the
amplitude and frequency of the waveform generated by your
sound card by moving the slider bars on the Jitter
Adjustment tab of the waveform generator program.

Note: Even if you do not have a waveform source connected to
Channel 1 of your oscilloscope, you will still be able to pick up
enough noise to generate some data to see if your program
works. After clicking OK in this example, select one of the
trigger setup options from the Trig menu of your TDS7000
Series oscilloscope, then select Force Trigger.

3. Select Run > Start or press the F5 function key to run the

program.

 The Triggered Waveform Capture Example in VB

Oscilloscope Analysis and Connectivity Made Easy 159

The Triggered Waveform Capture dialog box appears, with a list of
devices available for connection displayed in the top left frame on
the Settings tab.

4. If necessary, click Refresh Devices.

5. Select a device to connect to and click Assign Device. The
device can be:

a. GPIB8, which corresponds to the software virtual GPIB
connection inside your oscilloscope, between your
Windows-based VB program and the embedded
oscilloscope software.

b. Another GPIB device corresponding to a remote
oscilloscope networked to your system via the VXI-11
Server Control. If this server is loaded on the
oscilloscope, the following icon will appear in the
system tray in the lower right corner of the oscilloscope
screen (or external monitor).

 .

6. On your oscilloscope interface, physically select one or
more source channels and a record size for capturing
waveform data, and a measurement channel (control
channel) for capturing measurement data. Also select the
trigger type and any other relevant trigger settings.

7. If you are connected to a TDS/CSA8000 sampling
oscilloscope, select one or more timebases (Main, Mag1,
Mag2) on your oscilloscope to make them active and
available for use.

8. If necessary click Refresh Channels to update the tree view
display.

9. In the tree view display, select the active channel(s) (and
timebase(s) if any) that you want to use for this capture.

10. Select the number of captures to perform or leave the default
as is.

11. Leave the checkmark beside Waveform Data and select the
check boxes beside Measurement Data and Save to File and
Display in Grid if you want all the options enabled;
otherwise, clear any that you do not want enabled.

You have now made all necessary selections from the Settings tab.

The Triggered Waveform Capture Example in VB

160 Oscilloscope Analysis and Connectivity Made Easy

For example, suppose you are running VB on a TDS7000 with CH1,
CH2, and CH3 activated; CH1 selected as the measurement channel;
and a record size of 5000 selected on your oscilloscope. If you
choose GPIB8, select 1 as the # of captures, select the check boxes
next to Measurement Data and Save to File, and select CH2 and CH3
for waveform captures, the example will look like this:

Similarly, suppose you are running VB on a system attached to a
networked TDS/CSA8000 oscilloscope with all three times bases
(Main, Magnification1 and Magnification2) activated for CH1 and
CH2, and a record size of 500 selected on your oscilloscope. If you
choose GPIB10, select 2 as the # of captures, select the check boxes
next to Measurement Data and Display in Grid, and select Main on
CH1 and Mag1 on CH2 for waveform capture, the example will look
like this:

 The Triggered Waveform Capture Example in VB

Oscilloscope Analysis and Connectivity Made Easy 161

12. From the Measurements tab, select the measurements you
want to capture and display. (Hold down the Ctrl key while
clicking if you want to make multiple selections.)

For example, if you are running VB on a TDS7000 and and want to
capture and display the AMPLITUDE, AREA, CYCLE AREA, CYCLE
MEAN, CYCLE RMS, and FALL TIME of the signal on the
measurement channel, the example will look like this:

If you are running VB on a system attached to a networked TDS8000
or CSA8000 instrument and want to capture and display the
MAXIMUM and FALL time on CH2 MAIN and CMEAN on CH1 MAIN,
the example will look like this:

Using VBA Instead of VB

162 Oscilloscope Analysis and Connectivity Made Easy

13. Click OK to start the triggered data capture.

14. If necessary, force the trigger (see page 158) or press a
trigger button if the trigger type was glitch.

You will see results similar to the following on the Data tab, with
measurements displayed for each triggered capture (2 captures in this
case), followed by time and data values for each triggered waveform
capture:

If an error occurs, choose select Help > Index… and type the
keywords Debug Toolbar to find a quick summary of the debugging
features of VB available on the Debug Toolbar.

Using VBA Instead of VB

If you want to work this exercise using Excel VBA instead of Visual Basic
6.0, you will need to create a similar form using that tool instead of VB 6.0.
Refer to the discussion of the TriggerCapture button on the Excel TekVISA
Toolbar in Chapter 2 and see the corresponding Toolbar source code for an
example of how to use Excel controls to design a triggered data capture form.
That example uses a spreadsheet rather than a grid to store the waveform data
points and measurement data.

Note: Unlike VB 6.0 code, which can be compiled into a stand-alone
executable, VBA is interpreted code that only runs inside Microsoft
Office applications. Restrictions on spreadsheet size and speed of
interpreted code will limit waveform data size and the execution
speed of your program.

 Chapter 7 Review

Oscilloscope Analysis and Connectivity Made Easy 163

Chapter 7 Review

To review what you learned in Chapter 7:

• You can use Visual Basic 6.0, which is part of the Microsoft
Visual Studio, to design your own forms and build your own
functions.

• You can add the TekVISA Control to VB, and then drag it
onto your form just like any other ActiveX control.

• The VB Help facility contains many useful examples, and
the Object Browser can help you understand the hierarchy of
objects in the VB object model. The VB help system and the
Object Browser are closely interwoven.

• The VB Intellisense feature prompts you with valid
arguments and other choices when you type code in the
Code window.

• You can use the Triggered Waveform Capture program
described in this chapter to capture waveform data and
measurement data, display it on a grid, and save it to a file
on disk.

Chapter 7 Review

164 Oscilloscope Analysis and Connectivity Made Easy

Oscilloscope Analysis and Connectivity Made Easy 165

PART 2: MATLAB AND
LABWINDOWS/CVI AND LABVIEW

Chapter 8: Live Updates to MATLAB using ICT...167

Chapter 9: LabWindows/CVI and LabVIEW ..207

PART 2: MATLAB AND
LABWINDOWS/CVI AND LABVIEW

166 Oscilloscope Analysis and Connectivity Made Easy

 Introduction

Oscilloscope Analysis and Connectivity Made Easy 167

Chapter 8:
Live Updates to MATLAB using ICT

Introduction

In this chapter, you will learn how to control Tektronix Windows-based
oscilloscopes from an existing MATLAB program by using

• the MATLAB Instrument Control Toolbox

• the VISA standard

• native GPIB instrument control commands and queries

What You Need to Get Started
You can work this example either on a separate PC or on your Windows-
based oscilloscope. To get started, you will need the following:

• A Windows-based Tektronix oscilloscope (an external
monitor is recommended if you are working the example on
your oscilloscope)

• TekVISA installed on the oscilloscope

• Release 12.1 of MATLAB (Version 6.1) and the Instrument
Control Toolbox (Version 1.1) installed on your oscilloscope
or on an external PC. (This release includes MATLAB ICT
support for Tektronix oscilloscopes)

If MATLAB is running on an external PC:

• TekVISA or another vendor’s implementation of
VISA must be installed on the same external PC as
MATLAB

• a GPIB interface card (ISA, PCI or USB) must be
installed on your oscilloscope

• The Waveform Generator program from the companion CD
to this book (see page 323 for the locations of this program
and the completed examples)

• A signal generator cable

The Instrument Control Toolbox

168 Oscilloscope Analysis and Connectivity Made Easy

What You Will Do
In this chapter, you will get an NRZ waveform directly from the oscilloscope
and use it in an existing MATLAB program. Unlike previous chapters, you
will not be using Visual Basic. Instead, you will use GPIB commands and
queries, the VISA standard, and the MATLAB Instrument Control Toolbox
functions to:

• Obtain a waveform directly from your oscilloscope using
MATLAB’s VISA-GPIB interface

• Calculate jitter and plot it

What You Will Learn
Once you have gone through this chapter, you will know:

• How to use MATLAB Instrument Control Toolbox functions
to connect to and control Tektronix Windows-based
oscilloscopes

• How to route native GPIB commands and queries through
MATLAB Instrument Control Toolbox functions

• How to access VISA objects through MATLAB Instrument
Control Toolbox functions

• The main Instrument Control Toolbox functions to use for
Tektronix oscilloscope data connectivity

The Instrument Control Toolbox

The Instrument Control Toolbox is a collection of MATLAB M-file
functions built on the MATLAB Technical Computing Environment. The
Instrument Control Toolbox includes adaptors for the GPIB interface
(IEEE-488) and the VISA standard. Using these adaptors, the toolbox
provides a framework from MATLAB for communicating with instruments
that support these standard interfaces, such as Tektronix Windows-based
oscilloscopes.

Table 37 in Appendix A summarizes the MATLAB Instrument Control
Toolbox functions used in this chapter. To learn more about the full set of
MATLAB Instrument Control Toolbox functions, refer to the Instrument
Control Toolbox User’s Guide for Use with MATLAB, published by The
MathWorks, Inc. Their website is http://www.mathworks.com.

Note: To access help, type help instrument at the MATLAB
command line. To view help for any function or property, type
instrhelp name, substituting a name of an ICT function or property
for name.

 The Instrument Control Toolbox

Oscilloscope Analysis and Connectivity Made Easy 169

Configuring VISA Resources
As discussed in Chapter 1, virtual GPIB is an internal software path on some
Tektronix oscilloscopes between Windows-based software such as
MATLAB and the oscilloscope software. The jitter2.m function used in this
example assigns the primary address of virtual GPIB (GPIB8) to the VISA-
GPIB object it creates. If you are running MATLAB on a connected PC
rather than on the oscilloscope itself, you will need to change the GPIB
descriptor and possibly the vendor code to something else.

To determine the correct primary address of the VISA-GPIB object to use,
run the VISA Configuration Utility shown in Figure 44.

�
Figure 44: The VISA Configuration Utility

Communicating with VISA-GPIB Objects
Before looking at a more complicated example, here are the basic steps for
communicating with a VISA-GPIB object (MATLAB’s terminology for a
VISA resource) using the Instrument Control Toolbox:

Note: In code examples in this chapter:

• Native GPIB commands are shown in boldface.

• Instrument Control Toolbox (ICT) functions are shown in
boldface italics.

1. Create a VISA-GPIB instrument object to virtual GPIB

(assuming you are running TekVISA on your oscilloscope):

g = visa(’tek’,’GPIB8::1::INSTR’);

2. Configure some property values:

% Make sure the size of the InputBuffer - in bytes - is
% sufficient.
set(g,’InputBufferSize’,2000000);

The Instrument Control Toolbox

170 Oscilloscope Analysis and Connectivity Made Easy

3. Connect to the instrument:

fopen(g);

4. Write and read some data:

% Issue a GPIB query
idn = query(g, ‘*IDN?’)
% Issue a GPIB command
fprintf(g, ‘DATA:SOURCE ch1’);

5. Disconnect and clean up:

fclose(g);
delete(g)

The usage of these Instrument Control Toolbox functions is explained more
fully later in this chapter.

Using the Instrument Control ASCII Communication Tool
The Instrument Control Toolbox also has a special communication tool that
you can use to communicate with instruments. To use this tool:

1. Type instrcomm in the Command Window.

The following screen appears.

2. Select VISA-GPIB and click Next.

 The Instrument Control Toolbox

Oscilloscope Analysis and Connectivity Made Easy 171

The following screen appears.

3. Make the appropriate selections for your configuration and
click Next.

The following screen appears.

4. Select the desired check box and click Create.

The Instrument Control ASCII Communication Tool is created.
Figure 45 shows this tool, which provides a graphical user interface
for writing native GPIB instrument control commands and queries
and reading responses.

The Instrument Control Toolbox

172 Oscilloscope Analysis and Connectivity Made Easy

�
Figure 45: MATLAB’s Instrument Control Toolbox ASCII communication tool

5. Click Connect and then type a GPIB command or query and
click the appropriate button.

A screen similar to the following appears.

�

Cleaning up Instrument Objects during Debugging
Once you have identified and opened a VISA-GPIB instrument, you can use
the instrfind Instrument Control Toolbox function to find out how many
objects are in memory and which one’s status is currently open. (Only one
can be open at a time.)

 The Jitter Example with MATLAB ICT Functions

Oscilloscope Analysis and Connectivity Made Easy 173

For example, during debugging, you could create and save the following
MATLAB function as an M file:

% caution - closes, deletes and clears all instruments
if ~isempty(instrfind)
fclose(instrfind);
delete(instrfind);
end

This function closes and deletes all instrument objects from memory.

As an alternative, you could use the instrreset ICT function, which performs
the equivalent of the preceding block of code. Type this function from the
Command Window to clean up the workspace whenever the function you are
debugging includes an instrument object that has an abnormal closure or is
interrupted without fully executing.

The Jitter Example with MATLAB ICT Functions

The MATLAB example you will work with is an updated version of the
MATLAB Jitter example that appeared in the Oscilloscope Connectivity
Made Easy book. If you have that book, consult it to learn more about how
the program works, or study the code comments in the example itself on the
CD that accompanies this book. You will add a direct waveform connection
to this program so that it accepts live waveform data from your oscilloscope.

For the purposes of this exercise, the logic and details of the provided Jitter
example are irrelevant. The important point is to change the program so that
it accepts live data rather than reading data from a file.

In the modified example that you will create, native GPIB commands and
queries are written to VISA instrument objects through the Instrument
Control Toolbox interface. Figure 46 shows how GPIB commands and
queries are funneled to and from a VISA-GPIB object using Instrument
Control Toolbox fprintf and query functions.

The Jitter Example with MATLAB ICT Functions

174 Oscilloscope Analysis and Connectivity Made Easy

Figure 46: How commands and queries are funneled through MATLAB functions

See Table 34 and Table 35 for more information about native GPIB
commands and queries, and Table 37 for more details about Instrument
Control Toolbox functions.

Creating the jitter2 Function
Next you will add a direct waveform connection to a clock jitter problem.
The new function will communicate directly with the oscilloscope.

The function automatically acquires a waveform by funneling native GPIB
commands and queries (shown in boldface) through Instrument Control
Toolbox functions (shown in boldface italics) to the identified VISA
resource device on the oscilloscope.

 The Jitter Example with MATLAB ICT Functions

Oscilloscope Analysis and Connectivity Made Easy 175

To create the jitter2.m function:

1. Start up MATLAB 6.1.

2. From the Current Directory Browser in the lower left pane,
browse and select the path to the working folder where you
have stored the clock jitter solution files.

3. From the Command Window, select File > New >
M-file to start a new file in the MATLAB Editor/Debugger.

4. Type the following (omit the comments if desired):

function rmsJitter = jitter2(symbolRate,threshold,hysteresis)
% Modified version of jitter1 to acquire data directly from the
% scope

% calling syntax
% rmsjitter = jitter2(5000,0,0.1)
% or rmsjitter = jitter2
% in the latter case default parameter values are used.

% use default values if function is called without arguments
if nargin < 1
symbolRate = 5000;
threshold = 0;
hysteresis = 0.1;
end

% This function calculates the RMS jitter in a waveform.
% Jitter is the difference between the actual time an edge
% occurs and the time where it should have been based on the
% supplied sample rate.

strCh = ’ch1’;
% change the value below to test for different record lengths
recordLen = 400000;
% Use inside the scope with TekVISA(board 8, primary address 1)
g = visa(’tek’,’GPIB8::1::INSTR’);
% if running MATLAB on a connected PC, change vendor code
% and/or GPIB descriptor as necessary e.g.
%g = visa(’ni’,’GPIB0::1::INSTR’);
%g = visa(’agilent’,’GPIB0::1::INSTR’);

% Make sure the size of the InputBuffer - in bytes - is
% sufficient.
set(g,’InputBufferSize’,recordLen*2);

This code:

a. Sets default values for the three arguments to the
function (symbol rate, threshold, and hysteresis), if these
arguments were not entered at the command line.

b. Sets channel 1 (ch1) as the data source from which to
obtain and return a waveform and sampling rate.

c. Sets the record length of the waveform to be acquired to
400,000 data points.

The Jitter Example with MATLAB ICT Functions

176 Oscilloscope Analysis and Connectivity Made Easy

d. Uses the VISA Instrument Control Toolbox function to
create a VISA-GPIB object corresponding to TekVISA
virtual GPIB (board 8, primary address 1).

Note: If you are running MATLAB on a connected PC rather
than on the oscilloscope itself, you will need to change the
GPIB descriptor and possibly the vendor code to something
else (see page 169).

e. Assigns that VISA-GPIB object to the variable g.

f. Uses the ICT Set function to set the ICT InputBufferSize
property to twice the size of the record length. This
software input buffer is used later during an fscanf read
operation, which will terminate when the amount of data
stored in the buffer equals this value.

5. Type the following:

fopen(g);

The fopen Instrument Control Toolbox function connects to the
instrument by opening the TekVISA virtual GPIB resource device.

6. Type the following:

idn = query(g, ’*IDN?’);
fprintf(g,’HEADER OFF’);
fprintf(g,[’DATA:SOURCE ’ strCh]);
fprintf(g,’DATA:ENCDG SRIBINARY’);
fprintf(g,’DATA WIDTH 2);
fprintf(g,’ACQUIRE:STATE OFF’);
fprintf(g,’ACQUIRE:MODE NORMALSAMPLE’);
fprintf(g,’ACQUIRE:STOPAFTER SEQUENCE’);
fprintf(g,’ACQUIRE:STATE RUN’);

The native GPIB *IDN? query is funneled through the ICT query
function. This query returns the oscilloscope identification code.

The TDS7000 native GPIB commands in this set are funneled
through the ICT fprintf function and perform the following tasks:

a. The HEADER OFF command turns verbose mode off, causing
the oscilloscope to omit headers on query responses, so that only
the argument is returned.

b. The DATA:SOURCE command sets the data source to channel 1.

c. The DATA ENCDG:SRIBINARY command sets the data format
to binary using signed integer data-point representation, with the
least significant byte transferred first.

 The Jitter Example with MATLAB ICT Functions

Oscilloscope Analysis and Connectivity Made Easy 177

d. The DATA:WIDTH command sets the number of bytes to transfer
to two bytes per data point.

e. The ACQUIRE:STATE OFF command stops acquisitions and is
equivalent to pressing the front-panel STOP button.

f. The ACQUIRE:MODE NORMALSAMPLE command sets the
acquisition mode to sample and is equivalent to selecting
Horizontal/Acquisition from the Horiz/Acq menu and then
choosing Sample from the Acquisition Mode group box.

g. The ACQUIRE:STOPAFTER SEQUENCE command tells the
oscilloscope to acquire a single sequence rather than continuous
data.

h. The ACQUIRE:STATE RUN command starts acquisitions and is
equivalent to pressing the front-panel RUN button, unless the
STOPAFTER mode is set to SEQUENCE, in which case this
command is equivalent to pressing the front-panel SINGLE
button.

7. Type the following:

while query(g,’BUSY?’,’%s’,’%e’); end;
horizLen = query(g,’HORIZONTAL:RECORD?’,’%s’,’%e’);

The two native GPIB queries here (BUSY? and
HORIZONTAL:RECORD?) are funneled through the ICT query
function and behave as follows:

a. The WHILE loop executes as long as the oscilloscope is busy
processing ACQUIRE:STATE RUN, which helps synchronize the
operation of the oscilloscope with this program.

b. After the acquisition, the HORIZONTAL:RECORD? query
returns the current horizontal record length, which is converted
from a string to a floating-point number and stored in the
variable horizLen.

8. Type the following:

fprintf(g,’DATA:START %d’, 1);
fprintf(g,’DATA:STOP %d’, recordLen);
fprintf(g,’CURVE?’);

These three native GPIB commands (DATA:START, DATA:STOP,
and CURVE?) do the following:

a. Set the start data point for waveform transfer to 1.

b. Set the stop data point to the record length that you selected for
this transfer.

The Jitter Example with MATLAB ICT Functions

178 Oscilloscope Analysis and Connectivity Made Easy

c. Read a complete waveform from channel 1 into the input buffer
of the specified VISA resource device using the CURVE? query.
In binary format, the waveform is formatted as:

#<a><bbb><data><newline>

where:

a = the number of b bytes
bbb = the number of bytes to transfer
data = the waveform curve data
newline = a single-byte new-line character at the end

9. Type the following:

dummy_string1 = fscanf(g,’%s’,2)
dummy_string2 = fscanf(g,’%s’,str2num(dummy_string1(2)))
recordLen2Transfer = min(recordLen,horizLen);
[waveform_raw,count] = fread(g,recordLen2Transfer,’int16’);
dummy_string3 = fscanf(g,’%s’,1);

 These statements use Instrument Control Toolbox functions to read

data bytes from the input buffer and store them as follows:

a. The first fscanf ICT function reads the first two bytes of the
waveform (#, a and bbb above), converts them to a string and
stores them in dummy_string1.

b. The second fscanf ICT function reads the number of values
specified in the second byte of dummy_string1. Since this
number (converted from a string) corresponds to a, the function
reads the correct number of bytes to transfer, which corresponds
to bbb, converts it to a string, and stores it in dummy_string2.

c. The next statement determines the lesser of the requested record
length and the length of the record actually acquired, and stores
the result in RecordLen2Transfer.

d. The fread ICT function reads the number of bytes of binary
waveform data specified in RecordLen2Transfer. Using Int16
precision, the function reads 16 bits for each value and interprets
each value as an integer. The waveform data values are stored in
waveform_raw.

e. The next fscanf ICT function reads the 8-bit terminator character
and stores it in dummy_string3.

10. Type the following:

% get the sampling interval
sampleInterval = query(g,’WFMOUTPRE:XINCR?’,’%s’,’%e’);

 The Jitter Example with MATLAB ICT Functions

Oscilloscope Analysis and Connectivity Made Easy 179

This code funnels a native GPIB query (WFMOUTPRE:XINCR?)
through the ICT query function. This query:

a. Gets the horizontal point spacing (XINCR also known
as the X increment or sampling interval) for the
waveform from the active device.

b. Converts it from a string to a number and stores it in
samplingInterval.

11. Type the following:

% Scale the data
yunit = query(g,’WFMOUTPRE:YUNIT?’);
ymult = query(g,’WFMOUTPRE:YMULT?’,’%s’,’%e’);
yoff = query(g,’WFMOUTPRE:YOFF?’,’%s’,’%e’);
yzero = query(g,’WFMOUTPRE:YZERO?’,’%s’,’%e’);

This code funnels four native GPIB queries (WFMOUTPRE:YUNIT?,
WFMOUTPRE:MULT?, WFMOUTPRE:YOFF?, and
WFMOUTPRE:YZERO?) through the ICT query function: These
queries:

a. Return the vertical unit of measurement (YUNIT) (also
called the Y unit), which is stored in yunit, to be used for
labeling the waveform plot.

b. Return the vertical scale factor (YMULT) per digitizing
level (also called the Y multiple), which is converted
from a string to a floating-point number and stored in
ymult.

c. Return the vertical offset (YOFF) in digitized levels (also
called the Y offset), which is converted from a string to a
floating-point number and stored in yoff.

d. Return the vertical offset (YZERO) in units of Y (also
called Y zero), which is converted from a string to a
floating-point number and stored in yzero.

12. Type the following:

% scale the data to the correct values
waveform = ymult*(waveform_raw - yoff) - yzero;

This calculation uses matrix multiplication to scale the waveform
data to the correct values by subtracting the vertical offset in units of
Y from each element in the raw waveform data array less the Y
offset, and multiplying the result by the vertical scale factor. The
resulting array is stored in waveform.

The Jitter Example with MATLAB ICT Functions

180 Oscilloscope Analysis and Connectivity Made Easy

13. Type the following:

% find the edges in the supplied waveform
measuredTime =
measureEdgeTiming2(waveform,threshold,hysteresis,
 sampleInterval);

% preallocate space for the clocks array
clocks=zeros(1,length(measuredTime));

% derive the clocks based on the supplied symbol rate
for index = 2:length(measuredTime);
 clocks(index) = (round(symbolRate * (measuredTime(index) -
 measuredTime(index - 1)))) + clocks(index-1);
end

% fit the derived clocks and the measured time to a straight
% line
coef = polyfit(clocks, measuredTime, 1);

% coef(2) is the intercept (a) in the form y = a + bx
% coef(1) is the slope (b) in the form y = a + bx
a = coef(2);
b = coef(1);

measuredAverageSymbolRate = 1/b;
measuredSymbolRateError = (measuredAverageSymbolRate -
 symbolRate)/symbolRate;

subplot(2,1,1);
plot(waveform);
title = ([’symbol rate error: ’,
 num2str(measuredSymbolRateError * 100), ’%’]);
xlabel(’samples’);
% provide the label in units acquired from the scope
% strtok is needed to remove double quotes
ylabel([’waveform amplitude, ’ strtok(yunit,’"’)]);

This code:

a. Calls the supplied measureEdgeTiming2 function
(which must be located in the same directory as the
jitter2 function).

b. Calculates remaining steps of the clock jitter algorithm.

c. Plots the waveform. Notice that the strtok MATLAB
function strips the double quotes from the string value in
yunit, so that measurement unit values will display
correctly on the plot.

14. Type these lines, which calculate and plot the jitter:

reconstructedTime = a + (clocks .* b);

% jitter is the difference between the measured time and the
% reconstructed time.
jitter = reconstructedTime - measuredTime;

% see the MATLAB function reference for ’norm’
rmsJitter = norm(jitter)/sqrt(length(jitter));

subplot(2,1,2);
plot(reconstructedTime,jitter);

 The Jitter Example with MATLAB ICT Functions

Oscilloscope Analysis and Connectivity Made Easy 181

title = ([’RMS jitter: ’, num2str(rmsJitter*1e6, ’ \mus’]);
xlabel(’time in seconds’);
ylabel(’jitter in \mus’);
% force the x-axis limits to be tight so that both plots line
% up
set(gca,’XLim’,[0 count*sampleInterval])

15. Type the following lines at the very end of the jitter2

function to disconnect from the instrument:

% close the instrument object
fclose(g);
delete(g);

These Instrument Control Toolbox functions do the following:

a. The fclose ICT function closes the connection to the active VISA
resource device and sets the Status property to closed.

b. The delete ICT function removes the VISA-GPIB object from
memory.

16. Click the Save to Disk icon from the toolbar, type jitter2.m
and click OK.

Figure 47 shows the first page of the completed jitter2 function.

The Jitter Example with MATLAB ICT Functions

182 Oscilloscope Analysis and Connectivity Made Easy

�
Figure 47: The first screen of the jitter2 function in MATLAB

Testing Automatic Waveform Acquisition
If you have the necessary hardware, follow the steps in the Oscilloscope
Connectivity Made Easy book (and in Appendix D on page 321 of this book)
to connect the cable and start the waveform generator. Change the amplitude
and frequency of the waveform generated by your sound card by moving the
slider bars to the maximum amount on the Jitter Adjustment tab of the
waveform generator program.

Note: Even if you do not have a waveform source connected to
Channel 1 of your oscilloscope, you will still be able to pick up
enough random noise to generate some data to verify that your
program has connectivity. Even though the jitter calculation and plot
will not work correctly, you will be able to produce a waveform plot
in such a case.

 The Jitter Example with MATLAB ICT Functions

Oscilloscope Analysis and Connectivity Made Easy 183

Next you will automatically acquire waveform data from your oscilloscope
into MATLAB by calling the jitter2 function:

1. In the Command Window, type
rmsjitter = jitter2 (5000, 0, .1)

or simply

rmsjitter = jitter2

MATLAB runs the jitter2 function, assigns the returned result as the
value of rmsjitter, and displays the answer in the Command Window
(since the line does not end with a semi-colon (;)).

MATLAB also displays two plotted graph solutions in the Figure
Window. The first plot is the acquired waveform and the second is
the clock jitter. The acquired waveform should resemble the one
shown on your oscilloscope.

�
Figure 48: The plotted graph solutions for jitter2 in the MATLAB Figure Window

Improved Jitter Example with a GUI Interface

184 Oscilloscope Analysis and Connectivity Made Easy

Improved Jitter Example with a GUI Interface

In this section, to make the previous solution more interactive, you will
modify the jitter2 example to use the MATLAB Graphical User Interface
(GUI). This GUI allows interactive execution of MATLAB scripts, change of
parameters and communication with instruments while providing powerful
numerical computation and visualization.

For more information about using this GUI, consult the MATLAB User’s
Guide, the MATLAB online manual, and MATLAB’s Creating Graphical
User Interfaces books.

Adding GUI Components to the Solution
By adding these components to your solution, you will enable users to type
input parameters into a form and click buttons to activate portions of the
code. Follow these steps to build a GUI:

1. From the Command Window, select File > New > GUI or
type guide to run MATLAB’s GUI utility.

A file opens in the Figure Window with a canvas (grid) where you
can place graphical user interface objects and axes objects.

A toolbar with GUI objects appears on the left side of the window.
Table 30 shows icons on the MATLAB guide toolbar that are
relevant to this example.

2. Select the Static Text tool from the toolbar and place labels
for various GUI components (Symbol Rate, Record Length,
Threshold, and Hysteresis) on the right side of the canvas,
as shown in Figure 49.

 Improved Jitter Example with a GUI Interface

Oscilloscope Analysis and Connectivity Made Easy 185

Table 30: Icons for MATLAB guide toolbar controls used in this book

Icon Icon Name Select from

Static Text guide toolbar

Edit Text guide toolbar

Push Button guide toolbar

Popup Menu guide toolbar

Checkbox guide toolbar

Axes guide toolbar

�
Figure 49: Building a GUI using the MATLAB guide utility

Improved Jitter Example with a GUI Interface

186 Oscilloscope Analysis and Connectivity Made Easy

�
Figure 50: The MATLAB guide utility Property Inspector

3. To change the default label for each of these controls,
double-click the label or right-click and select Property
Inspector (see Figure 50) from the context menu of the
label, then change the String property from the default text to
the desired text.

The labels will now read Symbol Rate, Record Length, Threshold,
and Hysteresis.

4. Select the Edit Text control from the toolbar and place the
edit boxes under the four labels created in the previous steps.

5. Using the Property Inspector, change the Tag property for
each of these edit boxes to the code names shown in
Table 31. These are the names that will be used to refer to
these edit boxes in automatically generated code.

6. Using the Property Inspector, change the String property for
each of these edit boxes to the initial values shown Figure 49
and Table 31.

7. Select the PopUp Menu control from the toolbar and create a
popup menu as shown in Figure 49.

 Improved Jitter Example with a GUI Interface

Oscilloscope Analysis and Connectivity Made Easy 187

8. Using the Property Inspector, click the little box next to the
String property for the popup menu control:

and type the following on separate lines:

TekVISA - Scope
NI VISA - PC
Agilent VISA - PC

9. Using the Property Inspector, change the Value property for
the pop-up menu control to [1.0].

This makes the first selection, TekVISA - Scope, the default selection
in the menu.

10. Select the Push Button control from the toolbar and create
six buttons, sized and positioned as shown in Figure 49.

11. Select the Checkbox control from the toolbar and create a
check box as shown in Figure 49.

12. Using the Property Inspector, change the Tag property for
each of these controls to the code names shown in Table 31.
These are the names that will be used to refer to these
controls in automatically generated code.

13. Using the Property Inspector, change the String property for
each of these controls to the initial values shown in Figure
49 and Table 31. These are the labels that will appear on
these controls in the GUI.

14. Select the Axes control and place two Axes objects on the
left side of the canvas as shown in Figure 49. Leave their
properties unchanged.

15. Double-click the canvas or right-click it and select Property
Inspector from the context menu, then change the Tag
property for the whole figure to the value shown in Table 31.
This is the name that will be used to refer to the whole figure
in automatically generated code.

Note: Tag properties are shown underlined in Table 31 to help
distinguish them from String properties.

Improved Jitter Example with a GUI Interface

188 Oscilloscope Analysis and Connectivity Made Easy

Table 31: Changes to make in the Property Inspector to GUI controls

GUI Control Property Change to

StaticText String Symbol Rate

StaticText String Record Length

StaticText String Threshold

StaticText String Hysteresis

Tag editSymbolRate EditText
 String 5000

Tag editRecordLength EditText
 String 200000

Tag editThreshold EditText
 String 0

Tag editHysteresis EditText
 String 0.1

Tag popupmenuSelector

String TekVISA - Scope
NI VISA - PC
Agilent - PC

PopupMenu

Value no change from default [1.0]

Tag pushbuttonCONNECT PushButton
 String CONNECT

Tag pushbuttonExportInstrument PushButton
 String ExportInstrument

Tag checkboxWaveformExport Checkbox
 String Waveform Export

Tag pushbuttonStart PushButton
 String Start

Tag pushbuttonStop PushButton
 String Stop

Tag pushbuttonSINGLE PushButton
 String SINGLE

Tag pushbuttonClose PushButton
 String Close

Axes String no change

Axes String no change

Figure Tag figJitter3

 Improved Jitter Example with a GUI Interface

Oscilloscope Analysis and Connectivity Made Easy 189

16. Save the GUI under the name jitter3.

This creates the jitter3.fig and jitter3.m files. The FIG-file contains
the GUI layout and graphical data that implements the graphical
view. The M-file provides the functionality that implements the
application model.

Note: Instead of adhering to the sequential programming model
used in jitter2, the jitter3 example conforms to the event-based
paradigm common to GUI-based applications, where user
actions trigger event-driven callback functions.

17. Notice that appropriate Callback property values for the

various GUI controls are automatically generated and
displayed in the Property Inspector window.

18. Note also that the jitter3.m file automatically opens in the
MATLAB Editor/Debugger with initialization code and
partial callback code stubs already generated.

Performing an Interim Test
To see the finished user interface and test it:

1. Select Tools > Activate Figure from the Guide menu.

The interface does not respond to buttons yet, but you will be able to
change input parameters.

2. Experiment with changing the values of parameters in the
edit boxes.

Modifying Auto-Generated Functions
Now you are ready to edit the generated code and callback functions that
implement initialization and respond to user events (such as clicking on
buttons).

The jitter3 Function
The jitter3 function handles both initialization of the GUI and its callback
functions. This function is called whenever you type jitter3 in the Command
Window.

• If the call has no arguments, the jitter3.fig file is opened for
user input, and all handles are stored with the application
figure.

• If jitter3 is called with arguments, the function dispatches the
appropriate callback function. (You can scroll down the
jitter3.m file to see the default implementation of callback
functions.)

Improved Jitter Example with a GUI Interface

190 Oscilloscope Analysis and Connectivity Made Easy

From the GUI you created, MATLAB automatically generates the following
commented code, which accepts a variable number of arguments. Note the
use of the MATLAB NARGIN and NARGOUT functions to get the number of
arguments.

function varargout = jitter3(varargin)
% jitter3 Application M-file for jitter3.fig
% FIG = jitter3 launch jitter3 GUI.
% jitter3(’callback_name’, ...) invoke the named callback.

% Last Modified by GUIDE v2.0 24-Apr-2001 16:59:06

if nargin == 0 % LAUNCH GUI

 fig = openfig(mfilename,’reuse’);

 % Use system color scheme for figure:
 set(fig,’Color’,get(0,’defaultUicontrolBackgroundColor’));

 % Generate a structure of handles to pass to callbacks, and store
it.
 handles = guihandles(fig);
 guidata(fig, handles);

 if nargout > 0
 varargout{1} = fig;
 end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

 try
 [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard
 catch
 disp(lasterr);
 end

end

%| ABOUT CALLBACKS:
%| GUIDE automatically appends subfunction prototypes to this file, and
%| sets objects’ callback properties to call them through the FEVAL
%| switchyard above. This comment describes that mechanism.
%|
%| Each callback subfunction declaration has the following form:
%| <SUBFUNCTION_NAME>(H, EVENTDATA, HANDLES, VARARGIN)
%|
%| The subfunction name is composed using the object’s Tag and the
%| callback type separated by ’_’, e.g. ’slider2_Callback’,
%| ’figJitter3_CloseRequestFcn’, ’axis1_ButtondownFcn’.
%|
%| H is the callback object’s handle (obtained using GCBO).
%|
%| EVENTDATA is empty, but reserved for future use.
%|
%| HANDLES is a structure containing handles of components in GUI using
%| tags as fieldnames, e.g. handles.figJitter3, handles.slider2. This
%| structure is created at GUI startup using GUIHANDLES and stored in
%| the figure’s application data using GUIDATA. A copy of the structure
%| is passed to each callback. You can store additional information in
%| this structure at GUI startup, and you can change the structure
%| during callbacks. Call guidata(h, handles) after changing your
%| copy to replace the stored original so that subsequent callbacks see
%| the updates. Type "help guihandles" and "help guidata" for more
%| information.
%|

 Improved Jitter Example with a GUI Interface

Oscilloscope Analysis and Connectivity Made Easy 191

%| VARARGIN contains any extra arguments you have passed to the
%| callback. Specify the extra arguments by editing the callback
%| property in the inspector. By default, GUIDE sets the property to:
%| <MFILENAME>(’<SUBFUNCTION_NAME>’, gcbo, [], guidata(gcbo))
%| Add any extra arguments after the last argument, before the final
%| closing parenthesis.

% --

As described in the code comments:

• fig references the FIG-file created for jitter3.

• handles is a locally defined variable that references the
structure of GUI controls in jitter3. These handle components
use Tag names as field modifiers, such as
handles.editThreshold and handles.pushbuttonStart.

You do not need to make any changes to this automatically generated code
block.

The Parameter Edit Text Box Functions
From the GUI you created, MATLAB automatically generates the following
code stubs for the Edit Text boxes:

% --
function varargout = editSymbolRate_Callback(h, eventdata, ...
 handles, varargin)
% Stub for Callback of the uicontrol handles.editSymbolRate.

% --
function varargout = editRecordLength_Callback(h, eventdata, ...
 handles, varargin)
% Stub for Callback of the uicontrol handles.editRecordLength.

% --
function varargout = editThreshold_Callback(h, eventdata, ...
 handles, varargin)
% Stub for Callback of the uicontrol handles.editThreshold.

% --
function varargout = editHysteresis_Callback(h, eventdata, ...
 handles, varargin)
% Stub for Callback of the uicontrol handles.editHysteresis.

This code is called when the user enters text in one of the Edit Text boxes on
the user interface. You need to update these callback functions so that
application parameters are updated when the user changes values on the user
interface. To do this, you will use two new predefined functions:

• The setappdata MATLAB function sets the name and value
for application-defined data associated with the handles
structure. Once this function stores the application data,
other callbacks can access it.

Improved Jitter Example with a GUI Interface

192 Oscilloscope Analysis and Connectivity Made Easy

• The get MATLAB function returns object properties and
their values. In this case, it returns the String property of
elements identified by handle h, which are qualified by their
tag names.

Complete the callback functions as follows:

1. Insert the following line after the code stub for the Symbol
Rate Edit Text box:

setappdata(handles.figJitter3,’SymbolRate’, ...
 str2num(get(h,’String’)));

This code sets the SymbolRate variable to the numeric equivalent of
a String property value obtained from the Symbol Rate Edit Text box
identified by handle h.

2. Insert the following line after the code stub for the Record
Length Edit Text box:

setappdata(handles.figJitter3,’RecordLength’, ...
 str2num(get(h,’String’)));

This code sets the RecordLength variable to the numeric equivalent
of a String property value obtained from the Record Length Edit
Text box identified by handle h.

3. Insert the following line after the code stub for the
Threshold Edit Text box:

setappdata(handles.figJitter3,’Threshold’, ...
 str2num(get(h,’String’)));

This code sets the Threshold variable to the numeric equivalent of a
String property value obtained from the Threshold Edit Text box
identified by handle h.

4. Insert the following line after the code stub for the
Hysteresis Edit Text box:

setappdata(handles.figJitter3,’Hysteresis’, ...
 str2num(get(h,’String’)));

This code sets the Hysteresis variable to the numeric equivalent of a
String property value obtained from the Hysteresis Edit Text box
identified by handle h.

The VISA Selector Popup Menu Function
The jitter3.m function does not automatically connect to the oscilloscope. The
user must first select the VISA vendor (Tek, NI, or Agilent) from a popup
menu and then click the CONNECT button.

 Improved Jitter Example with a GUI Interface

Oscilloscope Analysis and Connectivity Made Easy 193

From the GUI you created, MATLAB automatically generates the following
code stub for the popup menu used to select a VISA vendor:

% --
function varargout = popupmenuSelector_Callback(h, eventdata, ...
 handles, varargin)
% Stub for Callback of the uicontrol handles.popupmenuSelector.

Complete this callback function as follows:

1. Insert the following lines after the code stub:

setappdata(handles.figJitter3,’Connection’,get(h,’Value’));

This code sets the Connection variable to the Value property value
obtained from the popup menu identified by handle h, where:

1 = TekVISA - Scope
2 = NI VISA - PC
3 = Agilent - PC

The CONNECT Button Function
From the GUI you created, MATLAB automatically generates the following
code stub for the CONNECT button:

% --
function varargout = pushbuttonCONNECT_Callback(h, eventdata, ...
 handles, varargin)
% Stub for Callback of the uicontrol handles.pushbuttonCONNECT.

This code is called when a user clicks the CONNECT button on the user
interface. Complete the callback function as follows:

1. Insert the following lines after the code stub:

% Read the parameters from edit boxes (String property) on the
% user interface and set the application data associated with
% the figure window so that it is accessible from any callback
% function
symbolRate = str2num(get(handles.editSymbolRate,’String’));
setappdata(handles.figJitter3,’SymbolRate’,symbolRate);
recordLen = str2num(get(handles.editRecordLength,’String’));
setappdata(handles.figJitter3,’RecordLength’,recordLen);
threshold = str2num(get(handles.editThreshold,’String’));
setappdata(handles.figJitter3,’Threshold’,threshold);
hysteresis = str2num(get(handles.editHysteresis,’String’));
setappdata(handles.figJitter3,’Hysteresis’,hysteresis);
conn = get(handles.popupmenuSelector,’Value’);
setappdata(handles.figJitter3,’Connection’,conn);
strCh = ’ch1’;
g = open_instrument(conn,strCh,symbolRate,recordLen,...
 threshold,hysteresis)
% store the instrument object as application data so that other
% callbacks can access it
setappdata(handles.figJitter3,’instr’,g)
% Turn the CONNECT button enable property off so that it can’t
% be pressed again
set(h,’Enable’,’off’);
set(handles.editRecordLength,’Enable’,’off’);
set(handles.popupmenuSelector,’Enable’,’off’);

Improved Jitter Example with a GUI Interface

194 Oscilloscope Analysis and Connectivity Made Easy

This function:

a. Reads parameters from the Edit Text box objects and
popup menu object in the GUI using the Get MATLAB
function, instead of getting the parameters from a
function call or local assignment (as was done in the
jitter2.m example).

b. Converts the parameters to numbers, since they are
stored as string data.

c. Passes the parameters to the open_instrument function
(on page 194) to open a VISA object and set up the
instrument, and returns the resulting VISA object as g.

d. Uses the setappdata MATLAB function to store the
parameter information with the application Figure
Window. The same is done for the VISA object g.
Otherwise, this data would not be accessible from other
callbacks, such as those for the SINGLE and Close
buttons.

e. Uses the set MATLAB function to turn the Enable
property off for the CONNECT button, the Record
Length Edit Text box, and the VISA selection pop-up
menu. Disabling these controls prevents the user from
accessing them while connected.

The Open Instrument Function
Next you will write the open_instrument function. Rather than coding this
function inline, you will call it separately to improve readability and facilitate
code reuse and modification.

1. Type the following lines at the end of the jitter3.m file after
the code stubs for callback functions:

% function to open the instrument and set up the measurement
function g = open_instrument(conn,strCh,symbolRate,...
 recordLen,threshold,hysteresis)

% Use inside the scope with Tek VISA (conn=1),
% externally with NI visa (conn=2)
% or Agilent VISA (conn=3)

switch conn
case 1,
 g = visa(’tek’,’GPIB8::1::INSTR’);
 disp(’g = visa(’’tek’’,’’GPIB8::1::INSTR’’);’)
case 2,
 g = visa(’ni’,’GPIB0::1::INSTR’);
 disp(’g = visa(’’ni’’,’’GPIB0::1::INSTR’’);’)
case 3,
 g = visa(’agilent’,’GPIB0::1::INSTR’);
 disp(’g = visa(’’agilent’’,’’GPIB0::1::INSTR’’);’)
end
disp(’Instrument object is created’)

 Improved Jitter Example with a GUI Interface

Oscilloscope Analysis and Connectivity Made Easy 195

% set the instrument object properties
set(g,’InputBufferSize’,recordLen*2);
% open the instrument object for reading and writing
fopen(g);
% send commands to set up the instrument
fprintf(g,’HEADER OFF’);
fprintf(g,[’DATA:SOURCE ’ strCh]);
fprintf(g,’DATA:ENCDG SRIBINARY;WIDTH 2’);
fprintf(g,’ACQUIRE:STATE OFF’);
fprintf(g,’ACQUIRE:MODE NORMALSAMPLE’);
fprintf(g,’ACQUIRE:STOPAFTER SEQUENCE’);
% end of open_instrument

Notice that some of this code is borrowed directly from the jitter2.m
script. This function:

a. Creates and opens a VISA object based on the vendor
value selected in the VISA selector pop-up menu.

b. Uses the disp MATLAB function to display instrument
object summary information.

c. Sets up the instrument, but does not acquire any data yet.

The Close Button Function
From the GUI you created, MATLAB automatically generates the following
code stub for the Close button:

% --
function varargout = pushbuttonClose_Callback(h, eventdata, ...
 handles, varargin)
% Stub for Callback of the uicontrol handles.pushbuttonClose.

This code is called when a user clicks the Close button on the user interface.
Complete the callback function as follows:

1. Insert the following lines after the code stub:

% get the instrument object and delete it unless it is empty
% (CONNECT button was never pressed)
g = getappdata(handles.figJitter3,’instr’);
if isempty(g)
 disp(’No instrument object’)
else
 fclose(g)
 delete(g)
 disp(’Instrument object is closed and deleted’)
end
close(handles.figJitter3)

This code:

a. Uses the getappdata MATLAB function to access the
instrument object made available by the setappdata
function.

b. Checks to see whether instrument object g is empty and
quits without errors if the connection was never made

Improved Jitter Example with a GUI Interface

196 Oscilloscope Analysis and Connectivity Made Easy

c. Uses fclose and delete ICT functions to close and
deallocate memory for the instrument object.

d. Uses the disp MATLAB function to immediately display
information about the instrument object.

e. Uses the close MATLAB function to close the Figure
Window.

2. To test execution, activate the user interface by selecting
Tools > Activate Figure from the Guide menu.

3. Click the Close button in the Figure Window to ensure that
no error messages are generated.

The Close button should close the GUI without errors.

4. Type instrfind in the Command Window to ensure that no
instrument objects are left in the workspace.

The function should return an empty matrix.

The SINGLE Button Function
From the GUI you created, MATLAB automatically generates the following
code stub for the SINGLE button:

% --
function varargout = pushbuttonSINGLE_Callback(h, eventdata, ...
 handles, varargin)
% Stub for Callback of the uicontrol handles.pushbuttonSINGLE.

This code is called when a user clicks the SINGLE button on the user
interface. Complete the callback function as follows:

1. Insert the following lines after the code stub:

% disable the button while processing the acquisition
set(h,’Enable’,’off’);
% store application data with the main figure object
% it is updated by edit box callbacks
g = getappdata(handles.figJitter3,’instr’);
recordLen = getappdata(handles.figJitter3,’RecordLength’);
symbolRate = getappdata(handles.figJitter3,’SymbolRate’);
threshold = getappdata(handles.figJitter3,’Threshold’);
hysteresis = getappdata(handles.figJitter3,’Hysteresis’);
exportWaveform = getappdata(handles.figJitter3, ...
 ’ExportWaveform’);
% call the function that communicates with the instrument
acquire_instrument(handles,g,symbolRate,recordLen,...
 threshold,hysteresis,exportWaveform)
% enable the button
set(h,’Enable’,’on’);

 Improved Jitter Example with a GUI Interface

Oscilloscope Analysis and Connectivity Made Easy 197

This code:

a. Uses the set MATLAB function to turn the Enable
property off for the SINGLE button. Disabling this
button prevents the user from clicking it during the
acquisition.

b. Uses the getappdata MATLAB function to access the
instrument object, record length, symbol rate, threshold,
hysteresis, and waveform export check box status. These
parameters were made available by the setappdata
MATLAB function in the open_instrument function (on
page 194).

c. Passes these parameters to the acquire_instrument
function (on page 199) to acquire a single waveform
sequence.

d. Re-enables the SINGLE button after the acquisition.

The Start Button Function
From the GUI you created, MATLAB automatically generates the following
code stub for the Start button:

% --
function varargout = pushbuttonStart_Callback(h, eventdata, ...
 handles, varargin)
% Stub for Callback of the uicontrol handles.pushbuttonStart.

This code is called when a user clicks the Start button on the user interface.
Complete the callback function as follows:

1. Insert the following lines after the code stub:

% set the application data interrupted to 0
% it will be changed only by pressing STOP button.
% this variable will be checked inside the while loop in
acquire instrument
interrupted = 0;
setappdata(handles.figJitter3,’interrupted’,interrupted);
set(h,’Enable’,’off’);

g = getappdata(handles.figJitter3,’instr’);
recordLen = getappdata(handles.figJitter3,’RecordLength’);
symbolRate = getappdata(handles.figJitter3,’SymbolRate’);
threshold = getappdata(handles.figJitter3,’Threshold’);
hysteresis = getappdata(handles.figJitter3,’Hysteresis’);
exportWaveform = getappdata(handles.figJitter3, ...
’ExportWaveform’);

% Change the scope to perform continuous measurements
fprintf(g,’ACQUIRE:STOPAFTER RUNSTOP’);

% call the acquisition function
acquire_instrument(handles,g,symbolRate,recordLen,...
 threshold,hysteresis,exportWaveform)

Improved Jitter Example with a GUI Interface

198 Oscilloscope Analysis and Connectivity Made Easy

% Enable the button when finished (STOP button pressed and
% acquire_instrument finished)

set(h,’Enable’,’on’);

This code:

a. Zeroes an interrupted state variable that is used to
determine whether a continuous RUN acquisition has
been interrupted by a user clicking the Stop button.

b. Uses the setappdata MATLAB function to set the name
and value for the interrupted state variable and associate
it with the figure object, so that other callbacks can
access it.

c. Uses the set ICT function to turn the Enable property off
for the Start button. Disabling this button prevents the
user from clicking it during the acquisition.

d. Uses the fprintf function to send an
ACQUIRE:STOPAFTER RUNSTOP native GPIB
command, which tells the oscilloscope to acquire
continuous data rather than a single sequence
(ACQUIRE:STOPAFTER SEQUENCE).

e. Uses the getappdata MATLAB function to access the
instrument object, record length, symbol rate, threshold,
hysteresis, and waveform export check box status. These
parameters were made available by the setappdata
MATLAB function in the open_instrument function (on
page 194).

f. Passes these parameters to the acquire_instrument
function (on page 199) to acquire a continuous
waveform sequence until the Stop button is clicked.

g. Re-enables the Start button after the acquisition is
stopped by a user clicking the Stop button.

The Stop Button Function
From the GUI you created, MATLAB automatically generates the following
code stub for the Stop button:

% --
function varargout = pushbuttonStop_Callback(h, eventdata, ...
 handles, varargin)
% Stub for Callback of the uicontrol handles.pushbuttonStop.

 Improved Jitter Example with a GUI Interface

Oscilloscope Analysis and Connectivity Made Easy 199

This code is called when the Stop button is clicked on the user interface.
Complete the callback function as follows:

1. Insert the following lines after the code stub:

setappdata(handles.figJitter3,’interrupted’, 1);

This code uses the setappdata MATLAB function to set the value
for the interrupted state variable to 1, signifying that a continuous
RUN acquisition has been interrupted by a user clicking the Stop
button.

The Acquire Instrument Function
Next you will write the acquire_instrument function and add it to the end of
the jitter3.m function. Rather than coding this function inline, you will create
and call it separately to improve readability and facilitate code reuse and
modification.

1. Type the following lines at the end of the jitter3.m file after
the open_instrument function. Cut and paste from the
jitter2.m file where possible to avoid retyping duplicate code:

% ------------------------------------
function acquire_instrument(handles,g,symbolRate,recordLen,...
 threshold,hysteresis,exportWaveform)
% function to perform a measurement and read the waveform data
fprintf(g,’ACQUIRE:STATE RUN’);

% set this variable to 0 despite what value is stored as an
% application data. This enables both SINGLE and STOP/RUN
% functionality
interrupted = 0;

% perform the main loop
while (~interrupted)
 while query(g,’BUSY?’,’%s’,’%e’); end;
 horizLen = query(g,’HORIZONTAL:RECORD?’, ’%s’,’%e’);

 fprintf(g,[’DATA:START ’ num2str(1)]);
 fprintf(g,[’DATA:STOP ’ num2str(recordLen)]);
 fprintf(g,’CURVE?’);
 dummy_string1 = fscanf(g,’%s’,2);
 dummy_string2 = fscanf(g,’%s’,str2num(dummy_string1(2)));
 recordLen2Transfer = min(recordLen,horizLen);
 [waveform_raw count] = fread(g,recordLen2Transfer,’int16’);
 % read the termination character
 dummy_string3 = fscanf(g,’%s’,1);

 % get the sampling interval
 sampleInterval = query(g,’WFMOUTPRE:XINCR?’, ’%s’,’%e’);

 % Scale the data
 yunit = query(g,’WFMOUTPRE:YUNIT?’);
 ymult = query(g,’WFMOUTPRE:YMULT?’, ’%s’,’%e’);
 yoff = query(g,’WFMOUTPRE:YOFF?’, ’%s’,’%e’);
 yzero = query(g,’WFMOUTPRE:YZERO?’, ’%s’,’%e’);

 % check that all parameters were read from the device
 if ~(isempty(waveform_raw) | isempty(ymult) | ...
 isempty(yoff) | isempty(yzero))
 % scale the data to the correct values
 waveform = ymult*(waveform_raw - yoff) - yzero;

Improved Jitter Example with a GUI Interface

200 Oscilloscope Analysis and Connectivity Made Easy

 % determine whether waveform contains any edges
 % otherwise skip the jitter analysis
 if max(waveform) > threshold + hysteresis & ...
 min(waveform) < threshold - hysteresis
 % find the edges in the supplied waveform
 measuredTime = measureEdgeTiming2(waveform, ...
 threshold,hysteresis,sampleInterval);

 % preallocate space for the clocks array
 clocks=zeros(1,length(measuredTime));

 % derive the clocks based on the supplied symbol
 % rate
 for index = 2:length(measuredTime);
 clocks(index) = (round(symbolRate * ...
 (measuredTime(index) - ...
 measuredTime(index - 1)))) ...
 + clocks(index-1);
 end

 % fit the derived clocks and the measured time to a
 % straight line
 coef = polyfit(clocks, measuredTime, 1);

 % coef(2) is the intercept (a) in the form
 % y = a + bx
 % coef(1) is the slope (b) in the form y = a + bx
 a = coef(2);
 b = coef(1);

 measuredAverageSymbolRate = 1/b;
 measuredSymbolRateError = ...
 (measuredAverageSymbolRate - symbolRate) ...
 /symbolRate;

 reconstructedTime = a + (clocks .* b);

 % jitter is the difference between the measured
 % time and the reconstructed time.
 jitter = reconstructedTime - measuredTime;

 % see the MATLAB function reference for ’norm’
 rmsJitter = norm(jitter)/sqrt(length(jitter));

 set(handles.figJitter3,’HandleVisibility’,’on’);
 axes(handles.axes1)
 plot(waveform)
 title = ([’symbol rate error: ’, ...
 num2str(measuredSymbolRateError * 100,...
 ’%’]);
 xlabel(’samples’);
 ylabel([’waveform amplitude, ’ strtok(yunit,’"’)]);
 set(handles.axes1,’XLim’,[0 count])

 axes(handles.axes2)
 plot(reconstructedTime,jitter);
 title = ([’RMS jitter: ’, ...
 num2str(rmsJitter*1e6), ’ \mus’]);
 xlabel(’time in seconds’);
 ylabel(’jitter in \mus’);
 % set axis manually, otherwise the autoscaling
 % overrides the setting
 set(handles.axes2,’XLim’,[0 count*sampleInterval])
 % calculate and plot jitter histogram
 [hs,y]=hist(jitter,30);
 hold on
 % scale the histogram
 hg_hist = ...
 barh(y,hs*reconstructedTime(end)/max(hs)*0.3,1);

 Improved Jitter Example with a GUI Interface

Oscilloscope Analysis and Connectivity Made Easy 201

 hold off
 set(hg_hist,’FaceAlpha’,0.4)
 set(hg_hist,’EdgeAlpha’,0)
 set(handles.figJitter3,’HandleVisibility’,’off’);

 else
 set(handles.figJitter3,’HandleVisibility’,’on’);
 axes(handles.axes1)
 plot(waveform)
 xlabel(’samples’);
 ylabel([’waveform amplitude, ’ strtok(yunit,’"’)]);
 axes(handles.axes2)
 title(’RMS jitter not calculated - no edges ...
 detected.’);
 set(handles.figJitter3,’HandleVisibility’,’off’);
 end
 % export waveforms to MATLAB workspace
 if exportWaveform
 assignin(’base’,’waveform’,waveform);
 assignin(’base’,’measuredTime’,measuredTime);
 assignin(’base’,’reconstructedTime’, ...
 reconstructedTime);
 assignin(’base’,’jitter’,jitter);
 assignin(’base’,’clocks’,clocks);
 assignin(’base’,’a’,a);
 assignin(’base’,’b’,b);
 assignin(’base’,’measuredAverageSymbolRate’, ...
 measuredAverageSymbolRate);
 assignin(’base’,’sampleInterval’,sampleInterval);
 end
 drawnow;
 % check whether the user has pressed on Stop button
 interrupted = getappdata(handles.figJitter3, ...
 ’interrupted’);
 else
 set(handles.figJitter3,’HandleVisibility’,’on’);
 axes(handles.axes1)
 title(’Data incorrectly received from the scope’)
 set(handles.figJitter3,’HandleVisibility’,’off’);
 end
end % while interrupted
% end of acquire_instrument

Again, much of this code is borrowed from jitter2.m. However, this
function implements more features and checks for error conditions so
it fails more gracefully. In particular, this code:

a. Sets up a loop (based on the variable interrupted) that
adds the capability to get either a SINGLE acquisition
(when the user clicks the SINGLE button), or a
continuous RUN acquisition (when the user clicks the
Start button).

b. Uses the isempty MATLAB function to make sure all
the parameters were read from the device before scaling
the data. If not, uses the set MATLAB function to turn
the HandleVisibility property on for handles on the Figure
Window to help prevent overplotting of the previous
plot, so that the message “Data incorrectly received
from the scope” can be displayed in the title instead of
plotting the waveform. Then the property is turned back
off.

Improved Jitter Example with a GUI Interface

202 Oscilloscope Analysis and Connectivity Made Easy

c. Uses the min and max MATLAB functions to determine
whether to skip the jitter analysis if no edges were found
in the waveform (which would be the case if you are not
using the Waveform Generator program or another
connected source to generate the signal). If none were
found, displays the message “RMS jitter not calculated -
no edges detected.”

d. Activates axes in a different way before plotting.
Because axes already exist, instead of using the subplot
function as in the jitter2.m example, this function calls
the axes MATLAB function with axis handle arguments
(handles.axes1 and handles.axes2), after which regular
plotting commands are used.

e. Gets the count of the number of values read when
performing the fread of the waveform, and uses this
count to help calculate and manually set the XLim
property that appears on the Jitter plot’s x axis.

f. Calculates and plots a histogram of the jitter using hist
and barh MATLAB functions, since this form of graph
is frequently used to determine the cause of jitter. It is
plotted on the vertical axis and uses a new feature
introduced in MATLAB 6.0 that enables transparently
overlayed waveforms.

g. Checks the value of the exportWaveform variable to see
if the Waveform Export check box (on page 202) was
selected. If so, uses the assignin MATLAB function to
export all the waveform variables to the MATLAB
workspace (which is referred to as the base).

h. Uses the drawnow MATLAB function to update the plot.

i. Checks the current state of the application data
’interrupted’ associated with handles.figJitter3 to see if
the user has clicked the Stop button yet, in which case
control returns to the Start button function (on page
197). Otherwise, acquisition and processing continues.

The Waveform Export Check Box Function
The Jitter3.m program allows users to export waveforms and many other
parameters to MATLAB workspace for further analysis and visualization.
From the GUI you created, MATLAB automatically generates the following
code stub for the Waveform Export check box:

% --
function varargout = checkboxWaveformExport(h, eventdata, ...
 handles, varargin)
% Stub for Callback of the uicontrol handles.checkboxWaveformExport.

 Improved Jitter Example with a GUI Interface

Oscilloscope Analysis and Connectivity Made Easy 203

This code is called when the user selects the Waveform Export check box on
the user interface. Complete the callback function as follows:

1. Insert the following lines after the code stub:

setappdata(handles.figJitter3,’ExportWaveform’,get(h,’Value’));

This function sets the ExportWaveform variable to the Value property
value obtained from the check box identified by handle h.

The Export Instrument Button Function
The Jitter3.m program also includes an Export Instrument button. This
feature exports the instrument object, which enables users to have interactive
access from the MATLAB prompt to the current connection to the
oscilloscope instrument, while the jitter3.m program remains open.

From the GUI you created, MATLAB automatically generates the following
code stub for the Export Instrument button:

% --
function varargout = pushbuttonExportInstrument_Callback(h, ...
 eventdata, handles, varargin)
% Stub for Callback of the uicontrol
% handles.pushbuttonExportInstrument.

This code is called when the Export Instrument button is clicked on the user
interface. Complete the callback function as follows:

1. Insert the following lines after the code stub:

g = getappdata(handles.figJitter3,’instr’);
assignin(’base’,’instr’,g);
disp(’Instrument object exported to workspace as instr’)

This code:

a. Uses the getappdata MATLAB function to access the
instrument object made available by the setappdata
function.

b. Uses the assignin MATLAB function to export the
instrument object to the MATLAB workspace.

c. Uses the disp function to display the message
“Instrument object exported to workspace as instr.” in
the MATLAB command window. Users can access the
object on the MATLAB command line by typing the
variable name instr with any ICT function.

2. Click the Save to Disk icon from the toolbar, type jitter3.m
and click OK.

Figure 51 shows the first page of the completed jitter3 function.

Improved Jitter Example with a GUI Interface

204 Oscilloscope Analysis and Connectivity Made Easy

�
Figure 51: First page of completed jitter3 example in MATLAB

Testing the Improved Solution
To test the completed GUI:

1. Close all Figure Windows before running the jitter3
application.

2. In the Command Window, type
jitter3

The jitter3.fig file is opened for user input.

3. Select TekVISA - Scope from the pop-up menu in the Figure
Window.

4. Click the CONNECT button in the Figure Window.

 Improved Jitter Example with a GUI Interface

Oscilloscope Analysis and Connectivity Made Easy 205

5. Click the SINGLE button in the Figure Window to acquire
waveform data using the default input values.

MATLAB gets a waveform and updates both plotted graph solutions
along with the information displayed in their titles in the Figure
Window, as shown in Figure 52.

6. Select the Waveform Export check box.

7. Change the values in the edit boxes for Symbol Rate,
Record Length, Threshold, and Hysteresis.

8. Click the Start button in the Figure Window to acquire
waveform data using the new values.

MATLAB gets a waveform of the specified length continuously, and
updates both plotted graph solutions at regular intervals, along with
the information displayed in their titles in the Figure Window.

9. Click the Stop button in the Figure Window to stop data
acquisition.

Data acquisition stops, and the waveform and associated parameters
are exported since the check box was selected.

10. In the Command Window, type whos to verify that the
following variables are accessible from the MATLAB
workspace:
waveform
measuredtime
jitter
clocks
a
b
measuredAverageSymbolRate
sampleInterval

11. Click the Export Instrument button in the Figure Window to
export the instrument object to the MATLAB workspace.

The message “Instrument object exported to workspace as instr”
appears on the MATLAB command line.

12. In the Command Window, type the following to verify that
the instrument object is accessible from the MATLAB
workspace:
instr

MATLAB displays the instrument properties.

Chapter 8 Review

206 Oscilloscope Analysis and Connectivity Made Easy

�
Figure 52: The plotted graph solutions for jitter3 in the MATLAB Figure Window

Chapter 8 Review

To review what you learned in Chapter 9:

• You can use the Instrument Control Toolbox included in
MATLAB 6.1 to communicate between Tektronix
Windows-based oscilloscopes and MATLAB programs.

• You can use the guide utility, which is included in
MATLAB 6.1, to design your own graphical user interfaces
and add them to MATLAB functions.

• You can use the jitter2 and jitter3 programs described in this
chapter as templates for inserting waveform data into other
MATLAB programs, with or without a GUI interface.

• You can use the jitter3 program as a useful and timesaving
way to open an instrument and export it to the MATLAB
workspace, regardless of the type of analysis being
performed.

 Introduction

Oscilloscope Analysis and Connectivity Made Easy 207

Chapter 9:
LabWindows/CVI and
LabVIEW

Using Tektronix Plug-n-Play Drivers with
LabWindows/CVI and LabVIEW

Introduction

New Plug-n-Play drivers from Tektronix enable communication between
your Windows-based oscilloscope and popular programming environments.
Now you can easily incorporate these Plug-n-Play driver functions into
programs that you build using LabWindows/CVI and LabVIEW, two popular
test-automation packages from National Instruments.

Although this chapter focuses on oscilloscope connectivity in the
LabWindows/CVI and LabVIEW environments, you can also use these PnP
drivers in other environments such as Visual Basic 6.0, Visual C++ 6.0, and
HP-VEE.

Caution: Tektronix recommends that you use LabVIEW and
LabWindows/CVI on an external PC to control your Tektronix
Windows-based oscilloscopes. However, if you want to run
LabVIEW and LabWindows/CVI directly on your oscilloscope, first
call a Tektronix Technical Support Representative for assistance.

Tektronix Plug-n-Play Drivers

Tektronix VXI Plug-n-Play compatible drivers can be used on a PC to
control your oscilloscope. The driver for controlling each type of
oscilloscope includes a function panel (.fp), header (.h), source (.c), Dynamic
Link Library (DLL), and help (.hlp) file.

Each driver consists of a number of functions that mirror the knobs and
controls on your oscilloscope and the menu selections on your oscilloscope
software. These software functions can set up, communicate with, acquire
data from, and otherwise control features of your oscilloscope. You can call
the run-time functions from the test programs you write.

Overview of LabWindows/CVI

208 Oscilloscope Analysis and Connectivity Made Easy

Use the Installation program on your product software CD to install the Plug-
n-Play driver files on your PC. To find out more about using the Plug-n-Play
driver functions, consult the online Plug-n-Play driver Function Reference
Help file for your oscilloscope Series. Figure 53 shows a sample page from
the Function Reference Help file for the TDS/CSA 8000 Series
Oscilloscope.You can invoke this Windows online help or a PDF version of
it from the Start menu by selecting Start > Programs >VXIpnp and choosing
the desired version.3

�
Figure 53: Plug-n-play Driver Help file for TDS/CSA8000 Series oscilloscopes

Overview of LabWindows/CVI

LabWindows/CVI is an interactive ANSI C environment developed by
National Instruments. The LabWindows/CVI/CVI environment allows you to
create virtual instruments on personal computers that communicate with real
instruments via communications interfaces. Widely used for developing data
acquisition and instrument control software, LabWindows/CVI comes with a

3 Assuming you are installing on the C: drive on a Windows 98 system, the tktds8k.hlp file is located in
C:\VXIpnp\Win95\Tktds8k\. On a Windows NT system, the tktds8k.hlp file is located in
C:\VXIpnp\WinNT\Tktds8k\. You can invoke the help file from that directory.

 Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

Oscilloscope Analysis and Connectivity Made Easy 209

complete set of I/O and instrumentation libraries, user interface tools, and
mathematical analysis libraries.

Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

This simple example demonstrates how to use the Tektronix tktds8k Plug-n-
Play driver functions within LabWindows/CVI to control the TDS/CSA8000
sampling oscilloscope from a PC running LabWindows/CVI 5.5 and
connected by a GPIB cable to the GPIB slot on the back of the
TDS/CSA8000 oscilloscope. The concepts described here apply to drivers
for any Tektronix Windows-based oscilloscope.

This section assumes you are already familiar with the LabWindows/CVI
C coding environment and have worked with instrument drivers before.

Table 38 summarizes the TDS/CSA 8000 PnP driver functions used in this
book.

To work this example, you will first need to load the PnP driver for your
oscilloscope.

Loading the Driver
To install the Plug-n-Play driver, you must unzip the tktds8k PnP driver and
run the setup.exe program. This program places a folder named VXIpnp in
your root directory.

After installing the driver, there are two ways to incorporate a Tektronix
Plug-n-Play driver into your LabWindows/CVI program.

Note: It is not necessary to install TekVISA on your PC to work this
example, since LabWindows/CVI comes with its own NI-VISA
implementation already installed. Installing TekVISA will overwrite
your NI-VISA implementation. The Plug-n-Play drivers are layered
to work with either VISA implementation.

Load from the Instrument Menu
One way to load a Tektronix plug-n-play driver into LabWindows/CVI is
from the Instrument menu:

1. Inside the LabWindows/CVI environment, choose
Instrument > Load…

2. Browse to the disk location where plug-n-play drivers have
been installed, and select the instrument driver file (with an

Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

210 Oscilloscope Analysis and Connectivity Made Easy

.fp extension) for the oscilloscope you are working on. For
the TDS/CSA 8000 oscilloscope, this file is tktds8k.fp.4

LabWindows/CVI compiles the driver source code and makes the
driver library and its functions available under the Instrument menu.

3. To view the driver library functions, select the driver library

from the Instrument menu (in this case, you would select
TDS 8000 Series Oscilloscope…)

As you can see, a large number of Plug-n-Play functions are
available for you to select and incorporate into your
LabWindows/CVI program.

�

4. To see how to select a function, choose the init function and
click Select.

4 Assuming you are installing on the C: drive on a Windows 98 system, the driver is placed in
C:\VXIpnp\Win95\Tktds8k\. On a Windows NT system, the driver is placed in
C:\VXIpnp\WinNT\Tktds8k\. The VXIpnp folder is created only if it does not already exist.

 Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

Oscilloscope Analysis and Connectivity Made Easy 211

A graphical screen similar to the following appears, prompting you
for fields to complete the syntax:

5. Right-click the graphical screen to get help with the syntax
of the function.

A Function help screen appears similar to the following:

6. Click on one of the controls in the graphical screen and press
F1 to get help with an individual field.

Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

212 Oscilloscope Analysis and Connectivity Made Easy

A Control help screen appears similar to the following:

Open from the File Menu
Another way to incorporate a Tektronix Plug-n-Play driver into your
LabWindows/CVI program is to open it from the File menu:

1. Inside the LabWindows/CVI environment, choose File >
Open > Function Tree (*.fp)…

2. Browse to the disk location where plug-n-play drivers have
been installed, select the instrument driver file (with an .fp
extension) for the oscilloscope you are working on, and add
it to your LabWindows/CVI project. For the TDS/CSA 8000
oscilloscope, this file is tktds8k.fp.

LabWindows/CVI compiles the driver source code and automatically
adds the driver into the LabWindows/CVI design environment.

 Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

Oscilloscope Analysis and Connectivity Made Easy 213

Note: If you wish, open the driver source and include files and
add them to your project, so you can view driver function
parameters more easily while developing. In the case of the
TDS/CSA8000 oscilloscope, these source files are tktds8k.c
(located in the same subdirectory as the help file) and tktds8k.h
(located in the \include subdirectory).

Building the Interface
This Measurement Capture example uses a timer control to periodically
capture a specified measurement and place the value in a list box. The timer
interval may be adjusted by a dial control. Because the target oscilloscope in
this example is a TDS/CSA8000 oscilloscope, the example lists its eight
possible measurements in the left-hand list box (Meas1 to Meas8). The
values of the measurement selected in the left-hand list box are placed in the
right-hand list box at the interval specified in the dial control. Measurements
are made until the user clicks the Stop button or until 1000 measurements
have been taken. Figure 54 shows the Measurement Capture interface at
design time.

Figure 54: The Measurement Capture program interface at LabWindows/CVI design
time

To design this interface:

1. Select File > New > User Interface to create a new user
interface file with a blank panel.

2. Insert controls onto the panel by making selections from the
Create menu, as shown in Figure 55.

Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

214 Oscilloscope Analysis and Connectivity Made Easy

�
Figure 55: Adding controls to a LabWindows/CVI panel

3. Double-click each control to access the edit attributes dialog
menu for that control.

A dialog box appears for editing its attributes, as shown in Figure 56.

�
Figure 56: Dialog box for editing attributes of the Dial control in LabWindows/CVI

 Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

Oscilloscope Analysis and Connectivity Made Easy 215

Table 32 shows the relevant attributes of controls that appear on the
Measurement Capture panel in LabWindows/CVI. Constant names are
underlined in the table to help distinguish them from labels, which appear on
the panel and affect how the panel looks, but are not typically referenced in
the code. Most of the attributes shown in the table are ones you must change
from their default values.

Table 32: Relevant attributes of controls that appear on the Measurement Capture
panel in LabWindows/CVI

Control Attribute Change to

Panel Title Measurement Capture

Callback
Function

HandlePanel

Panel

Constant
Name

PNLMEAS

Label Second Intervals

Callback
Function

TimerInterval

Constant
Name

TINTERVAL

Numeric Dial

Range Values
Minimum
Maximum
Increment

.50
5
.25

Label Untitled Control
(no change)

Callback
Function

ProcessTimer

Constant
Name

TIMER

Interval .50

Timer

Enabled False (Unchecked)

Label _Start

Callback
Function

cmdStart

Button

Constant
Name

CMDSTART

Label _Stop

Callback
Function

cmdStop

Button

Constant
Name

CMDSTOP

Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

216 Oscilloscope Analysis and Connectivity Made Easy

Control Attribute Change to

Label _Exit

Callback
Function

cmdExit

Button

Constant
Name

CMDEXIT

Label Measurements

Constant
Name

LSTMEAS

Control Mode Normal

List Box

Visible Lines 8

Label Measurement Values

Constant
Name

LSTVALUES

Control Mode Normal

List Box

Visible Lines 8

Label Status:

Constant
Name

LBLSTATUS

String

Control Mode Normal

Getting Help
To find out more about designing and coding programs in LabWindows/CVI,
consult the Help file. The section on the User Interface Library is particularly
useful, as shown in Figure 57.

 Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

Oscilloscope Analysis and Connectivity Made Easy 217

Figure 57: Page from the LabWindows/CVI Help file

The LabWindows/CVI manual also includes a helpful tutorial entitled
Getting Started with LabWindows/CVI.

Modifying Auto-Generated Functions
Most programmers choose to automatically generate the callback functions in
the LabWindows/CVI user interface design environment. To auto-generate
skeleton code for your interface:

1. Select Code > Generate > All Code…

Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

218 Oscilloscope Analysis and Connectivity Made Easy

2. From the pop-up dialog box, select the function that will
close the user interface (the cmdExit function in this case)
and click OK.

The LabWindows/CVI UIR Code Generator generates a main
function, a panel callback function, and callback functions for each
of the hot controls with assigned callback function names.

 Now you are ready to edit the generated functions that implement
initialization and respond to user events (such as clicking on
buttons).

3. Add the definitions shown in boldface to the auto-generated
include statements and declarations:

#include "Tktds8k.h"
#include <formatio.h>
#include <ansi_c.h>
#include <cvirte.h>
#include <userint.h>
#include "Demo1.h"

#define TRUE 1
#define FALSE 0

static int pnlmeas;
double rTimerInterval;
int ret, counter = 0;
ViStatus status;
ViSession ID;

int StartFlag = FALSE;

 Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

Oscilloscope Analysis and Connectivity Made Easy 219

The first page of the program in the Code Window appears as shown
in Figure 58.

Figure 58: The LabWindows/CVI Code Window

The Main Function
From the GUI you created, LabWindows/CVI automatically generates the
following commented code, which accepts a variable number of arguments:

int main (int argc, char *argv[])
{ // standard code generated by LabWindows
 if (InitCVIRTE (0, argv, 0) == 0)
 return -1; /* out of memory */
 if ((pnlmeas = LoadPanel (0, "Demo1.uir", PNLMEAS)) < 0)
 return -1;
 DisplayPanel (pnlmeas);
 RunUserInterface ();
 DiscardPanel (pnlmeas);
 return 0;
}

Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

220 Oscilloscope Analysis and Connectivity Made Easy

The main function calls the LabWindows/CVI routines to

• Load the Panel and bind it to the constant name PNLMEAS

• Display the Panel

• Launch the process for running the user interface

• Discard the Panel after the user closes it.

You do not need to make any changes to this automatically generated code
block.

The Panel Handler Function
The HandlePanel callback function executes when the Panel user interface
gets focus. Complete the automatically generated skeleton code for the Panel
user interface by adding the lines shown in boldface:

int CVICALLBACK HandlePanel (int panel, int event, void *callbackData,
 int eventData1, int eventData2)

{ char buf[128];
 char hold[30];
 char *item = "Meas ";
 int i;

switch (event)
 {
 case EVENT_GOT_FOCUS:
 // clear measurement panel
 ret = ClearListCtrl (pnlmeas, PNLMEAS_LSTMEAS);
 // populate list box with measurements for TDS/CSA8000
 for(i = 1; i <= 8; i++){
 Fmt(hold,"%s<%i", i);
 buf[0] = ’\0’;
 strcat(buf, item);
 strcat(buf, hold);
 ret = InsertListItem (pnlmeas, PNLMEAS_LSTMEAS,
 -1, buf, counter);
 }
 // set index value to Meas1
 ret = SetCtrlIndex(pnlmeas,PNLMEAS_LSTMEAS, 0);
 break;
 case EVENT_LOST_FOCUS:

 break;
 case EVENT_CLOSE:

 break;
 }
 return 0;
}

The HandlePanel event function:

• Executes when the Panel gets focus

• Clears the LSTMEAS list box

• Populates the LSTMEAS list box and sets the index to point
to the first measurement

 Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

Oscilloscope Analysis and Connectivity Made Easy 221

The Start Button Function
The cmdSTART code is called when a user clicks the Start button on the user
interface. Complete the automatically generated skeleton code for the Start
button by adding the lines shown in boldface:

int CVICALLBACK cmdSTART (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)

{ char InstDesc[128];
 char buf[256];
 char *intro = "Connected to: ";
 int n;

 switch (event)
 {
 case EVENT_COMMIT:
 // reset counter variable
 counter = 0;
 // indicate to user we are connecting to scope
 ret = SetCtrlVal(pnlmeas, PNLMEAS_LBLSTATUS,
 "Connecting to first scope found...");
 // clear measurement values list box
 ret = ClearListCtrl(pnlmeas, PNLMEAS_LSTVALUES);
 // connect
 status = tktds8k_autoConnectToFirst (&ID);
 if (status >= VI_SUCCESS)
 // display instrument description to user once connected
 ret = tktds8k_GetInstrDesc (ID, InstDesc);
 buf[0]=’\0’;
 strcat(buf, intro);
 strcat(buf,InstDesc);
 // enable timer and change StartFlag
 ret = SetCtrlVal(pnlmeas, PNLMEAS_LBLSTATUS, buf);
 ret = SetCtrlAttribute(pnlmeas,PNLMEAS_TIMER,
 ATTR_ENABLED,TRUE);
 StartFlag = TRUE;
 break;
 }
 return 0;
}

The cmdSTART function

• Resets the counter variable

• Uses the autoConnectToFirst function in the TDS/CSA8000
plug-n-play driver library to automatically connect to the
first GPIB device encountered (the next section describes
how to insert a driver function into your code)

• Uses the GetInstrDesc function in the TDS/CSA8000 plug-
n-play driver library to retrieve the instrument description
for display in the LBLSTATUS status label

• Sets the StartFlag to TRUE

• Changes the Enabled attribute of the Timer control to TRUE.

Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

222 Oscilloscope Analysis and Connectivity Made Easy

Inserting a PnP Driver Function into LabWindows/CVI Code
To insert a TDS/CSA8000 plug-n-play driver function into the
LabWindows/CVI source code:

1. Position the cursor in the code where you want to insert the
function.

2. From the Instrument menu, select TDS 8000 Series
Oscilloscope…

3. From the Select Function Panel dialog, select the driver
function you want to insert and click Select.

4. From your code window, select Code > Insert Function Call.

The driver function is inserted into your code at the current cursor
position.

 Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

Oscilloscope Analysis and Connectivity Made Easy 223

The Dial Control Function
The TimerInterval code is called when a user makes a selection from the Dial
control on the user interface. Complete the automatically generated skeleton
code for the Dial control by adding the lines shown in boldface:

int CVICALLBACK TimerInterval (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)

{
 switch (event)
 {
 case EVENT_COMMIT:
 // read interval from dial control and assign to timer
 // control
 ret = GetCtrlVal(pnlmeas, PNLMEAS_TINTERVAL,
 &rTimerInterval);
 ret = SetCtrlAttribute(pnlmeas,PNLMEAS_TIMER,
 ATTR_INTERVAL,rTimerInterval);

 break;
 }
 return 0;
}

The TimerInterval event function uses LabWindows/CVI User Interface
Library functions to:

• Retrieve the interval value from the Dial control

• Assign that value to the Timer control.

The Timer Control Function
From the GUI you created, LabWindows/CVI automatically generates the
following skeleton code for the Timer control:

int CVICALLBACK ProcessTimer (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)

{
 switch (event)
 {
 case EVENT_COMMIT:

 break;
 }
 return 0;
}

The ProcessTimer code is called whenever a Timer control event takes place
(after the time interval counts down and the timer “ticks”). Complete the
callback function by changing and expanding the code block as follows:

int CVICALLBACK ProcessTimer (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)

{ ViChar buf[128];
 ViInt32 gMeasType;
 VidReal64 dMeasValue;
 char hold[30];
 int index;

 if ((StartFlag == TRUE) && (event == EVENT_TIMER_TICK)){
 // get index of currently selected item

Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

224 Oscilloscope Analysis and Connectivity Made Easy

 ret = GetCtrlIndex(pnlmeas,PNLMEAS_LSTMEAS, &index);
 switch(index){
 case 0:
 // get measurement value
 tktds8k_GetMeasValue (ID, tktds8k_MEAS_1, &dMeasValue);
 break;
 case 1:
 tktds8k_GetMeasValue (ID, tktds8k_MEAS_2, &dMeasValue);
 break;
 case 2 :
 tktds8k_GetMeasValue (ID, tktds8k_MEAS_3, &dMeasValue);
 break;
 case 3 :
 tktds8k_GetMeasValue (ID, tktds8k_MEAS_4, &dMeasValue);
 break;
 case 4 :
 tktds8k_GetMeasValue (ID, tktds8k_MEAS_5, &dMeasValue);
 break;
 case 5 :
 tktds8k_GetMeasValue (ID, tktds8k_MEAS_6, &dMeasValue);
 break;
 case 6 :
 tktds8k_GetMeasValue (ID, tktds8k_MEAS_7, &dMeasValue);
 break;
 case 7 :
 tktds8k_GetMeasValue (ID, tktds8k_MEAS_8, &dMeasValue);
 break;
 default:
 break;
 }
 // format floating point value to 12 levels of precision
 Fmt(hold,"%s<%f[p12]", dMeasValue);
 //clear string buffer
 buf[0] = ’\0’;
 strcpy(buf, hold);
 // insert into list box
 ret = InsertListItem (pnlmeas, PNLMEAS_LSTVALUES,
 -1, buf, index);
 counter++;
 // turn off after 1000 acquisitions
 if(counter >= 1000){
 StartFlag = FALSE;
 ret = SetCtrlAttribute(pnlmeas,PNLMEAS_TIMER,
 ATTR_ENABLED,FALSE);
 }
 }
 else { StartFlag = FALSE;
 }

 return 0;

}

The ProcessTimer event function:

• Retrieves the current index of the LSTMEAS list box

• Uses it to make sure the appropriate constant is used in
calling the GetMeasValue function in the TDS/CSA8000
plug-n-play driver library.

• Formats and adds returned values to the LSTVALUES list
box.

 Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

Oscilloscope Analysis and Connectivity Made Easy 225

The Stop Button Function
The cmdStop code is called when a user clicks the Stop button on the user
interface. Complete the automatically generated skeleton code for the Stop
button by adding the lines shown in boldface:

int CVICALLBACK cmdStop (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)

{
 switch (event)
 {
 case EVENT_COMMIT:
 // disable timer
 ret = SetCtrlAttribute(pnlmeas,PNLMEAS_TIMER,
 ATTR_ENABLED,FALSE);
 StartFlag = FALSE;
 break;
 }
 return 0;
}

The cmdSTOP function:

• Sets the Enabled attribute of the Timer control to FALSE

• Changes the StartFlag to FALSE.

The Exit Button Function
From the GUI you created, LabWindows/CVI automatically generates the
following code block for the Exit button:

int CVICALLBACK cmdExit (int panel, int control, int event,
 void *callbackData, int eventData1, int eventData2)

{
 switch (event)
 {
 case EVENT_COMMIT:
 QuitUserInterface (0);
 break;
 }
 return 0;
}

The cmdExit code is called when a user clicks the Exit button on the user
interface. This event function exits the program by calling the
LabWindows/CVI QuitUserInterface function. You do not need to make any
changes to this automatically generated code block.

Running Your Program
To build and run the completed program:

1. Select Build > Create Debuggable Executable or press
Ctrl+M to build an executable program.

2. Select Run > Execute Demo1_dbg.exe or press Ctrl+F5 to
run your program.

Using Tektronix Plug-n-Play Drivers with LabWindows/CVI

226 Oscilloscope Analysis and Connectivity Made Easy

The Measurement Capture panel is opened for user input, with the
left list box already populated with the measurement types selected
on your oscilloscope.

3. Click the Start button.

The message Connecting to first scope found... appears in the Status
box. LabWindows/CVI connects to the first TDS/CSA 8000
oscilloscope encountered and displays the connection descriptor in
the Status box.

4. Select one of the eight measurements from the
Measurements list box.

The program retrieves the corresponding measurement set up on
your oscilloscope and displays values in the Measurement Values
list box at half-second (.5) intervals, as shown in Figure 59.

5. Click the Stop button.

6. Experiment with changing the Dial control and the
Measurements list box to other settings, and then click the
Start and Stop button again for each experiment.

Even if you do not click Stop, the program will stop capturing and
displaying measurements after 1000 captures.

7. When you are finished testing, click the Exit button to close
the panel.

Figure 59: The LabWindows/CVI program while executing

 Overview of LabVIEW

Oscilloscope Analysis and Connectivity Made Easy 227

Overview of LabVIEW

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is an
engineering development environment based on graphical programming.
LabVIEW uses graphical symbols rather than textual language to describe
programming actions.

LabVIEW is designed to build a Virtual Instrument (vi). A Virtual Instrument
is a virtual test and measurement instrument executing on a PC via
LabVIEW software. The program is integrated for communication with
hardware such as GPIB and serial devices, and also has built-in libraries for
using software standards such as VISA.

When building a LabVIEW virtual instrument, you work in two main areas:

• The Front Panel window (form designer)

• The Block Diagram window (data and logic flow designer)

The Front Panel contains the user interface of your Virtual Instrument. The
Block Diagram contains the graphical code for your Virtual Instrument.

Action in one area affects the other. Changing an attribute on a Front Panel
control such as a list box, for instance, affects the properties displayed in the
Block Diagram. Similarly, a control can be added to the Block Diagram and
it will appear on the Front Panel. The usual sequence is to add visible control
elements to the Front Panel and then work on the I/O and logic flow in the
Block Diagram.

Using Tektronix Plug-n-Play Drivers with LabVIEW

This section demonstrates how to use the Tektronix tktds8k Plug-n-Play
driver to control the TDS/CSA8000 sampling oscilloscope from a PC
running LabVIEW, equipped with a GPIB card, and connected by a GPIB
cable to the GPIB slot on the back of the TDS/CSA8000 oscilloscope.

Table 38 summarizes the TDS/CSA 8000 PnP driver functions used in this
book.

Loading the Driver
To incorporate a Tektronix Plug-n-Play driver into your LabVIEW program:

Note: It is not necessary to install TekVISA on your PC to work this
example, since LabVIEW comes with its own NI-VISA
implementation already installed. Installing TekVISA will overwrite
your NI-VISA implementation. The Plug-n-Play drivers are layered
to work with either VISA implementation.

Using Tektronix Plug-n-Play Drivers with LabVIEW

228 Oscilloscope Analysis and Connectivity Made Easy

1. Unzip the tktds8k PnP driver and run the setup.exe
program.

This program places a folder named VXIpnp in your root directory.

2. Launch the LabView application and create a new vi.

3. Choose Tools > Instrumentation > Import CVI Instrument
Driver…

After a short pause the Select a CVI Function Panel dialog appears
asking to locate tktds8k.fp.

4. Browse to the disk location where the Plug-n-Play driver
was installed and select the instrument driver file (with an .fp
extension) for the oscilloscope you are working on.5

5. Select the tktds8k.fp file and click Open.

The CVI Function Panel Converter dialog opens.

5 Assuming you are installing on the C: drive on a Windows 98 system, the driver is placed in
C:\VXIpnp\Win95\Tktds8k\. On a Windows NT system, the driver is placed in
C:\VXIpnp\WinNT\Tktds8k\.

 Using Tektronix Plug-n-Play Drivers with LabVIEW

Oscilloscope Analysis and Connectivity Made Easy 229

6. Leave the Destination Directory as is and click Select All
followed by OK.

The Select A Library dialog asks to locate the tktds8k_32.DLL file.

7. Browse to find the tktds8k_32.DLL file located in
C:VXIpnp\Winnt\Bin\, select the file and click Open.

LabVIEW begins converting the driver files. This takes about 5
minutes, after which you are returned to the Front Panel of the open
vi. LabVIEW makes the driver library and its functions available in
the Instrument I/O subpalette on the Functions palette.

Viewing Driver Functions
You are now ready to explore the Tktds8k driver files.

1. Go to the Block Diagram view of your “Untitled” vi.

2. Show the Functions palette and open the Instrument I/O
subpalette.

Using Tektronix Plug-n-Play Drivers with LabVIEW

230 Oscilloscope Analysis and Connectivity Made Easy

3. Open the Instrument Library subpalette.

4. Open the tktds8k subpalette.

Inside is a list of folders containing individual vi’s that can be
dropped onto your Block Diagram to configure and control the
TDS/CSA8000 oscilloscope.

A large number of Plug-n-Play functions, grouped by category, are
available for you to select and incorporate into your LabVIEW
program.

5. To select one of the vi’s, simply double-click it.

The pointer tool turns into a hand to indicate that a selection has been
made.

 Using Tektronix Plug-n-Play Drivers with LabVIEW

Oscilloscope Analysis and Connectivity Made Easy 231

6. Click on the Block Diagram to “drop” the vi.

Getting Help
To find out more about designing and coding programs in LabVIEW, consult
the Help file. The tutorial section of the Help file is particularly useful, as
shown in the sample page in Figure 60.

Using Tektronix Plug-n-Play Drivers with LabVIEW

232 Oscilloscope Analysis and Connectivity Made Easy

�
Figure 60: Page from the LabVIEW Tutorial in the Help file

 Using Tektronix Plug-n-Play Drivers with LabVIEW

Oscilloscope Analysis and Connectivity Made Easy 233

You can right-click any icon in a Block Diagram and select Help to get more
information:

To get the name of a particular function on a Block Diagram, press Ctrl-H to
bring up context help, and hover the mouse over the function in question. For
example, you can obtain context help for each vi in the PnP driver, as shown
in Figure 61.

�
Figure 61: Sample context help for a PnP Driver functon

Using Tektronix Plug-n-Play Drivers with LabVIEW

234 Oscilloscope Analysis and Connectivity Made Easy

Creating a Quick Demo Program
In this section, you will create a simple vi that causes the TDS/CSA8000
oscilloscope to

• perform a Default Setup

• select a channel

• take a measurement

• display a measurement value

Add the Initialize vi
To begin:

1. Open a new vi and save it as Tktds8k Plug & Play Demo.
(You can use the vi from the previous section if it is still
open.)

2. Go to the Block Diagram view of this vi.

3. Show the Functions palette and navigate through the
Instrument I/O subpalettes to the Tktds8k subpalette.

4. Find tktds8k Initialize.vi, double-click it and drop it onto the
Block Diagram (you may have already performed this step
from the previous section).

5. Select Tools > Options, select the check box next to Show
subVI names when dropped, and click OK.

6. From the Tools palette, select Connect Wires (the wiring
tool).

7. Right-click the resource name terminal of the Initialize vi
and create a control (by selecting create > control).

8. Right-click the ID Query terminal and create a Boolean
constant set to True.

9. Right-click the Reset Device terminal and create a Boolean
constant set to True.

10. Right-click the Instrument Handle Out terminal and create
an indicator.

11. Right-click the Error Out terminal and create an indicator.

 Using Tektronix Plug-n-Play Drivers with LabVIEW

Oscilloscope Analysis and Connectivity Made Easy 235

At this point, your Block Diagram will look like this:

and your Front Panel will look like this:

12. In the resource name control on the Front Panel, make sure
the GPIB resource name reads GPIB8::1::INSTR.

13. Click the vi Run button (or select Operate > Run or press
Ctrl-R) as a test to see if communications with the
TDS/CSA8000 oscilloscope are working properly.

Using Tektronix Plug-n-Play Drivers with LabVIEW

236 Oscilloscope Analysis and Connectivity Made Easy

You should see the TDS/CSA8000 perform a reset, the Front Panel
instrument handle out indicator should display a response as shown
here, and the error cluster should not be indicating an error:

Note: If you receive an error at this point, launch the debugger
by selection Tools > Measurement & Automation Explorer and
follow the instructions for debugging GPIB issues. Do not
proceed with the demo until you successfully receive the
appropriate instrument handle out response and a code 0 in the
error cluster.

Place More Driver vi’s and Wire Them
If the vi is communicating with the oscilloscope properly, continue with
these steps:

1. Configure the TDS/CSA8000 oscilloscope for data
acquisition:

a. Connect a signal source to either an optical or electrical
module on the oscilloscope.

b. Connect a trigger source to the Trigger Direct Input on
the front of the oscilloscope.

c. Perform a test acquisition to ensure that the oscilloscope
is properly set up.

2. Disconnect the error cluster from the Initialize vi and move it
to the right. You will use it again in a later step.

Your Block Diagram will look similar to the following:

 Using Tektronix Plug-n-Play Drivers with LabVIEW

Oscilloscope Analysis and Connectivity Made Easy 237

�

3. Follow the steps on page 229 to navigate through Instrument
I/O subpalettes of the Functions palette to the list of tktds8k
functions:

4. Navigate through subpalettes as necessary:

Using Tektronix Plug-n-Play Drivers with LabVIEW

238 Oscilloscope Analysis and Connectivity Made Easy

to place the following driver vi’s onto the Block Diagram:

tktds8k Set Channel Displayed.vi
tktds8k Set Vertical Parameters.vi
tktds8k Start or Stop Acquisitions.vi
tktds8k Set Measurement Source1 Wfm.vi
tktds8k Set Measurement Type.vi
tktds8k Set Measurement Displayed.vi
tktds8k Get Measurement Value.vi
tktds8k Close.vi

5. Duplicate the Start or Stop acquisitions vi, as this vi will be
used twice.

 Using Tektronix Plug-n-Play Drivers with LabVIEW

Oscilloscope Analysis and Connectivity Made Easy 239

6. Arrange the vi’s in columnar format in the following
sequence:

Using Tektronix Plug-n-Play Drivers with LabVIEW

240 Oscilloscope Analysis and Connectivity Made Easy

7. Using the Connect Wire tool on the Tools palette, thread
wires between each vi on the Block Diagram pertaining to
instrument handle out input and output terminals and error
in/out input and output terminals as shown:

�

Configure vi’s from the Block Diagram
In the next steps, you will configure vi’s by wiring numeric values, controls,
and Booleans to various vi terminals:

1. Right-click the channel terminal of the Set Channel Display
vi and create a control.

2. Right-click the display terminal of the Set Channel
Displayed vi and create a constant. Set this value to ON.

3. Wire the Channel control from the Channel Displayed vi to
the channel terminal of the Set Vertical Parameters vi.

4. Right click the scale terminal of the Set Vertical Parameters
vi and create a constant. Change the value of this constant to

 Using Tektronix Plug-n-Play Drivers with LabVIEW

Oscilloscope Analysis and Connectivity Made Easy 241

0.10. After you have completed the vi, you may need to
adjust this value to achieve the scale you prefer.

5. Right-click the acquisition state terminal of the Start or
Stop Acquisitions vi and create a Boolean constant. Set this
value to True.

6. Right-click the measurement number terminal of the Set
Measurement Source1 Wfm vi and create a constant. Set
this value to meas 1.

Use the wiring tool to connect the WFM terminal to the Channel
control created in Step 1.

7. Right-click the measurement number terminal of the Set
Measurement Type vi and create a constant. Set this value to
meas 1.

8. Right-click the measurement type terminal of the Set
Measurement Type vi and create a control.

9. Right-click the measurement number terminal of the Set
Measurement Displayed vi and create a constant. Set this
value to meas 1.

10. Right-click the display terminal of the Set Measurement
Displayed vi and create a constant. Set this value to 1 ON.

11. Right-click the acquisition state terminal of the Start or
Stop Acquisitions vi and create a Boolean constant. Set this
value to False.

12. Right-click the measurement number terminal of the Get
Measurement Value vi and create a constant. Set this value
to meas 1.

13. Right-click the value terminal of the Get Measurement
Value vi and create an indicator.

Using Tektronix Plug-n-Play Drivers with LabVIEW

242 Oscilloscope Analysis and Connectivity Made Easy

The Run button of the Tktds8k Plug & Play.Demo vi should change
to a non-broken arrow, indicating the you now have a working
program. If it does not, compare your Block Diagram to the
following one to search for errors (or select Windows > Show Error
List):

�

Configure vi’s from the Front Panel
Next you will switch to the Front Panel view and make final changes.

1. On the Front Panel, right-click the Value indicator, access
the Format & Precision dialog, and set digits of precision to
3.

 Using Tektronix Plug-n-Play Drivers with LabVIEW

Oscilloscope Analysis and Connectivity Made Easy 243

The Front Panel will look like this:

Running Your Program
To run your demo program:

1. Select the Operate Value tool, click the Channel control, and
select a channel.

Possible values are 0 through 7, where:

0 = ch.1
1 = ch.2
2 = ch 3
.
.
.

7 = ch.8

2. Click the Measurement Type control and select a
measurement type.

3. Click the Run button on the Front Panel menu bar (or select
Operate > Run or press Ctrl-R).

The TDS/CSA8000 executes a Default Setup command, selects the
channel indicated in the Channel Select control, sets the chosen
measurement type, and then activates acquisition. The oscilloscope
takes a measurement and sends it to the Front Panel.

Since the program will only execute once, it will allow only one
measurement to be taken at a time.

Using VISA Operations with LabVIEW

244 Oscilloscope Analysis and Connectivity Made Easy

Using VISA Operations with LabVIEW

This simple example demonstrates how to use LabVIEW’s built-in VISA
communications interface to make timed measurements from a PC connected
by GPIB cable to a TDS7000 oscilloscope. The concepts described here
apply to drivers for any Tektronix Windows-based oscilloscope.

This section assumes you have some familiarity with the LabVIEW
environment and have perhaps worked with instrument drivers before.

A brief description of VISA operations used in this example appears in Table
39 in Appendix A

Note: It is not necessary to install TekVISA on your PC to work this
example, since LabVIEW comes with its own NI-VISA
implementation already installed. Installing TekVISA will overwrite
your NI-VISA implementation.

Creating a Timed Measurement Program
This simple Timed Measurement program targets the TDS7000 oscilloscope.
The user identifies one of eight possible measurements in a list box. At a
time interval (in seconds) specified by the user with a Dial control, the
program takes measurements (preset by the user on the oscilloscope) from
the device connected through the Instrument Resource Name control and
places them on a strip chart (Waveform Graph). A Stop button controls the
running of the Virtual Instrument. The chart updates with each new
measurement until the Stop button is clicked.

The Front Panel
To build the Front Panel for this program, place controls and indicators from
the Controls palette as follows, navigating to subpalettes as necessary to
make selections:

1. Construct a panel comprised of a list box with a label
captioned Measurement to Take:

2. Using the Edit Text tool on the Tools palette, add the
following items to the list box: Meas1, Meas2,…Meas8.

3. Set the Selection Mode of the list box to 1.

4. Add a Dial control to the panel by selecting it from the
Numeric Palette.

 Using VISA Operations with LabVIEW

Oscilloscope Analysis and Connectivity Made Easy 245

5. Using the Edit Text tool, specify the range of the dial as 0.5
to 5.

6. Add a Waveform Graph to the panel.

7. Set the Update Mode to StripChart.

8. Add a VISA Resource Name control to the panel choices
(under the I/O palette).

Using VISA Operations with LabVIEW

246 Oscilloscope Analysis and Connectivity Made Easy

9. Select the Allow Undefined Names attribute.

10. Add a Boolean Stop button to the panel, and set its
Mechanical Action to Latch When Released.

 The interface will look similar to Figure 62.

�
Figure 62: The Front Panel for the LabVIEW example

 Using VISA Operations with LabVIEW

Oscilloscope Analysis and Connectivity Made Easy 247

Table 33 summarizes the relevant controls and their attributes.

Table 33: Relevant attributes of controls that appear on the measuredemo.vi Front
Panel in LabVIEW

Control Attribute Change to

Label Measurement to Take:

Selection
Mode

1

List Box

Items Meas1
Meas2
Meas3
Meas4
Meas5
Meas6
Meas7
Meas8

Label Time Between
Measurements (s)

Dial

Range Values
Minimum
Maximum

0.5
5

Label Measurement History: Waveform Chart
 Update Mode StripChart

Label Instrument Resource
Name

Instrument
Resource Name
 Allow

Undefined
Names

Enabled

Label Stop Boolean Button
 Mechanical

Action
Latch When Released

The Block Diagram
When you place a control or indicator on the Front Panel, a corresponding
rectangular terminal is placed on the Block Diagram. You will already see
double-rectangle terminals on the Block Diagram for the

• Instrument Resource Name control

• List box labeled Measurement to Take:

• Dial control labeled Time Between Measurements (s)

Using VISA Operations with LabVIEW

248 Oscilloscope Analysis and Connectivity Made Easy

• Waveform chart named Measurement History:

• Boolean button named Stop

To build the rest of the Block Diagram for this program, place nodes
(structures, functions and vi’s) from the Functions palette as follows,
navigating to subpalettes as necessary to make selections:

1. Place a While-Loop structure in the diagram so that it
encloses other nodes inside a black lined box as shown.

2. From the Instrument I/O > VISA subpalette of the Functions
palette, select and place VISA Write and VISA Read
functions inside the While-Loop structure and a VISA Write
function to the left of the While-Loop structure.

 Using VISA Operations with LabVIEW

Oscilloscope Analysis and Connectivity Made Easy 249

3. From the Instrument I/O > VISA > VISA Advanced
subpalette of the Functions palette, select and place VISA
Open and VISA Close functions to the left and right of the
While-Loop structure as shown.

4. Using the Connect Wire tool from the Tools palette, wire the
VISA Open function to the Instrument Resource Name
control on the left side and to the While-Loop structure,
which is then wired to the VISA Close function on the right
side as shown on the diagram.

Using VISA Operations with LabVIEW

250 Oscilloscope Analysis and Connectivity Made Easy

This opens the VISA session outside the While loop and closes it
after exiting the loop.

5. Build the rest of the diagram to conform to this logic:

a. Increment the Measurement to Take: value because List
Box counting starts at 0 and oscilloscope measurements
start at 1.

b. Multiply the Time between Measurements (s) value by
1000 to convert to milliseconds.

c. Feed the time into a Wait vi in the While loop (selected
from the Time & Dialog palette), which sets the
minimum time for each loop iteration.

d. Wire a string constant containing HEADER OFF into the
VISA Write function outside the While loop. This is a
native GPIB command to turn off headers, so query
responses return only data.

e. Use the Format Into String function (selected from the
String palette) to insert the measurement number into the
format string MEASU:MEAS%d:VALUE? This native
GPIB query, which asks for the measurement value, will
be wired to the VISA Write function in the While loop.

 Using VISA Operations with LabVIEW

Oscilloscope Analysis and Connectivity Made Easy 251

f. Write the query to the instrument using the VISA Write
function.

g. The response will be read by the VISA Read function. To
make sure it reads the whole response, create a constant
at the Byte Count terminal of the VISA Read function
and set the maximum number of characters (bytes) to
read as 100.

h. Convert the response from a string into a double using
the Fract/Exp String To Number function selected from
the String > String/Number Conversion palette.

i. Feed the value into the Waveform Chart indicator named
Measurement History:.

j. Wire the Stop button to the conditional terminal of the
While loop.

k. Add a Simple Error Handler (selected from the Time &
Dialog palette) to the right of the VISA Close function
and wire the sequence of Error In and Error Out
terminals of the VISA functions to deal with any errors
that occur.

Using VISA Operations with LabVIEW

252 Oscilloscope Analysis and Connectivity Made Easy

The interface will look similar to Figure 63.

�
Figure 63: The Block Diagram for the LabVIEW example

Running Your Program
To run the completed program from within LabVIEW:

1. From the Front Panel of the measureDemo.vi program,
select a measurement value from the Measurement to Take:
list box (the range of values is Meas1 through Meas8).

2. Click the Run button on the Front Panel menu bar (or select
Operate > Run or press Ctrl-R).

LabVIEW connects to your TDS/CSA 7000 oscilloscope, which
activates acquisition. The program retrieves the corresponding
measurement set up on your oscilloscope and charts values in the
Measurement Values strip chart at half-second (.5) intervals, as
shown in Figure 64.

3. Click the Stop button.

4. Experiment with changing the Dial control and the
Measurement to Take: list box to other settings, and then
click the Run and Stop buttons again for each experiment.
To clear the data from the chart, right-click on it and select
Data Operations > Clear Chart.

 Chapter 9 Review

Oscilloscope Analysis and Connectivity Made Easy 253

Figure 64: The LabVIEW program while executing

Chapter 9 Review

To review what you learned in Chapter 9:

• You discovered that you can use a Tektronix VXI-compatible
Plug-n-Play driver to access and control your oscilloscope
via popular programming environments such as
LabWindows/CVI and LabVIEW.

• You learned how to incorporate:

• Plug-n-Play driver functions into a
LabWindows/CVI program.

• Plug-n-Play driver functions into a LabVIEW
program.

• VISA commands into a LabVIEW program.

Chapter 9 Review

254 Oscilloscope Analysis and Connectivity Made Easy

 Introduction

Oscilloscope Analysis and Connectivity Made Easy 255

Appendix A: Command and Control
Reference

Introduction

This appendix is not exhaustive and covers only those GPIB commands and
interfaces relevant to the chapters in this book.

Native GPIB Commands and Queries

Table 34 and Table 35 explain the subset of TDS7000 Series native GPIB
commands and queries used in examples in this book:

• Commands modify instrument settings or tell the
oscilloscope to perform a specific action.

• Queries cause the oscilloscope to return data and
information about its status.

You can abbreviate commands and queries by including only the command
portions shown in capital letters (for example, ACQ:MOD). To learn more
about the full set of native GPIB commands, see the Online Programmer
Guide for your Series of Tektronix Windows-based oscilloscopes.

Native GPIB Commands and Queries

256 Oscilloscope Analysis and Connectivity Made Easy

Table 34: TDS7000 Series native GPIB commands used in examples in this book

Command Meaning

ACQuire:MODe Sets the acquisition mode of the oscilloscope. This determines
how the final value of the acquisition interval is generated from
the many data samples, and affects all live waveforms. This
command is equivalent to selecting Horizontal/Acquisition from
the Horiz/Acq menu and then choosing the desired mode from
the Acquisition Mode group box.

ACQuire:MODe{SAMple|PEAKdetect|HIRes|AVErage|
ENVelope}

where

SAMple (the default mode) means that the displayed data
point value is simply the first sampled value taken during the
acquisition interval. In this mode, all waveform data has 8 bits
of precision.

PEAKdetect means that the displayed waveform shows the
high-low range of the samples taken from a single waveform
acquisition.

HIRes means that the displayed waveform is the average of all
the samples taken from a single waveform acquisition.

AVErage mode means that the displayed waveform is the
average of the specified number of waveform acquisitions,
where the number is specified using the ACQuire:NUMAVg
command.

ENVelope mode means that the displayed waveform is an
envelope of many individual waveform acquisitions, where the
number of acquisitions is set or queried using the
ACQuire:NUMENv command.

ACQuire:STATE Starts acquisitions (ON or RUN or non-zero) or stops
acquisitions (OFF or STOP or 0). Sending this command is
equivalent to pressing the front-panel RUN/STOP button,
unless the STOPAFTER mode is set to SEQUENCE, in which
case this command is equivalent to pressing SINGLE from the
front panel.

ACQuire:STATE{OFF|ON|RUN|STOP|<integer>}

ACQuire:STOPAfter Sets whether the oscilloscope performs continuous
acquisitions (RUNSTop) or acquires a single sequence
(SEQuence).

ACQuire:STOPAfter {RUNSTop|SEQuence}

 Native GPIB Commands and Queries

Oscilloscope Analysis and Connectivity Made Easy 257

Command Meaning

DATa:ENCdg Sets the data format included in the preamble of outgoing
waveform data. Causes corresponding WFMOutpre values to
be updated and vice versa.

DATa:ENCdg
{ASCIi|FAStest|RIBinary|RPBinary|FPBinary|SRIbinary|
SRPbinary|SFPbinary}

where

ASCIi = ASCII representation of signed integer data point,
positive integer data point, or single-precision binary floating-
point representation. Default is positive integer.

FAStest = requests that the data be sent in the fastest
accurate manner with respect to the first waveform specified in
the DATA:SOUrce list.

RIBinary (the default argument) = signed integer data-point
representation with the most-significant byte transferred first.
The range is from -128 through 127. Center screen is 0.

RPBinary = positive integer data-point representation, with the
most-significant byte transferred first. The range is from 0
through 255. Center screen is 127.

FPBinary = single-precision floating-point representation of
data whose width is 4. The range is from -3.4 x 1038 to 3.4 x
1038. Center screen is 0.

SRIbinary = same as RIBinary except that the byte order is
swapped so the least-significant byte is transferred first.

SRPbinary = same as RPBinary except that the byte order is
swapped so the least-significant byte is transferred first.

SFPbinary = same as FPbinary except that the byte order is
swapped so the least-significant byte is transferred first.

DATa:SOUrce Sets the location of the waveform data transferred from the
oscilloscope by the CURVe? query. The source data is always
transferred in the following predefined order regardless of the
order specified: CH1 through CH4, MATH1 through MATH3,
then REF1 through REF4.

DATa:SOUrce <wfm>[<,><wfm>]…

where

wfm = the location of the waveform data to be transferred from
the oscilloscope

Example:
DATA:SOURCE REF2, CH2, MATH1, CH1

means that four waveforms will be transferred in the next
CURVe? query in the following order:
CH1, CH2, MATH1 and then REF2.

Native GPIB Commands and Queries

258 Oscilloscope Analysis and Connectivity Made Easy

Command Meaning

DATA:STARt Sets the starting data point for waveform transfer when using
the CURVe? query.

DATa:STARt <integer>

where

integer = the first data point that will be transferred, ranging
from 1 to the record length. Data will be transferred from
integer to DATa:STOP or the record length, whichever is less.

Example:
DATA:START 10

means that the waveform transfer will begin with data point 10.

DATa:STOP Sets the ending data point for waveform transfer when using
the CURVe? query. If you always want to transfer complete
waveforms, set DATa:STARt to 1 and DATa:STOP to the
maximum record length.

DATa:STOP <integer>

where

integer = the last data point that will be transferred, ranging
from 1 to the record length.

Example:
DATA:STOP 15000

specifies that the waveform transfer will stop at data point
15000.

DESE Sets bits in the Device Event Status Enable Register
(DESER), a mask that determines whether events are reported
to the Standard Event Status Register (SESR) and entered
into the event queue.

DESE <integer>

where

integer = a value ranging from 1 through 255. Bit 1 represents
the Operation Complete (OPC) event.

Example:
DESE 1

sets the DESER to binary 00000001, which enables the OPC
bit.

 Native GPIB Commands and Queries

Oscilloscope Analysis and Connectivity Made Easy 259

Command Meaning

*ESE Sets bits in the Event Status Enable Register (ESER), which
prevents events from being reported to the Status Byte
Register (STB).

*ESE <integer>

where

integer = a value ranging from 0 through 255.

Example:
*ESE 1

sets the ESER to binary 00000001, which enables the OPC
bit.

Note: Setting the DESER and the ESER to the same values
allows only those codes to be entered into the event queue
and summarized on the ESB bit (bit 5) of the Status Byte
Register.

HEADer This command causes the oscilloscope to either include
headers (ON or non-zero) or omit headers (OFF or 0) on query
responses. If omitted, only the argument is returned.

HEADer {OFF|ON|<integer>}

Example:

Query BUSY?
Response with HEADER OFF 1
Response with HEADER ON :BUSY 1

MEASUrement:
IMMed:TYPE

This command sets the immediate measurement type.

MEASUrement:IMMed:TYPE <type>

where <type> is one of the following:
{AMPlitude|AREa|BURst|CARea|CRMs|DELay|FALL|
FREQuency|HIGH|LOW|MAXimum|MINImum|NDUty|
NOVershoot|NWIdth|PDUty|PERIod|PHAse|PK2Pk|
POVershoot|PWIdth|RISe|RMS}

Example:

MEASUREMENT:IMMED:TYPE FREQ

defines the immediate measurement to be a frequency
measurement.

*OPC Generates the operation complete message in the Standard
Event Status Register (SESR) on completion of all pending
operations. This allows you to synchronize the operation of the
oscilloscope with your application program.

*OPC

Native GPIB Commands and Queries

260 Oscilloscope Analysis and Connectivity Made Easy

Command Meaning

TRIGger:A:MODe Sets the A trigger mode.

TRIGger:A:MODe {AUTO|NORMAL}

where:

AUTO = generates a trigger if one is not detected within a
specified time period.

NORMAL = waits for a valid trigger event.

Example:

TRIG:A:MOD NORM

means that a valid trigger event must occur before a trigger is
generated on the A trigger.

*SRE Sets the bits in the Service Request Enable Register (SRER).
This controls which bits in the Status Byte Register (SBR)
enable a Service Request.

*SRE <integer>

where

integer = a value ranging from 0 through 255. Bit 1 represents
the Operation Complete (OPC) event.

Example:
*SRE 32

sets the SRER to binary 00100000, turning on the Event
Status Bit (ESB).

WFMOutpre:
 BYT_Nr

This command sets the number of bytes of binary integer data
to transfer in the outgoing waveform. If set to 1, all bytes are
single data points. If set to 2, there are two bytes per data
point.

WFMOutpre:BYT_Nr <integer>

where

integer = the number of bytes per data point. Can be 1, 2, 4 or
8. A value of 1 or 2 indicates channel data; 4 indicates math
data; 8 indicates pixel map (DPO) data.

WFMOutpre:
 BYT_Or

This command sets which outgoing byte of binary waveform
data is transmitted first during a waveform data transfer.

WFMOutpre:BYT_Or {LSB|MSB}

where:

LSB = least significant byte first (compatible with Intel CPUs)
MSB= most significant byte first

Example:
WFMOUTPRE:BYT_OR LSB

sets the byte order to least significant byte first.

 Native GPIB Commands and Queries

Oscilloscope Analysis and Connectivity Made Easy 261

Table 35: TDS7000 Series native GPIB queries used in examples in this book

Query Meaning

BUSY? Returns the status of the oscilloscope. This query allows you to
synchronize the operation of the oscilloscope with your
application, where:

0 means that the oscilloscope is not busy processing a
command whose execution time is extensive.

1 means that the oscilloscope is busy processing one of these
commands:

ACQuire:STATE ON
ACQuire:STATE RUN
HARDCopy STARt

Example:

This query might return 1, indicating that the oscilloscope is
currently busy.

CURve? Transfers waveform data from the instrument specified by the
DATa:SOUrce command. The DATa:STARt and DATa:STOP
commands specify the first and last data points. The
oscilloscope will stop reading when there is no more data or the
specified record length is reached. Under these circumstances,
the DATa:STOP command is ignored.

In binary format, the waveform is formatted as:
#<a><bbb><data><newline>, where

a = the number of b bytes. For example, if bbb =500, then a =3.

bbb = the number of bytes to transfer. If data width is 1, all
bytes on the bus are single data points. If data width is 2, all
bytes on the bus are 2-byte pairs.

data = the curve data

newline = a single-byte new-line character at the end of the
data

HORizontal:
RECOrdlength?

Returns the current horizontal record length. This is equivalent
to selecting Position/Scale from the Horiz/Acq menu and then
returning the Rec Length field.

Example:

This query might return 5000, indicating that the horizontal
record length is 5000 data points.

*IDN? Returns the oscilloscope identification code.

Example:

This query might return :TEKTRONIX,TDS7104,0,CF:91.1CT
FV:01.00.912, indicating the oscilloscope model number,
configured number, and firmware version number.

Native GPIB Commands and Queries

262 Oscilloscope Analysis and Connectivity Made Easy

Query Meaning

MEASUrement:
IMMed:VAL?

Returns the value of the measurement specified by the
MEASUrement:IMMed:TYPe command.

Example:

This query might return 9.9000E+37 as the value of a command
of type FREQUENCY.

MEASU:MEAS<x>:
VALUE?

Returns the value calculated for the measurement specified by
<x>, which ranges from 1 through 8. This command is
equivalent to selecting Display Statistics from the Measure
menu and then choosing Value from the drop-down list to
display all measurement values on-screen.

Example:

MEASUrement:MEAS1:VALue?

This query might return :MEASUREMENT:MEAS1:VALue
2.8740E-06.

WFMOutpre:
PT OFF?

Returns the trigger point relative to DATa:STARt for the
waveform specified by the DATa:SOUrce command. This value
is the point immediately following the actual trigger.

Example:

This query might return 251, specifying that the trigger actually
occurred between points 250 and 251.

WFMOutpre:
XINCR?

Returns the horizontal point spacing in units of
WFMOutpre:XUNit for the waveform specified by the
DATa:SOUrce command. This value typically corresponds to
the sampling interval.

Example:

This query might return 10.00E-6, indicating that the horizontal
sampling interval was 10 ms/point (500 ms/div)

WFMOutpre:
YMULT?

Returns the vertical scale factor per digitizing level in units of
WFMOutpre:YUNit for the waveform specified by the
DATa:SOUrce command. This scale factor must take the
location of the binary point implied by the number of bytes per
data point into consideration.

For instance, if the binary field DATA WIDTH for the first
ordered waveform is 1, a curve data point was 10, and the scale
factor was 0.02, that data point would be sent as 2560.
However, if the DATA WIDTH were set to 2, the scale factor
would be sent as 0.02/256 = 781.25E-3.

Example:

This query might return 4.000E-3, indicating that the vertical
scale for the corresponding waveform was 100 mV/div.

 TekVISA Active X Control Methods, Properties, and Events

Oscilloscope Analysis and Connectivity Made Easy 263

Query Meaning

WFMOutpre:
YOFF?

Returns the vertical offset in digitized levels for the waveform
specified by the DATa:SOUrce command.

Example:

This query might return -50.000E+0, indicating that the position
indicator for the waveform was 50 digitizing levels (2 divisions)
below center screen.

WFMOutpre:
YZERO?

Returns the vertical offset in units of WFMOutpre:YUNit for the
waveform specified by the DATa:SOUrce command.

Example:

This query might return -100.0E-3, indicating that vertical offset
was set to -100 mV.

TekVISA Active X Control Methods, Properties, and Events

Table 36 shows methods, properties, and events of the TekVISA ActiveX
Control, some of which are used in Excel VBA and Visual Basic 6.0
examples in this book. For context-sensitive help, select the object and press
F1 in VBA or Visual Basic.

Table 36: Methods, properties and events of the TekVISA ActiveX Control

Method Definition

AboutBox Returns version and copyright information about the TekVISA
ActiveX Control.

Parameters: none

Example:

Tvc1.AboutBox

Attribute
(attribute_name)

Attribute
(attribute_name) =
newvalue

Gets or sets the specified native TekVISA API parameter (see
following table), which corresponds to a state of an attribute for
the specified resource (session, event, or find list). For more
information about TekVISA attributes, see the online TekVISA
Programmer Manual.

Input parameters:

attribute_name is a constant expression identifying the
attribute for which the state is to be retrieved or set

newvalue as long; the new state value to set the attribute to

Returns: a variant that contains the resulting value.

Examples:

Value = Tvc1.Attribute (VI_ATTR_TMO_VALUE)

Tvc1.Attribute(VI_ATTR_TMO_VALUE) = 5000

TekVISA Active X Control Methods, Properties, and Events

264 Oscilloscope Analysis and Connectivity Made Easy

Method Definition

Native TekVISA Attribute Name

Data Type

Read/Write
Property

Supported
Descriptors

VI_ATTR_ASRL_AVAIL_NUM Long RO ASRL

VI_ATTR_ASRL_BAUD Long RW ASRL

VI_ATTR_ASRL_CTS_STATE Integer RO ASRL

VI_ATTR_ASRL_DATA_BITS Integer RW ASRL

VI_ATTR_ASRL_DCD_STATE Integer RO ASRL

VI_ATTR_ASRL_DSR_STATE Integer RO ASRL

VI_ATTR_ASRL_DTR_STATE Integer RW ASRL

VI_ATTR_ASRL_END_IN Integer RW ASRL

VI_ATTR_ASRL_END_OUT Integer RW ASRL

VI_ATTR_ASRL_FLOW_CNTRL Integer RW ASRL

VI_ATTR_ASRL_PARITY Integer RW ASRL

VI_ATTR_ASRL_REPLACE_CHAR Char RW ASRL

VI_ATTR_ASRL_RI_STATE Integer RO ASRL

VI_ATTR_ASRL_RTS_STATE Integer RW ASRL

VI_ATTR_ASRL_STOP_BITS Integer RW ASRL

VI_ATTR_ASRL_XOFF_CHAR Char RW ASRL

VI_ATTR_ASRL_XON_CHAR Char RW ASRL

VI_ATTR_BUFFER String RO All INSTR

VI_ATTR_EVENT_TYPE Long RO All

VI_ATTR_FILE_APPEND_EN Boolean RW All INSTR

VI_ATTR_GPIB_PRIMARY_ADDR Integer RO GPIB

VI_ATTR_GPIB_READDR_EN Boolean RW GPIB

VI_ATTR_GPIB_SECONDARY_ADDR Integer RO GPIB

VI_ATTR_GPIB_UNADDR_EN Boolean RW GPIB

VI_ATTR_INTF_INST_NAME String RO All

VI_ATTR_INTF_NUM Integer RO All

VI_ATTR_INTF_TYPE Integer RO All

VI_ATTR_IO_PROT Integer RW All INSTR

VI_ATTR_JOB_ID Long RO All INSTR

VI_ATTR_MAX_QUEUE_LENGTH Long RW All INSTR

VI_ATTR_OPER_NAME String RO All INSTR

VI_ATTR_RD_BUF_OPER_MODE Integer RW All INSTR

VI_ATTR_RET_COUNT Long RO All INSTR

 TekVISA Active X Control Methods, Properties, and Events

Oscilloscope Analysis and Connectivity Made Easy 265

Method Definition

Native TekVISA Attribute Name

Data Type

Read/Write
Property

Supported
Descriptors

VI_ATTR_RM_SESSION Long RO All INSTR

VI_ATTR_RSRC_IMPL_VERSION Long RO All

VI_ATTR_RSRC_LOCK_STATE Long RO All

VI_ATTR_RSRC_MANF_ID Integer RO All

VI_ATTR_RSRC_MANF_NAME String RO All

VI_ATTR_RSRC_NAME String RO All

VI_ATTR_RSRC_SPEC_VERSION Long RO All

VI_ATTR_SEND_END_EN Boolean RW All INSTR

VI_ATTR_STATUS Long RO All

VI_ATTR_SUPPRESS_END_EN Boolean RW All INSTR

VI_ATTR_TCPIP_ADDR String RO TCPIP

VI_ATTR_TCPIP_HOSTNAME String RO TCPIP

VI_ATTR_TERMCHAR Char RW All INSTR

VI_ATTR_TERMCHAR_EN Boolean RW All INSTR

VI_ATTR_TMO_VALUE Long RW All INSTR

VI_ATTR_USER_DATA Long RW All

VI_ATTR_WR_BUF_OPER_MODE Integer RW All INSTR

TekVISA Active X Control Methods, Properties, and Events

266 Oscilloscope Analysis and Connectivity Made Easy

Method Definition

DeviceClear Sends a device clear command to the instrument which
performs an IEEE 488.1–style clear of the device.

Parameters: none

Example:

Tvc1.DeviceClear

GetWaveform
(channel, wfm, xincr,
trigPos, vUnits,
hUnits)

Obtains the current waveform at the current settings, along
with its sample interval, trigger position, and vertical and
horizontal engineering units, from the specified channel.

This query uses 1-byte binary encoding and places returned
data into a structure array readable by the TekVISA ActiveX
Control. For more granular control of GPIB queries, see the
ReadIEEEBlock and ReadList methods.

Input parameters:

channel asChannel; the channel from which to get a waveform
(CH1, CH2, CH3, CH4, MATH1, MATH2, MATH3, MATH4)

Output parameters:

wfm as Variant; the variable to receive the waveform as an
array of variants. Array is returned with Y-axis values
calculated in floating point format

xincr as Double; the variable to receive the sample time
interval (X-increment between Y-axis values)

trigPos as long; the variable to receive the waveform trigger
position

vUnits as String; the variable to receive the vertical
engineering units, for example, “V”.

hUnits as String; the variable to receive the horizontal units, for
example, “s”.

Example:

Dim arrWF
Dim n as Long, trigpos as Long
Dim xinc as Double
Dim vUnits as String, hUnits as String
Dim t as Double

Call Tvc1.GetWaveform (CH1, arrWF, xinc, trigpos, vUnits,
 hUnits)

For n = LBound(arrWF) To UBound(arrWF)
 ‘ calculate time value
 t = (n – trigpos) * xinc
 Debug.Print t & “, “ & arrWF(n)
Next

 TekVISA Active X Control Methods, Properties, and Events

Oscilloscope Analysis and Connectivity Made Easy 267

Method Definition

GetWaveform8K
(channel, timebase,
wfm, xincr, xoffset,
vUnits, hUnits)

Obtains the current waveform at the current settings on a
TDS/CSA8000 Series oscilloscope, along with its sample
interval, horizontal offset, and vertical and horizontal
engineering units from the specified channel and timebase.
The time value for each sample point can be calculated using
the following function:
Time[index] = (index-xoffset)*xincr

Input parameters:

channel as CHANNEL_8K; the channel from which to get a
waveform (CH1_8K, CH2_8K, CH3_8K, CH4_8K, CH5_8K,
CH6_8K, CH7_8K, MATH1, MATH2, MATH3, MATH4,
MATH5, MATH6, MATH7, MATH8).

timebase as TIMEBASE_8K; the timebase from which to get a
waveform (MAIN, MAG1, or MAG2).

Output parameters:

wfm as Variant; the variable to receive the waveform. Array is
returned with Y-axis values calculated in floating point format.

xincr as Double; the variable to receive the sample interval
(X-increment between Y-axis values)

xoffset as Double; the variable to receive the X-offset (the
horizontal offset in digitized levels)

vUnits as String; the variable to receive the vertical units (for
example, “V”)

hUnits as String; the variable to receive the horizontal units (for
example, “ns”)

Example:

Dim arrWF
Dim n as Long
Dim xinc as Double, xoff as Double
Dim vUnits as String, hUnits as String
Dim t as Double

Call Tvc1.GetWaveform8K (CH1_8K, MAIN. arrWF, xinc, xoff,
 vUnits, hUnits)

For n = LBound(arrWF) To UBound(arrWF)
 ‘ calculate time value
 t = n * xinc
 Debug.Print t & “, “ & arrWF(n)
Next

TekVISA Active X Control Methods, Properties, and Events

268 Oscilloscope Analysis and Connectivity Made Easy

Method Definition

Lock Places a lock on the selected instrument resource, which
prevents other sessions from acquiring an exclusive lock. If no
lock has been taken, this method will take the lock and return.
If another TVC instance or VISA session owns the lock, then
this method will block until that lock is released. Locks can be
nested and released by calls to the Unlock() method.

Parameters: none

Example:

‘ Locking ensures atomic operations won’t be interrupted
Tvc1.Lock
Tvc1.WriteString “*idn?”
Output = Tvc1.ReadString
Tvc1.Unlock

result = Query
(native-query)

Sends a native query command to the oscilloscope and reads
the results.

Input parameters:

native-query as String; the GPIB native query to send

Returns: result as String; the query result from the oscilloscope

Example:
lblDisplay.Caption = Tvc1.Query(“*IDN?”)

array =
ReadByteArray
(maxElements)

Returns a byte array of data from a GPIB native query
command.

Input parameters:

maxElements as long; the maximum number of elements to
read in the byte array

Returns: a Variant that contains the array being read

Example:

TVC1.WriteString CURVE?
Arr = Tvc1.ReadByteArray (max)

 TekVISA Active X Control Methods, Properties, and Events

Oscilloscope Analysis and Connectivity Made Easy 269

Method Definition

block =
ReadIEEEBlock
(DataType,
ByteOrder,
maxElements)

Reads the instrument buffer in a specified IEEE format. This
method is typically used in Curve queries with binary encoding.
The elements of the returned Variant array have the type
specified in the DataType argument, unless the
YModelEnabled property is set to True, in which case, each
element in the array is a floating-point value whose value is
determined by the following equation:

Variant[I] = (Element[I] – YOffset)*YMult + YZero

where YOffset, YMult, and YZero are all floating-point
properties. The intent is to allow you to calculate the vertical
data in a single operation, simply by setting the
YModelEnabled, YOffset, YMult, and YZero properties
appropriately before reading the binary block.

Input parameters:

DataType as IEEEBinaryType; the data type of the block being
read. The legal values are:

BinaryType_I2 – Two-Byte Integer
BinaryType_I4 – Four-Byte Integer
BinaryType_R4 – Four-Byte Float
BinaryType_R8 – Eight-Byte Float
BinaryType_UI1 – Unsigned char
BinaryType_I1 – Signed char

byteOrder as ByteOrderingType; the byte order of the block
being read. Values are ByteOrderingType_Normal and
ByteOrderingType_Reversed.

maxElements as Long; the maximum number of elements in
the block being read

Returns: a Variant that contains the data block being read

Example:

Private Sub ReadIEEEBlock_Click()
 Dim wfm As Variant
 Dim str As String
 Tvc1.WriteString "*rst"
 Tvc1.WriteString "autoset exe"
 Tvc1.WriteString "header off"
 Tvc1.YModelEnabled = True
 Tvc1.YMult = Tvc1.Query("WFMOutpre:YMULT?")
 Tvc1.YOffset = Tvc1.Query("WFMOUTPRE:YOFF?")
 Tvc1.YZero = Tvc1.Query("WFMOUTPRE:YZERO?")
 Tvc1.WriteString "WFMOUTPRE:ENCDG BIN"
 Tvc1.WriteString "WFMOUTPRE:BN_FMT RI"
 Tvc1.WriteString "DATA:ENCDG RIBINARY;WIDTH 1"
 Tvc1.WriteString "Data:Start 1"
 Tvc1.WriteString "Data:Stop 500"
 Tvc1.WriteString "Curve?"

TekVISA Active X Control Methods, Properties, and Events

270 Oscilloscope Analysis and Connectivity Made Easy

Method Definition

 ‘ Read #3500 that is prepended to the data
 str = Tvc1.ReadPartialString(5)
 wfm = Tvc1.ReadIEEEBlock(BinaryType_UI1,
 ByteOrderingType_Normal, 500)

End Sub

list = ReadList
(dataType,
listSeparator)

Returns an array of variants in ASCII format. Typically used in
GPIB queries that return multiple values such as concatenated
queries or CURVE? queries. The elements of the returned
Variant array have the type specified in the DataType
argument, unless the YModelEnabled property is set to True,
in which case, each element in the array is a floating-point
value whose value is determined by the following equation:

Variant[I] = (Element[I] – YOffset)*YMult + YZero

where YOffset, YMult, and YZero are all floating-point
properties. The intent is to allow you to calculate the vertical
data in a single operation, simply by setting the
YModelEnabled, YOffset, YMult, and YZero properties
appropriately before reading the data.

Input parameters:

dataType as IEEEASCIIType; the data type of the list being
read. Legal values are

ASCIIType_BSTR
ASCIIType_I1
ASCIIType_I2
ASCIIType_I4
ASCIIType_R4
ASCIIType_R8
ASCIIType_UI1

listSeparator as String; the character used to separate
elements in the list. For GPIB commands, the separator is a
semicolon. For CURVE? queries, it is a comma.

Returns: a variant that contains the data list being read

Example:

Private Sub Command1_Click()
‘ example with concatenated query
 Dim cmd As String
 Dim arr
 cmd = "HEADER OFF;:MEASU:MEAS1:VALUE?;
 :MEASU:MEAS2:VALUE?;:MEASU:MEAS3:VALUE?"
Tvc1.WriteString cmd
arr = Tvc1.ReadList(ASCIIType_BSTR, ";")
 If IsArray(arr) Then
 Print arr(1)
 Print arr(2)
 Print arr(3)
 End If
End Sub

See also example on page 314.

 TekVISA Active X Control Methods, Properties, and Events

Oscilloscope Analysis and Connectivity Made Easy 271

Method Definition

string =
ReadPartialString
(length)

Reads the specified number of characters from the current
instrument’s buffer. Often used when reading a byte stream
returned from a CURVE? query. The format of the stream
header is #[n][bytenumbers]. For instance, reading the first six
characters returned from a CURVE? query might read”#45000.
The number 4 indicates the number of characters to read to
get the numbers of bytes being returned. In this instance, it is
5000. This function eases the parsing of such byte streams.

Input parameters:

length as Long; the length of the partial string to read

Returns: a string that contains the partial data being read.

Example:

Private Sub ReadIEEEBlock_Click()
 Dim wfm As Variant
 Dim str As String
 Tvc1.WriteString "*rst"
 Tvc1.WriteString "autoset exe"
 Tvc1.WriteString "header off"
 Tvc1.YModelEnabled = True
 Tvc1.YMult = Tvc1.Query("WFMOutpre:YMULT?")
 Tvc1.YOffset = Tvc1.Query("WFMOUTPRE:YOFF?")
 Tvc1.YZero = Tvc1.Query("WFMOUTPRE:YZERO?")
 Tvc1.WriteString "WFMOUTPRE:ENCDG BIN"
 Tvc1.WriteString "WFMOUTPRE:BN_FMT RI"
 Tvc1.WriteString "DATA:ENCDG RIBINARY;WIDTH 1"
 Tvc1.WriteString "Data:Start 1"
 Tvc1.WriteString "Data:Stop 500"
 Tvc1.WriteString "Curve?"
 ‘ Read #3500 that is prepended to the data
 str = Tvc1.ReadPartialString(5)
 wfm = Tvc1.ReadIEEEBlock(BinaryType_UI1,
 ByteOrderingType_Normal, 500)
End Sub

result = ReadString Reads the entire string that is pending in the current
instrument. Typically used to read the results of a query sent
with the WriteString method.

Input parameters: none

Returns: result as String; the query result from the oscilloscope

Example:

Tvc1.WriteString(“*IDN?”)
lblDisplay.Caption = Tvc1.ReadString

TekVISA Active X Control Methods, Properties, and Events

272 Oscilloscope Analysis and Connectivity Made Easy

Method Definition

ReadtoFile (filename,
length, refcount)

Reads data and stores the result in the specified file. If the
FileAppendEnabled property is set to True, the data is
appended to the specified file (if it exists); otherwise, the file is
created and written.

Input parameters:

filename as String; the full path name of the file to which to
write the data

length as Long; the maximum number of characters to read

Output parameters:

refcount as Long; the number of bytes written to the file

Example:

Dim sFileName As String
Dim flen as Long

SFileName = “C:\MyData.dat”
 TVC1.WriteString "CURVE?"
 TVC1.FileAppendEnabled = True
 Do
 .ReadToFile sFileName, 1024, flen
 Loop While flen = 1024
 TVC1.FileAppendEnabled = False

StatusDescriptor
(status)

Returns a string with a description of the error specified by the
status argument.

Input parameters:

status as Long; the error argument for which a readable
description is desired

Example:

Private Sub Command1_Click()
 On Error GoTo Err
 Tvc1.WriteString "*idn?"
 output = Tvc1.ReadString
Err:
 MsgBox Tvc1.StatusDescriptor(Tvc1.Status), vbOKOnly
End Sub

Unlock Removes a lock on the resource specified in the TVC instance.

Parameters: none

Example:

‘ Locking ensures atomic operations won’t be interrupted
Tvc1.Lock
Tvc1.WriteString “*idn?”
Output = Tvc1.ReadString
Tvc1.Unlock

 TekVISA Active X Control Methods, Properties, and Events

Oscilloscope Analysis and Connectivity Made Easy 273

Method Definition

WriteByteArray
(buffer)

Similar to the WriteString method but sends a Variant array
buffer rather than a String to the specified device.

Input parameters:

buffer as Variant; the byte array holding the Character data
(typically a GPIB command or query) to send to the
oscilloscope

Example:

Tvc1.WriteByteArray (buff)

WriteFromFile
(filename, length,
refcount)

Reads data from the specified file and writes it to the current
device.

Input parameters:

filename as String; the full path name of the file to read

length as Long; the maximum number of characters to write to
the device

Output parameters:

refcount as Long, the number of bytes written to the device

Examples:

Dim sFileName as String
Dim flen as Long
Dim refcount as Long
sFileName = “C:\Mysettings.set”
flen = FileLen(sFileName)
Tvc1.WriteFromFile sFileName, flen, refcount)

‘ Read Previous *LRN to restore instrument state
Dim RetCnt As Long
Tvc1.WriteFromFile “C:\Restor01.txt”, 1000000, RetCnt

WriteString (cmd) Sends a string (typically a GPIB command or query) to the
currently open oscilloscope.

Input parameters:

cmd as String; the command or query to send

Example:

Tvc1.WriteString(“*IDN?”)
lblDisplay.Caption = Tvc1.ReadString

TekVISA Active X Control Methods, Properties, and Events

274 Oscilloscope Analysis and Connectivity Made Easy

Property Definition

Address*
Attribute
BaudRate
BytesAvailable
ClearToSendState
ComponentVersion
DataBits
DataCarrierDetectState
DataSetReadyState
DataTerminalReadyState
Descriptor*
DeviceName
EnableExceptions*
EndIn
EndOut
FileAppendEnabled*
FindList*
FlowControl
HardwareInterfaceName
HardwareInterfaceNumber
HardwareInterfaceType
Hostname*
Index*
InstrumentManufacturer*
InstrumentModel*
LockState
MaximumQueueLength
Name*
Parent*
Parity
PrimaryAddress
RENState
RepeatedAddressingEnabled
ReplacementCharacter
RequestToSendState
ResourceName
RingIndicatorState
SearchCriterion*
SecondaryAddress
SendEndEnabled
SessionType
SoftwareManufacturerID
SpecVersion
Status*
StopBits
Tag*
TerminationCharacter
TerminationCharacterEnabled
Timeout
UnaddressingEnabled
XOFFCharacter
XONCharacter
YModelEnabled*
YMult*
YOffset*
YZero*

Most of these properties map one-to-one with
TekVISA attributes. For example, the Tmeout
property encapsulates the VI_ATTR_TMO_VALUE
attribute. For context-sensitive help with these
properties, select the property and press F1 in
Visual Basic or VBA. For more information about
TekVISA attributes, see the online TekVISA
Programmer Manual.

Details about properties that do not map to TekVISA
attributes (marked with an asterisk) appear next in
this table in alphabetical order.

 TekVISA Active X Control Methods, Properties, and Events

Oscilloscope Analysis and Connectivity Made Easy 275

Property Definition

Address Read Only. Encapsulates the
VI_ATTR_TCPIP_ADDR attribute. Reads the
TCP/IP address of the active instrument. This string
is formatted in dot notation (for example,
10.0.0.1).

Example:

Print Tvc1.Address

Descriptor

Descriptor = address

Read/write. Gets or sets the VISA descriptor whose
type is string.

Property value:

address as string; the new instrument address value
to set the descriptor to

Example:

instr = Tvc1.Descriptor
Tvc1.Descriptor = “GPIB8::1::INSTR ”

EnableExceptions

EnableExceptions = state

Read/Write. Gets or sets the EnableExceptions
property, which enables or disables exceptions in
the TekVISA ActiveX Control. This property is
enabled by default. If it is disabled, no exceptions wll
be generated on errors; however, the Status
property will still contain the status of the previous
command.

Property values:

state as Boolean; the state of the EnableExceptions
property (True or False), which whether exceptions
will be generated on errors in the TekVISA ActiveX
Control.

Example:

Tvc1.EnableExceptions = False

TekVISA Active X Control Methods, Properties, and Events

276 Oscilloscope Analysis and Connectivity Made Easy

Property Definition

FileAppendEnabled

FileAppendEnabled = state

Read/Write. Encapsulates the
VI_ATTR_FILE_APPEND_EN attribute. Gets or sets
the property that specifies whether the ReadToFile
method will append or overwrite (truncate) when
opening a file.

Property values:

state as Boolean; the state of the
FileAppendEnabled property (True or False), which
determines how the ReadToFile method executes.

Example:

‘ Write Instrument ID to logfile
Dim RetCnt As Long
Tvc1.FileAppendEnabled = True
Tvc1.WriteString “*idn?”
Tvc1.ReadToFile “C:\logfile.txt”, 10000, RetCnt

FindList Read only. Gets the results of a search to detect
VISA devices, based on the SearchCriterion
property. Returns an array of strings listing
detectable instrument descriptors on the network.
The array’s lower bound index is 1.

Example:

Tvc1.SearchCriterion = 0
dev = Tvc1.FindList
For I = LBound(dev) To UBound(dev)
 Desc = dev(i)
Next I

Hostname Read Only. Encapsulates the
VI_ATTR_TCPIP_HOSTNAME attribute. Gets the
TCP/IP host name of the device (for example,
myhost). If no host name is available, this property
returns an empty string.

Example:

Tvc1.Descriptor =“TCPIP0::128.181.242.26::INSTR”
.
.
.
HostName = Tvc1.Hostname

 TekVISA Active X Control Methods, Properties, and Events

Oscilloscope Analysis and Connectivity Made Easy 277

Property Definition

Index

Index = number

Read/Write. Gets or sets the number (integer)
identifying a control in a control array.

Property value:

number as integer; number corresponding to a
control in a control array

Examples:

indx = Tvc1.Index

Tvc1.Index = 1

InstrumentManufacturer Read Only. Returns the manufacturer of the
instrument.

Example:

Print Tvc1.InstrumentManufacturer

Example Output: “TEKTRONIX”

InstrumentModel Read Only. Returns model description of the
instrument.

Example:

Print Tvc1.InstrumentModel

Example Output: “TDS7104”

Name Read Only. Returns the name (string) of the
TekVISA ActiveX Control as it was set in design
time

Example:

TVCName = Tvc1.Name

Parent Read only. Returns an object reference to the
container on which the TekVISA ActiveX Control is
located.

Example:

Dim ref as Object
Set ref = Tvc1.Parent
Print ref.Name

Example Output: “Form1”

TekVISA Active X Control Methods, Properties, and Events

278 Oscilloscope Analysis and Connectivity Made Easy

Property Definition

SearchCriterion

SearchCriterion = instrtype

Read/write. Gets or sets the type of instruments to
search for on the network. The SearchCriterion
property affects the values returned by the FindList
property.

Property values:

instrtype as integer; the new instrument type value
to set the search criterion to

where:

0 - All Instr Devices
1 – ASRL Instr Devices
2 – GPIB Instr Devices
3 – VXI Instr Devices

Example:

Tvc1.SearchCriterion = 0
dev = Tvc1.FindList

Status Read Only. Returns the ViStatus value associated
with the last VISA command.

Example:

Private Sub Command1_Click()
 On Error GoTo Err
 Tvc1.WriteString “*idn?”
 output = Tvc1.ReadString
Err:
 MsgBox Tvc1StatusDescriptor(Tvc1.Status),
 vbOKOnly
End Sub

Tag

Tag = string

Read/Write. Gets or stores extra data needed by
your program.

Example:

Tvc1.Tag = tagString

 TekVISA Active X Control Methods, Properties, and Events

Oscilloscope Analysis and Connectivity Made Easy 279

Property Definition

YModelEnabled

YModelEnabled = state

Read/Write. Gets or sets the YModelEnabled
property, which enables or disables the automatic
calculation of the Tektronix scope vertical mode1 for
subsequent ReadIEEEBlock or ReadList methods. If
the YModelEnabled property is True, the returned
array elements from either of those methods will be
floating-point values calculated based on the
following equation:

Variant[I] = (Element[I] – YOffset)*YMult + YZero

where YOffset, YMult, and YZero are all floating-
point properties. The intent is to allow you to
calculate the vertical data in a single operation,
simply by setting the YModelEnabled, YOffset,
YMult, and YZero properties appropriately before
reading the data.

Property values:

state as Boolean; the state of the YModelEnabled
property (True or False), which determines how the
ReadIEEEBlock or ReadList method executes.

Examples:

Tvc1.YModelEnabled = True

See ReadIEEEBlock method example on page 269.

YMult

YMult = ymultiple

This property sets the YMult property. If the
YModelEnabled property is True, the YMult property
is used for automatic calculation of the Tektronix
scope vertical mode1 for subsequent
ReadIEEEBlock or ReadList methods.

When the YModelEnabled property is True, the
returned array elements from either of those
methods will be floating-point values calculated
based on the following equation:

Variant[I] = (Element[I] – YOffset)*YMult + YZero

where YOffset, YMult, and YZero are all floating-
point properties. By setting the YModelEnabled,
YOffset, YMult, and YZero properties before the
read, you enable data to be read and converted to a
usable form in a single operation.
Property value:
ymultiple as Double; the vertical scale factor per
digitizing level (also called the Y multiple)

Examples:

Tvc1.YMult = Tvc1.Query("WFMOutpre:YMULT?")

See ReadIEEEBlock method example on page 269.

TekVISA Active X Control Methods, Properties, and Events

280 Oscilloscope Analysis and Connectivity Made Easy

Property Definition

YOffset

YOffset = yoffset

This property sets the YOffset property. If the
YModelEnabled property is True, the YOffset
property is used for automatic calculation of the
Tektronix scope vertical mode1 for subsequent
ReadIEEEBlock or ReadList methods.

When the YModelEnabled property is True, the
returned array elements from either of those
methods will be floating-point values calculated
based on the following equation:

Variant[I] = (Element[I] – YOffset)*YMult + YZero

where YOffset, YMult, and YZero are all floating-
point properties. By setting the YModelEnabled,
YOffset, YMult, and YZero properties before the
read, you enable data to be read and converted to a
usable form in a single operation.
Property value:
yoffset as Double; the vertical offset in digitized
levels (also called the Y offset)

Examples:

 Tvc1.YOffset = Tvc1.Query("WFMOutpre:YOFF?")

See ReadIEEEBlock method example on page 269.

YZero

YZero = yzero

This property sets the YZero property. If the
YModelEnabled property is True, the YZero property
is used for automatic calculation of the Tektronix
scope vertical mode1 for subsequent
ReadIEEEBlock or ReadList methods.

When the YModelEnabled property is True, the
returned array elements from either of those
methods will be floating-point values calculated
based on the following equation:

Variant[I] = (Element[I] – YOffset)*YMult + YZero

where YOffset, YMult, and YZero are all floating-
point properties. By setting the YModelEnabled,
YOffset, YMult, and YZero properties before the
read, you enable data to be read and converted to a
usable form in a single operation.
Property value:
yzero as Double; vertical offset in units of Y (also
called Y zero)

Examples:

Tvc1.YZero = Tvc1.Query("WFMOutpre:YZERO?")

See ReadIEEEBlock method example on page 269.

 TekVISA Active X Control Methods, Properties, and Events

Oscilloscope Analysis and Connectivity Made Easy 281

Event Definition

ServiceRequest() Sent as notification that a service request was received from the
device. This event is called whenever an SRQ occurs on a GPIB
device. SRQs are enabled by default on GPIB devices.

Example:

Private Sub Tvc1_ServiceRequest()

 ‘Your code goes here

End Sub

MATLAB Instrument Control Toolbox Functions

282 Oscilloscope Analysis and Connectivity Made Easy

MATLAB Instrument Control Toolbox Functions

Table 37 shows the subset of functions of the MATLAB Instrument Control
Toolbox used in Chapter 9 of this book. Optional syntax fields appear
enclosed in angle brackets <like this>.

Table 37: MATLAB Instrument Control Toolbox functions

Function Definition

delete (obj) Removes instrument objects from memory.

Input parameters:

obj is an instrument object or array of instrument objects

Example:

delete (g)

obj

disp (obj)

Displays instrument object summary information.

Input parameters:

obj is an instrument object or array of instrument objects

Examples:

g
disp (g)

g = visa (‘tek’, ‘GPIB8::1::INSTR’)

fclose (obj) Does the following:

�� Disconnects an instrument object obj from the instrument

�� Sets the Status property to closed

�� Sets the RecordStatus property to off

Input parameters:

obj is an instrument object or array of instrument objects

Example:

fclose (g)

 MATLAB Instrument Control Toolbox Functions

Oscilloscope Analysis and Connectivity Made Easy 283

Function Definition

fopen (obj) Does the following:

�� Connects an instrument object obj to the instrument

�� Flushes any data in the input or output buffer and makes
them read-only

�� Sets the Status property to open

�� Zeros out the BytesAvailable, ValuesReceived, ValuesSent,
and BytesToOutput properties

Input parameters:

obj is an instrument object or array of instrument objects

Example:

fopen (g)

fprintf (obj, ‘cmd’)

fprintf
(obj, <‘format’,>
 ‘cmd’ <,‘mode’>)

Writes text to the instrument. The write is terminated when the
specified text (and any terminator) is written, a timeout occurs, or
the output buffer is filled.

Input parameters:

obj is an instrument object or array of instrument objects

format is an optional string specifying a C language conversion
specification; if omitted, the default format is %s\n

cmd is the string written to the instrument

mode optiionally specifies whether data is written
synchronously(the default) or asynchronously;
valid values = sync and async.

Examples:

fprintf (g, ‘HEADER OFF’)
fprintf (g, ‘%s’, ‘*IDN?’)
fprintf (g, ‘ACQUIRE:STATE OFF’, ‘async’)
fprintf (g, ‘%s’, ‘ACQUIRE:STATE RUN’, ‘async’)

MATLAB Instrument Control Toolbox Functions

284 Oscilloscope Analysis and Connectivity Made Easy

Function Definition

data = fread
(obj, size
<,‘precision’>)

[data <,count>
<,msg>] = fread
(obj, size
<,‘precision’>)

Reads binary data from the instrument.

Input parameters:

obj is an instrument object or array of instrument objects

size specifies the number of values to read

precision is an optional string specifying the number of bits read
for each value, and the interpretation of the bits as character,
integer, or floating-point values. If omitted, the default precision is
‘uchar’ (8-bit unsigned character).

Returns:

The binary data read from the instrument and, optionally, the
number of values read and a warning message if unsuccessful

Return parameters:

data is the binary data read from the instrument

count is the optional number of values read

msg is an optional warning message if the read was
unsuccessful

Examples:

data = fread (g, recordSize)
data = fread (g, length, ‘float32’)
[waveform, cnt] = fread (g, recordLen, ‘int16’)
[terminator, cnt, warnmsg] = fread (g, 1, ‘char’)

 MATLAB Instrument Control Toolbox Functions

Oscilloscope Analysis and Connectivity Made Easy 285

Function Definition

data = fscanf
(obj <,‘format’>
<,size>)

[data <,count>
<,msg>] = fscanf
(obj <,‘format’>
<,size>)

Reads response data from the instrument connected to obj and
formats it as text (by default).

Input parameters:

obj is an instrument object or array of instrument objects

format is an optional string specifying a C language conversion
specification; if omitted, data is converted to text using the %c
format

size is an optional field specifying the number of values to read;
otherwise the read is terminated when a terminator is read, a
timeout occurs, or the input buffer is filled.

Returns:

The data read from the instrument and, optionally, the number of
values read and a warning message if unsuccessful

Return parameters:

data is the data read from the instrument

count is the optional number of values read

msg is an optional warning message if the read was
unsuccessful

Examples:

idn = fscanf (g)
measure = fscanf (g, ‘%e’)
data = fscanf (g, ‘%e’, 6)
[waveform, cnt] = fscanf (g)
[data, cnt, warnmsg] = fscanf (g)

get (obj)

out = get (obj
<,‘PropertyName’>)

Displays or returns all instrument object properties or, optionally,
only the current value of a specified PropertyName.

Input parameters:

obj is an instrument object or array of instrument objects

PropertyName is a string for an optionally-specified property
name of the instrument

Returns:

All base and object-specific property names and their current
values for instrument obj , or the current property value for a
specified PropertyName

Return parameters:

out is a structure of property names and values, a cell array of
property values, or a single property value

Examples:

get (g)
props = get (g)
visatype = get (g, ‘Type’)

MATLAB Instrument Control Toolbox Functions

286 Oscilloscope Analysis and Connectivity Made Easy

Function Definition

instrhelp name Displays help for the named Instrument Control Toolbox function
or property on the MATLAB command line.

Examples:

instrhelp fread
instrhelp visa

instrreset Disconnects and deletes all instrument objects.

Example:

instrreset

data = query
(obj, ‘cmd’
<,‘wformat’>
<,‘rformat’>)

[data <,count>
<,msg>] = query
(obj, ‘cmd’
<,‘wformat’>
<,‘rformat’>)

Writes text to the instrument and reads data from the instrument.

Input parameters:

obj is an instrument object

cmd is the string written to the instrument

wformat is an optional string specifying a C language conversion
specification; if omitted, the default format for written data is %s\n

rformat is an optional string specifying a C language conversion
specification; if omitted, data read from the instrument is
converted to text using the %c format

Returns:

The data read from the instrument and, optionally, the number of
values read and a warning message if unsuccessful

Return parameters:

data is the data read from the instrument

count is the optional number of values read

msg is an optional warning message if the read was
unsuccessful

Examples:

while query(g,’BUSY?’,’%s’,’%e’); end;
horizLen = query(g,’HORIZONTAL:RECORD?’,’%s’,’%e’);

 MATLAB Instrument Control Toolbox Functions

Oscilloscope Analysis and Connectivity Made Easy 287

Function Definition

set (obj)

set (obj,
‘PropertyName’)

props = set (obj)

props = set (obj,
‘PropertyName’)

set (obj
<,‘PropertyName’,
PropertyValue,…>)

set (obj, PN, PV)

set (obj, S)

Does one of the following:

�� Displays all configurable instrument object properties

�� Displays all possible values of a specified PropertyName

�� Returns all configurable instrument properties to props

�� Returns all possible values of a specified PropertyName to
props

�� Configures one or more properties of obj to specified
value(s) in a single command

Input parameters:

obj is an instrument object or array of instrument objects

PropertyName is a string for an optionally-specified property
name of the instrument

PropertyValue is a property value supported by the optional
property name

PN is a cell array of property names

PV is a cell array of property values

S is a structure with property names and property values.

Returns:

All configurable properties for instrument obj , or all possible
values for a specified PropertyName

Return parameters:

props is a structure array of property names for obj, or a cell
array of possible values for PropertyName

Examples:

set (g)
properties = set (g)
modevalues = set (g, ‘EOSMode’)
set (g, ‘InputBufferSize’, recordLen*2)

MATLAB Instrument Control Toolbox Functions

288 Oscilloscope Analysis and Connectivity Made Easy

Function Definition

obj = visa
(‘vendor’,
‘rsrcname’
<,‘PropertyName’,
PropertyValue,…>)

Creates a VISA object, optionally with specified property name(s)
and value(s).

Input parameters:

vendor is a string for a VISA vendor where

tek = Tektronix Corporation VISA
ni = National Instruments VISA
agilent = Agilent VISA

rsrcname is a string for a VISA instrument resource name.
visa-gpib instruments use this syntax:
GPIB<board>::primary_address<::secondary_address>::INSTR

visa-serial instruments use this syntax:
ASRL<port>::INSTR

PropertyName is a string for an optional property name of the
VISA object

PropertyValue is a property value supported by the optional
property name

Return parameters:

obj is the VISA object created

Examples:

g = visa (‘tek’, ‘GPIB8::1::INSTR’)
h = visa (‘tek’, ‘ASRL1::INSTR’)

 PnP Driver Functions

Oscilloscope Analysis and Connectivity Made Easy 289

PnP Driver Functions

Table 38 summarizes the TDS/CSA 8000 PnP driver functions used in this
book.

Table 38: TDS/CSA 8000 PnP driver functions used in LabWindows/CVI and
LabVIEW examples

Command Meaning

tktds8k_autoConnectToFirst(
instrument)

Connects to first tktds8k instrument found.

Output parameter:

Address of VISA instrument handle used to access
instrument specific data. Initialized by this routine.

Example:

status = tktds8k_autoConnectToFirst (&ID);

tktds8k_getInstrDesc
(instrument, descriptor)

Gets instrument descriptor string of the instrument.

Input parameters:

instrument is an instrument handle used to access
the descriptor

Output parameters:

description is the returned instrument descriptor
string

Example:

ret = tktds8k_GetInstrDesc (ID, InstDesc);

tktds8k_getMeasValue
(instrument, measurement#,
measurementValue)

Gets a measurement value from the instrument.

Input parameters:

instrument is an instrument handle used to access
the instrument

measurement# is the measurement number from
which to get a measurement value

Output parameters:

measurementValue is the address of the value for
the type of measurement set up in measurement#

Example:

tktds8k_GetMeasValue (ID, tktds8k_MEAS_1,
&dMeasValue);

VISA Operations

290 Oscilloscope Analysis and Connectivity Made Easy

VISA Operations

Table 39 summarizes the VISA operations used in this book. For more
information about the Tektronix implementation of the VISA standard (the
TekVISA API), consult the online TekVISA Programmer Manual.

Table 39: VISA operations used in LabVIEW and LAN Server examples

Operations Meaning

viClose (vI) Closes the session to this virtual instrument (and the Default
Resource Manager).

Input parameter:

vi is a unique logical identifier to a session, event, or find list.

Example:

viClose(vi);

viOpen
(sesn, rsrcName,
accessMode,
timeout, vi)

Opens a session to the specified resource.

Input parameter:

sesn is the Resource Manager session (should always be the
Default Resource Manager for VISA returned from
viOpenDefaultRM()).

rsrcName is a unique symbolic name of a resource.

accessMode Specifies the mode(s) by which the resource is to
be accessed: VI_EXCLUSIVE_LOCK and/or
VI_LOAD_CONFIG. If the latter value is not used, the session
uses the default values provided by VISA.

Output parameter:

timeout specifies the absolute time period (in milliseconds) that
the resource waits to get unlocked (If the accessMode
requests a lock) before this operation returns an error;
otherwise, this parameter is ignored.

vi is a unique logical identifier reference to a session.

Example:

viOpen(rm, "GPIB9::1::INSTR", VI_EXCLUSIVE_LOCK,
 10000, &vi);

viOpenDefaultRM
(sesn)

Returns a session to the Default Resource Manager.

Output parameter:

sesn is a Unique logical identifier to a Default Resource
Manager session.

Example:

viOpenDefaultRM(&rm);

 VISA Operations

Oscilloscope Analysis and Connectivity Made Easy 291

Operations Meaning

viRead (vi, buf,
count, retCount)

Reads data synchronously from a device into the specified
buffer.

Input parameter:

vi is a unique logical identifier to a session.

count is the number of bytes to be read.

Output parameter:

buf represents the location of a buffer to receive data from
device.

retCount represents the location of an integer that will be set to
the number of bytes actually transferred.

Example:

viRead(vi, buffer, 256, &retCnt);
buffer[retCnt] = ‘\0’; // ensures null terminator in string

viWrite(vi, buf,
count, retCount)

Writes data synchronously to a device from the specified
buffer.

Input parameter:

vi is a unique logical identifier to a session.

count is the number of bytes to be written.

Output parameter:

buf represents the location of a data block to be sent to the
device.

retCount represents the location of an integer that will be set to
the number of bytes actually transferred�

Example:

viWrite(vi, "*idn?", 5, &retCnt);

VISA Operations

292 Oscilloscope Analysis and Connectivity Made Easy

 Introduction

Oscilloscope Analysis and Connectivity Made Easy 293

Appendix B: Fast LAN Access to Your
Oscilloscope

Introduction

Other parts of this book have introduced ways to access your Tektronix
oscilloscope through a variety of end-user and programming applications
running directly on the oscilloscope PC. This appendix discusses how to
access the oscilloscope across a local area network (LAN) through all of
these same applications and programming environments.

VXI-11 and LAN Connectivity for Oscilloscopes

LAN connectivity to your oscilloscope is supported through an industry-
standard communications protocol called VXI-11. Developed by the VXIbus
Consortium, the VXI-11 standard specifies an instrument protocol for
TCP/IP computer networks. It supports writing and reading data to and from
instruments in a manner similar to the VISA API standard, only across a
network and with a smaller set of functions. VXI-11 function calls are issued
over client-server connections using the Open Network Computing Remote
Procedure Call (ONC RPC) protocol.

TekVISA provides virtually transparent network access to your
oscilloscope by including VXI-11 client and server software components.
The VXI-11 LAN Server is installed on your Tektronix oscilloscope as part
of the TekVISA software installation. The VXI-11 LAN Client is included as
just another VISA instrument resource type on any client PC with TekVISA
software installed on it. Any existing VISA-based application may use
TekVISA to access a remote oscilloscope running the LAN Server.

Your VISA-based applications can issue GPIB commands across the LAN
link in the same way that they issue commands locally on the oscilloscope
PC. This is possible because the LAN Server uses the same virtual GPIB
interface to access the embedded oscilloscope software as is used locally.

The diagram in Figure 65 shows how the above software components fit
together to provide LAN-based oscilloscope connectivity.

Benefits of LAN Access

294 Oscilloscope Analysis and Connectivity Made Easy

Figure 65: LAN connectivity from PC applications to Tektronix oscilloscope

Benefits of LAN Access

There are several benefits to LAN-based access to your oscilloscope:

• Long-distance Connectivity: Your oscilloscope can be accessed
from any point on the network, whether it is across a room or in
another building.

• High-speed Access: The built-in 10/100-BaseT Ethernet port in a
Tektronix oscilloscope enables you to achieve data transfer speeds
up to 3 times that of conventional GPIB connections when used in
conjunction with the LAN Server (approximately 3.5 megabytes per
second over a typical 100-BaseT network).

 Deployment Considerations

Oscilloscope Analysis and Connectivity Made Easy 295

• Improved Cost/Convenience: Inexpensive Ethernet cabling easily
connects oscilloscopes to your organization’s existing network
infrastructure rather than using limited, single point-to-point
connections with bulky GPIB bus cables.

Deployment Considerations

To realize the full benefits of LAN-based oscilloscope access, there are a few
considerations to keep in mind:

• Network Performance: Actual oscilloscope data transfer
performance across a LAN will depend on your network’s physical
type and composition of hubs, switches, and routers. It may be
necessary to upgrade network components in order to achieve
optimal LAN access speeds.

• Network Security: As with any other computing resource attached to
a network, security precautions should be taken as appropriate to
protect your LAN-enabled oscilloscope against unauthorized use.

Caution: If your organization's LAN is connected to external
networks such as the Internet, use of a properly configured
network firewall is strongly recommended. The VXI-11 protocol
and VXI-11 LAN Server do not include any security
mechanisms.

The vast majority of businesses and other organizations with Internet
access already have network firewalls established. However, you
may want to contact network security personnel to verify that your
firewall blocks external access to the RPC port mapper service
(TCP/IP port 111). VXI-11 clients use this network software service
to connect to the VXI-11 LAN Server.

VXI-11 LAN Server Installation and Configuration

Installation of the VXI-11 LAN Server is beyond the scope of this appendix.
Documentation for this may be found with your TekVISA software on the
product software CD for your Series of Tektronix oscilloscope. The LAN
Server may only be configured on the oscilloscope PC.

Once installed, the LAN Server must either be manually activated or
configured for automatic startup after system power-up on the oscilloscope
PC. The VXI-11 Server Control program, however, runs automatically after
system power-up. If not running, it may be started manually via the
Start > Programs > TekVISA > VXI-11 Server Control menu item.

VXI-11 LAN Client Access Setup

296 Oscilloscope Analysis and Connectivity Made Easy

When the Server Control program is running, the following icon will appear
in the system tray in the lower right corner of the screen on the oscilloscope
PC:

To change the LAN Server’s activation status or other properties, right-click
the Server Control icon to bring up the pop-up menu below:

If the LAN Server is already running, the Start VXI-11 Server menu item will
be disabled; otherwise, this menu item will be enabled, and the Stop VXI-11
Server menu item will be disabled. Select Start VXI-11 Server to activate the
server if necessary.

If you would like the LAN Server to start automatically at system boot, you
can configure it to do so by selecting the Server Properties item on the pop-
up menu. This following dialog box will appear:

After installation of the TekVISA software, the LAN Server will not be
configured for automatic startup (as a security precaution). To configure
automatic startup, select the check box labeled “Start server automatically at
system powerup” so that it is enabled. Clear this check box if you would like
to disable automatic startup.

Information on other features of the VXI-11 Server Control program can be
found in documentation included with the TekVISA installation software.

VXI-11 LAN Client Access Setup

TekVISA Installation
VISA applications that communicate with Tektronix instrumentation should
use TekVISA, the Tektronix version of VISA. You should install and
configure TekVISA on each PC that communicates with Tektronix
instrumentation using the VISA standard.

 VXI-11 LAN Client Access Setup

Oscilloscope Analysis and Connectivity Made Easy 297

The software installation includes a utility to help you configure TekVISA
resources. The VISA configuration utility allows you to detect GPIB and
serial (ASRL) resource assignments, and to add or remove remote hosts
(such as VXI-11 LAN Servers connected by Ethernet LAN or an AD007
GPIB-LAN adapter and associated GPIB hardware).

To install TekVISA software on a PC connected to your Windows-based
oscilloscope, follow these steps:

Note. If you have already installed TekVISA from an earlier version
of the Tektronix Software Solutions CD, please reinstall TekVISA
from the most recent CD.

1. Insert the product software CD for your Series of Tektronix

oscilloscope into the CD-ROM drive. Select Start > Run,
browse the CD to the TekVISA folder, and run setup.exe.

2. Follow the instructions in the installation wizard.

Included with the TekVISA installation is the VISA configuration utility,
which lets you find resource assignments and add or remove network hosts
(instruments). Once an instrument is added to the TekVISA configuration,
you can communicate with it by using a TekVISA-compliant instrument
driver.

To run the VISA configuration utility, select Start > Programs > TekVISA >
TekVISA Configuration. Windows opens the VISA Configuration window,
shown in Figure 66. The configuration program then searches the network
for installed resources; this may take a few minutes depending on the number
of resources loaded and the network load.

Figure 66. VISA Configuration Window

VXI-11 LAN Client Access Setup

298 Oscilloscope Analysis and Connectivity Made Easy

The VISA Configuration window has the following features:

��VISA Resources List Box. Lists all resources that VISA can
currently find.

�� Find Button. Rescans the VISA resources and is useful for verifying
the presence of new instruments. GPIB8 is virtual GPIB.

��Remote Hosts List Box. Lists the current name (myhost in this
example) or IP address (such as 10.0.0.1) of the remote host (that is,
the oscilloscope you wish to control remotely). Interface (GPIB0 in
this example) is the name of the interface on the remote host. Visa
Name (GPIB9 in this example) is the resource name used when this
remote host interface is accessed through VISA.

��Add Button. Displays the Add Remote Host Dialog for adding a
remote interface.

��Remove Button. Removes the host selected in the Remote Hosts list
box and displays a dialog box before removing the host.

Note. Always remove host information for any equipment no
longer connected to the network in order to reduce the VISA
instrument search time. Searching for unconnected instruments
drastically increases the time it takes to locate and connect to an
instrument.

��Status Box. The status box displays helpful information about the

last operation performed. The Busy / Ready indicator next to it
shows when the utility is busy. When the utility is busy, changes
cannot be made.

��Quit Button. Quits the application.

To search for new instruments, click Find. The VISA configuration utility
rescans the VISA resources to find any new instruments.

To add a remote host (configure a VXI-11 client), follow these steps:

1. Click Add. The Add Remote Host dialog appears (Figure
67).

Figure 67. TekVISA Add Remote Host dialog box

 VXI-11 LAN Client Access Setup

Oscilloscope Analysis and Connectivity Made Easy 299

The Add Remote Host dialog has the following fields:

• Host Name. The name or IP address of the remote
host. This field is initially blank.

• Remote Interface. The name of the interface on the
remote host. The default is GPIB0.

Note: Do not change this setting.

• VISA Name. The name used to access the interface

through VISA. A default name is provided that does
not conflict with currently used names. You may
change this setting only if you are reordering these
names and do not want the default name provided by
the configuration utility

2. In the Add Remote Host dialog, enter the correct host name
(or equivalent IP address) of the new interface. The setting
for Remote Interfaces must remain at the default (GPIB0).
The VISA name can remain at the default as well. The
indicated value (for example, GPIB9) is the name that refers
to this GPIB interface through VISA.

3. Click OK to add the host (as configured) to VISA. If the
Add fails, a message appears and the dialog remains open. If
the Add succeeds, the dialog closes and a Find operation
updates the main window. The new interface appears in the
Remote Hosts list box. If the host is running and configured,
the instrument name appears in the Resources box.

To delete a remote host (remove a VXI-11 client), perform these steps:

1. Select the host name to remove in the Remote Hosts list box.

2. Click Delete. The Delete Remote Resource dialog (Figure
68) appears. The dialog describes the resource to be removed
and provides an opportunity to confirm or cancel the
operation.

Figure 68. TekVISA Delete Remote Resource dialog box

3. Click OK in the confirmation dialog to remove the selected
host from VISA and update the main window, or Cancel to
abort the delete operation.

Application Examples

300 Oscilloscope Analysis and Connectivity Made Easy

Application Examples

Visual Basic Example
As described earlier, Visual Basic programs use the TekVISA ActiveX
Control (TVC) to access the oscilloscope locally. You can access the
oscilloscope remotely as well with this same control component by setting
the VISA instrument descriptor appropriately.

Assume that, using the VISA Configuration utility, you have already
configured VXI-11 client access to a remote oscilloscope with the VISA
name GPIB9. After creating an instance of the TVC control called Tvc1, you
would then set the VISA instrument descriptor as follows.

Tvc1.Descriptor = “GPIB9::1::INSTR ”

All other details of using the TVC control to access the oscilloscope in
Visual Basic are the same as discussed earlier.

MATLAB Example
Let us continue to use the previous example of a remote oscilloscope
configured for access on the local PC under the VISA name GPIB9. Within
MATLAB, you would create a VISA-GPIB instrument object to access the
oscilloscope as follows:

g = visa(’tek’,’GPIB9::1::INSTR’);

As you can see, this is not much different from examples of local
oscilloscope access presented earlier in this book. All other details of
working with the oscilloscope in MATLAB remain the same.

LabWindows/CVI Example
In the Chapter 9 description of using LabWindows/CVI with the VXI Plug-n-
Play drivers, a code example is presented using the
tktds8k_autoConnectToFirst function call from the VXI Plug-n-Play API.
This works fine if the program is run directly on the oscilloscope PC.
However, if the program is to be used remotely over the LAN, another
function call must be used instead to reliably specify the correct remote
oscilloscope.

ViStatus status;
ViSession ID;

status = tktds8k_init("GPIB8::1::INSTR", VI_TRUE, VI_TRUE, &ID);

The preceding code shows a call example for the tktds8k_init function. This
function call should replace any call to tktds8k_autoConnectToFirst. The
oscilloscope is identified in this case with the "GPIB8::1::INSTR" character
string. Modify this identifier as needed to reflect the correct configuration on
your PC for the remote oscilloscope as shown by the VISA Configuration
utility.

 Programming Tips

Oscilloscope Analysis and Connectivity Made Easy 301

LabVIEW Example
In the Chapter 9, description of using LabVIEW with the VXI Plug-n-Play
drivers, the tktds8k Plug & Play Demo.vi example shows how to access the
oscilloscope locally. The figure on page 235 shows the Front Panel for this
application and includes the oscilloscope resource name.

Running this demo program on a remote PC is straightforward. Simply
change the "GPIB8::1::INSTR" resource name to whatever resource name has
been assigned to your remote oscilloscope via the VISA Configuration
utility.

C Program Example
For oscilloscope users with knowledge of C or C++ programming, a simple
C program using VISA function calls is presented in Figure 69. This example
uses a remote oscilloscope configured for access on the local PC as GPIB9.

#include <visa.h>
#include <stdio.h>

int main (int argc, char* argv[])
{
 ViSession rm, vi;
 ViChar buffer[256];
 ViUInt32 retCnt;

 viOpenDefaultRM(&rm);

 if (viOpen(rm, "GPIB9::1::INSTR", VI_EXCLUSIVE_LOCK, 10000, &vi)
 == VI_SUCCESS)
 {
 viWrite(vi, "*idn?", 5, &retCnt);
 viRead(vi, buffer, 256, &retCnt);

 printf("device: %s\n", buffer);

 viClose(vi);
 }

 viClose(rm);
}

Figure 69: Sample VISA program for LAN-based oscilloscope access

The online TekVISA Programming Manual presents more detailed
information on writing VISA-based programs in C or C++. A brief
description of VISA operations used in this example appears in Table 39 in
Appendix A.

Programming Tips

Timeout Settings
When creating VISA programs to access the oscilloscope remotely, you need
to take into consideration the effects of network delays. Since using the
network may decrease bandwidth and increase latency, you need to use
larger timeout settings in VISA function calls than you would for programs
running locally.

VXI-11 Standard

302 Oscilloscope Analysis and Connectivity Made Easy

Non-TekVISA VXI-11 Clients
You can use another vendor’s VISA software to connect to your oscilloscope
via the Tektronix VXI-11 LAN Server, provided that the vendor has
implemented VXI-11 support. National Instruments, for example, supports
VXI-11 client-side access with recent releases of NI-VISA (version 2.5 and
later). In such cases, you would not use Tektronix’s VisaConfig utility to
configure the client PC.

With NI-VISA, you would use the TCPIP resource type (rather than a GPIB
resource type) in a program to remotely access the oscilloscope. An example
that is known to work with the LAN Server is the resource name
TCPIP::myremotehost::INSTR, where myremotehost is the network host
name of your oscilloscope PC. For example, the viOpen operation in Figure
69 could be replaced with the following line of code:

viOpen(rm, "TCPIP::MYHOSTNAME::INSTR", VI_EXCLUSIVE_LOCK, 10000, &vi)

Similar uses of the TCPIP resource type may also work with other
applications or programming contexts. Please refer to National Instruments’
documentation for further information.

VXI-11 Standard

The VXI-11 standard was developed by the VXIbus Consortium, Inc. Its full
name is VXI-11, TCP/IP Instrument Protocol Specification. Copies of the
specification document may be obtained from the VXIbus Consortium at the
following website: http://www.vxi.org/specifications.htm.

Although this book section has focused on accessing Tektronix oscilloscopes
from remote Windows-based workstations, access to the oscilloscope across
a LAN is also possible from computers running another operating system
(OS) such as UNIX or Linux. Any OS that supports the TCP/IP and ONC
RPC protocols can be used to run or create VXI-11 client programs to access
the LAN Server.

Creating custom VXI-11 client applications requires some familiarity with
RPC programming. Knowledge of the C programming language is also
necessary to use most RPC software tools and libraries. Additional details
specific to the VXI-11 protocol are described in the specification document
mentioned above.

 Introduction

Oscilloscope Analysis and Connectivity Made Easy 303

Appendix C: Other VB Examples

Introduction

This appendix presents another Visual Basic programming example that may
prove useful to you as a utility or template to insert into your own programs.
This and other examples are available on the CD that accompanies this book.

Alternate Methods for Getting Waveform Data Using the TekVISA Control

The TekVISA ActiveX control exposes a number of methods for capturing
waveform data from TekVISA enabled oscilloscopes. The easiest methods to
use are GetWaveform and GetWaveform8K. These methods were employed
in the examples in Part 1. For applications requiring more granular control of
capturing waveform data, the TekVISA ActiveX exposes other methods
including ReadList, ReadPartialString, and ReadToFile. The following
example deals with two of these alternate methods.

Writing and Reading Binary/ASCII Waveform Example

This example illustrates how to

• Use the TekVisa ActiveX control’s ReadList or ReadToFile
method to read the results of a GPIB CURVE? query in
either ASCII or binary format, and then write the waveform
data to disk

• Read the waveform data from disk and reconstruct X-axis
and Y-axis values

The example only captures data from Channel 1 and only targets the
TDS7000 oscilloscope, but it is conceptually useful for other types of data
and for scopes such as the TDS/CSA8000 with a somewhat different GPIB
command set.

The GPIB command set for the TDS7000 oscilloscope allows you to specify
the :

• encoding format of the data (ASCII or binary)

• sample size returned

• byte width of the waveform data.

Writing and Reading Binary/ASCII Waveform Example

304 Oscilloscope Analysis and Connectivity Made Easy

If binary data is returned, you can designate more waveform attributes
including the

• byte format (signed integers, unsigned integers, or floating
point)

• byte ordering (least significant bit or most significant bit)

The general file format used with both ASCII and binary files is to insert

• header information at the beginning of the file in a
semicolon-separated string

• a linefeed character

• the data returned by a GPIB CURVE? query

In the case of ASCII data, the values returned from the CURVE? query
depend on the method used (either ReadList or ReadToFile):

• The ReadList method of the TekVISA ActiveX control
places separated values (such as semicolon-separated and
comma-separated values) into a Variant array. This array can
then be “walked” to retrieve values. Return values are
semicolon-separated if used with a concatenated GPIB
command such as
HEADER:OFF;WFMOUTPRE:YOFF?;YMULT?;YZERO?
Return values from a CURVE? GPIB query are comma-
separated.

When reading data returned from a CURVE? query with the
ReadList command, you can use several associated properties of the
TekVISA ActiveX control so that Y-axis values are calculated.
These properties are YModelEnabled, YMult,YOffset, and YZero. If
you set YmodelEnabled to True and then assign values to the
YMult,YOffset, and YZero properties, the TVC control will perform
the calculations for you. You can then save the calculated Y-axis
values to disk. You only need to reconstruct timing values when
reading the file from disk.

The header format for an ASCII file using the ReadList method with
YModelEnabled is in the format:

[record length];[trigger position];[x increment]

• As an alternative, you may use the ReadToFile method to
write data to disk. In this case, you must place more values
into the header command so Y values can be calculated
when the data is read from disk. (See the code for how this is
accomplished.)

The header format for files using the ReadToFile method is :

 Writing and Reading Binary/ASCII Waveform Example

Oscilloscope Analysis and Connectivity Made Easy 305

[record length];[trigger position];[x increment];[yoffset];[ymult];[yzero]

The User Interface
Figure 70 shows the Visual Basic form created for this example, and Table
40 lists the changes made in the Properties window. Figure 71 shows the
form as it looks at runtime.

• When the user clicks the Write ASCII button, a query for an
ASCII-formatted waveform is sent to the oscilloscope.
Depending on which option button is selected, one of two
methods (ReadList or ReadToFile) is used to read the
response and write it to disk.

• When the user clicks the Write Binary button, a query for a
binary-formatted waveform is sent to the oscilloscope. The
response is read using the ReadToFile method and written to
disk.

• When the user clicks the Read ASCII button, an ASCII
waveform is read from disk and displayed in the list box.
This routine limits display to waveforms of 50000 records or
fewer.

• When the user clicks the Read Binary button, a binary
waveform is read from disk. Depending on which option
button is selected, the data is either converted to ASCII and
displayed in the list box or written to disk in ASCII format.

�
Figure 70: Design-time form for the Writing and Reading Binary/ASCII Waveform
example

Writing and Reading Binary/ASCII Waveform Example

306 Oscilloscope Analysis and Connectivity Made Easy

Table 40: Changes to make in the Properties window to the Writing and Reading
Binary/ASCII Waveform example

Control Property Change to

(Name) frmTest Form

Caption Test Writing and Reading
Binary/Ascii Waveform
Files

tvc (TekVISA) (Name) Tvc1 (no change needed)

CommonDialog (Name) dlgTVC

Listbox (Name) lstD

(Name) cmdWriteBinary CommandButton
 Caption Write Binary

CommandButton (Name) cmdClear

(Name) lblStatus

Caption (no Caption)

BackColor Button Face

ForeColor Button Text (Palette blue)

Label

BorderStyle Fixed Single

Write Ascii Data Frame

(Name) fraWrite Frame

Caption Write Ascii Data

(Name) optReadList

Caption Use ReadList method

OptionButton

Value True (Selected)

(Name) optReadToFile OptionButton
 Caption Use ReadToFile method

(Name) cmdWriteAscii CommandButton
 Caption Write Ascii

Read Data Frame

(Name) fraRead Frame

Caption Read Data

(Name) cmdReadAscii CommandButton
 Caption Read Ascii

(Name) cmdReadBinary CommandButton
 Caption Read Binary

(Name) optListBox OptionButton
 Caption Display in Listbox

 Writing and Reading Binary/ASCII Waveform Example

Oscilloscope Analysis and Connectivity Made Easy 307

Control Property Change to

 Value True (Selected)

(Name) optWriteBtoA OptionButton
 Caption Write Binary to Ascii File

�
Figure 71: Runtime form for the Writing and Reading Binary/ASCII Waveform
example

 How the Program Works
Table 41 summarizes the routines used to implement this example.

Writing ASCII Data
This example uses either the ReadList or ReadToFile method for writing
ASCII data to disk. The relevant routines to examine for writing ASCII
waveform data are cmdWriteAscii_Click() event (page 314) and the
HandleSaveDialog (page 319) and ConcatInBuffer (page 320) procedures.

These routines illustrate the different header information required when using
ReadList and ReadToFile. Files with the extra header information required
by the ReadToFile method have an “AF” prefix. Files with only X-Axis
information have an “A” prefix.

Reading ASCII Data
Routines illustrating how to read the two different types of header files in
ASCII files and use them to construct waveform data are the
cmdReadAscii_Click() event (page 313), and the GetAsciiData (page 309) and
HandleOpenDialog (page 318) functions.

Writing Binary Data
The ReadToFile method is used to write binary data to a file. The relevant
routines for writing binary data are the cmdWriteBinary_Click event (page
316) and the HandleSaveDialog (page 319) routine.

Writing and Reading Binary/ASCII Waveform Example

308 Oscilloscope Analysis and Connectivity Made Easy

Reading Binary Data
The relevant routines for reading binary data from disk are the
cmdReadBinary_Click() event (page 313) and the GetBinaryData (page 311)
and HandleOpenDialog (page 318) functions.

Table 41: Summary of functions in the Reading Binary/ASCII Files example

cmdWriteAscii_Click() Executes when the Write ASCII button is clicked.
Depending on the option button selected, this routine uses
either the ReadList or ReadToFile method of the TekVISA
Control to handle values returned from a CURVE? query.
Setting the YModelEnabled Property to True when using
the ReadList method means that X-axis information needs
to be stored in a file header. Using the ReadToFile method
requires both X-Axis and Y-Axis data to be saved in the file
header. Values are stored in up to 12 orders of precision.

ConcatInBuffer(ByRef s1 As
String)

Standard string concatenation in Visual Basic is slow. This
routine increases string concatenation speed dramatically
by using the CopyMemory (Alias for RtlMoveMemory)
Windows API function. Used when walking through the
array returned by the ReadList method of the TekVISA
ActiveX control.

cmdReadAscii_Click() Executes when the Read ASCII button is clicked. Calls
the GetAsciiData routine which returns a two-dimensional
array containing time and value measurements. Walks
through the array and displays results in the list box.

GetAsciiData() Calls the HandleDialogOpen function, which returns the
contents of the file in a single string. The routine parses
the string. If the filename has an “AF” prefix, the routine
assumes that both X-Axis and Y-Axis data needs to be
constructed. It parses the file header accordingly. If the file
has an “A” prefix, it assumes that only the X-Axis data
needs to be constructed. It builds a two-dimensional array
and returns it to cmdReadAscii_Click(), the calling
procedure.

cmdWriteBinary_Click() Executes when the Write Binary button is clicked.
Stores X-Axis and Y-Axis values in the header file,
executes a CURVE? query, and uses the ReadToFile
method to handle returned values.

cmdReadBinary_Click() Executes when the Read Binary button is clicked. Calls
the GetBinary Data routine, which returns a two-
dimensional array holding time and value measurements.
Depending on the option button selected, either displays
returned data in a list box or writes the data to an ASCII
file for examination by a text reader.

GetBinaryData() Calls the HandleDialogOpen routine, which returns the
entire file in a byte array. The header portion of the array is
parsed and used to reconstruct X-axis and Y-Axis values.
These values are placed in a two-dimensional array and
returned to cmdReadBinary_Click(), the calling procedure.

 Writing and Reading Binary/ASCII Waveform Example

Oscilloscope Analysis and Connectivity Made Easy 309

HandleSaveDialog(ftype As
String)

Uses the MS Common dialog control to open a file
(timestamp default) for saving captured data to disk. The
ftype parameter is used to add an appropriate prefix to the
file (“A” for ASCII file needing only X-axis reconstruction,
“AF” for an ASCII file needing both X- and Y-axis
reconstruction, and “B” for a binary file).

HandleOpenDialog(ftype As
String)

Uses the MS Common dialog control to open a file
(timestamp default) for reading stored waveform data from
disk. The ftype parameter may have a value of either “A”
or “B” indicating whether it is an ASCII or binary file.

Form_Load() Executes when the Form is loaded. Code positions the
form on the screen.

RemoveLF(s1 As String) As
String

Called to remove trailing linefeed character on data
returned from the oscilloscope.

cmdClear_Click() Executes when the Clear button is clicked. Clears the list
box and status label at the bottom of the form.

Code Listing

Declarations
Option Explicit
Dim sFileName As String
Dim sAsciiFile As String
Dim bArr() As Byte
Dim tracker As Long
Dim CancelFlag As Boolean
Private Declare Sub CopyMemory Lib "kernel32" Alias "RtlMoveMemory"
(Destination As Any, Source As Any, ByVal Length As Long)
Private Declare Function GetTickCount Lib "kernel32" () As Long

Clear Button Routine
Private Sub cmdClear_Click()
 lstD.Clear
 lblStatus.Caption = ""
End Sub
Public Function RemoveLF(s1 As String) As String
 If Right(s1, 1) = vbLf Then
 RemoveLF = Left(s1, Len(s1) - 1)
 Else
 RemoveLF = s1
 End If
End Function

Get ASCII Data Routine
Private Function GetAsciiData()
 Dim sRet As String
 Dim arrHoldHeader() As String, arrHoldData() As String
 Dim arrRet()
 Dim i As Long
 Dim nLFPos As Long
 Dim sHeader As String, sData As String
 Dim sLength As String, sTrigPos As String, sXINCR As String
 Dim nLength As Long, nTrigPos As Long
 Dim rXINCR As Double, t As Double, rHoldV As Double
 Dim yoffset As Double, ymult As Double, yzero As Double
 Dim msg1 As String, msg2 As String
 Dim sHoldM As String

Writing and Reading Binary/ASCII Waveform Example

310 Oscilloscope Analysis and Connectivity Made Easy

 On Error GoTo GetAsciiDataErr
 msg1 = "Error in application file format."

 CancelFlag = False
 sRet = HandleOpenDialog("A")
 If CancelFlag Then Exit Function

 nLFPos = InStr(sRet, vbLf)
 If nLFPos <> 0 Then
 ’ get the header and data
 sHeader = Left(sRet, nLFPos - 1)
 sData = Right(sRet, Len(sRet) - nLFPos)
 ’ place header and data into arrays
 arrHoldHeader = Split(sHeader, ";")
 arrHoldData = Split(sData, ",")
 If Left(sAsciiFile, 2) = "AF" Then
 For i = LBound(arrHoldHeader) To UBound(arrHoldHeader)
 sHoldM = arrHoldHeader(i)
 If Not sHoldM = "" Then
 Select Case i
 Case 0
 nLength = CLng(arrHoldHeader(i))
 Case 1
 nTrigPos = CLng(arrHoldHeader(i))
 Case 2
 rXINCR = CDbl(arrHoldHeader(i))
 Case 3
 yoffset = CDbl(arrHoldHeader(i))
 Case 4
 ymult = CDbl(arrHoldHeader(i))
 Case 5
 yzero = CDbl(arrHoldHeader(i))
 End Select
 End If
 Next
 ’ dimension a two dimensional array and return
 ReDim arrRet(0 To nLength - 1, 1 To 2)
 For i = LBound(arrHoldData) To UBound(arrHoldData)
 t = (i - nTrigPos) * rXINCR
 arrRet(i, 1) = Format(t, "#.############")
 ’calculate y value
 rHoldV = yzero + ((arrHoldData(i) - yoffset) * ymult)
 arrRet(i, 2) = Format(CDbl(rHoldV), "#.############")
 Next
 GetAsciiData = arrRet
 Exit Function

 Else
 ’ get the header info
 sLength = arrHoldHeader(0)
 If IsNumeric(sLength) Then
 nLength = CLng(sLength)
 End If
 sTrigPos = arrHoldHeader(1)

 If IsNumeric(sTrigPos) Then
 nTrigPos = CLng(sTrigPos)
 End If

 sXINCR = arrHoldHeader(2)
 If IsNumeric(sXINCR) Then
 rXINCR = CDbl(sXINCR)
 End If

 ’ dimension a two dimensional array and return
 ReDim arrRet(0 To nLength - 1, 1 To 2)
 For i = LBound(arrHoldData) To UBound(arrHoldData)
 t = (i - nTrigPos) * rXINCR
 arrRet(i, 1) = Format(t, "#.############")
 arrRet(i, 2) = Format(CDbl(arrHoldData(i)),

 Writing and Reading Binary/ASCII Waveform Example

Oscilloscope Analysis and Connectivity Made Easy 311

 "#.############")
 Next
 GetAsciiData = arrRet
 Exit Function

 End If
 Else
 MsgBox msg1, vbOKOnly
 GetAsciiData = ""
 Exit Function
 End If

 Exit Function
GetAsciiDataErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description
 GetAsciiData = ""
End Function

Get Binary Data Routine
Private Function GetBinaryData()

’**
 ’ This routine parses the binary file (returned as a byte array),
 ’ calculates x and y axis values
 ’ It returns a two-dimensional array of x,y pairs

 ’ the file format it parses is:
 ’[record length];[trigger position];
 ’[x increment];[yoffset];[ymult];[yzero]
 ’carriage return character
 ’values in 2 byte increments

’**
 Dim arr() As Byte
 Dim hold1() As Byte, hold2() As Byte
 Dim nCRpos As Long
 Dim i As Long, nStart As Long
 Dim arrPass() As Double
 Dim sMData As String, arrM() As String, sHoldM As String,
 nHoldV As Long
 Dim reclength As Long, trigpos As Long, xinc As Double,
 yoffset As Double, ymult As Double, yzero As Double
 Dim nTracki As Long
 Dim sRecbytes As String, nRecBytes As Integer
 Dim sBytes As String, nBytes As Long
 Dim msg As String, temp As String

 On Error GoTo GetBinaryDataErr

 CancelFlag = False
 arr = HandleOpenDialog("B")
 If CancelFlag = True Then Exit Function

 ’ locate the linefeed character separating the header from the data
 For i = LBound(arr) To UBound(arr)
 If arr(i) = 13 Then
 nCRpos = i
 Exit For
 End If
 Next
 If nCRpos = 0 Then
 MsgBox "Error in file format"
 Exit Function
 End If

 ’place the semicolon-separted header information in a byte array
 hold1 = LeftB(arr, nCRpos - 1)
 ’use the Split fucntion to place the byte array into a string array
 sMData = StrConv(hold1, vbUnicode)

Writing and Reading Binary/ASCII Waveform Example

312 Oscilloscope Analysis and Connectivity Made Easy

 ’ assign array elements to variables
 arrM = Split(sMData, ";")
 For i = LBound(arrM) To UBound(arrM)
 sHoldM = arrM(i)
 If Not sHoldM = "" Then
 Select Case i
 Case 0
 reclength = CLng(arrM(i))
 Case 1
 trigpos = CLng(arrM(i))
 Case 2
 xinc = CDbl(arrM(i))
 Case 3
 yoffset = CDbl(arrM(i))
 Case 4
 ymult = CDbl(arrM(i))
 Case 5
 yzero = CDbl(arrM(i))
 End Select
 End If
 Next

 ’ place the binary yvalue data into a byte array
 hold2 = RightB(arr, UBound(arr) - nCRpos)
 ’ get number of bytes in waveform prefix(#[numx]xxx..)
 sRecbytes = MidB(hold2, 2, 1)
 ’ convert to string
 temp = StrConv(sRecbytes, vbUnicode)
 ’ convert to integer
 nRecBytes = CInt(temp)
 ’ locate start of data; used as starting point in for loop below
 nStart = 3 + nRecBytes
 ’ retrieve number of bytes
 sBytes = MidB(hold2, 3, nRecBytes)
 ’ convert to string
 temp = StrConv(sBytes, vbUnicode)
 nBytes = CLng(temp) ’ hold reported length in header

 ’ dimension the array
 ReDim arrPass(1 To 2, 1 To nBytes) As Double
 nTracki = 1

 For i = nStart To UBound(hold2)
 If nTracki > nBytes Then Exit For
 If hold2(i) = 10 Then Exit For

 If hold2(i) > 127 Then
 nHoldV = hold2(i) - 256
 Else
 nHoldV = hold2(i)
 End If

 arrPass(1, nTracki) = ((nTracki - 1) - trigpos) * xinc
 arrPass(2, nTracki) = yzero + ((nHoldV - yoffset) * ymult)

 nTracki = nTracki + 1
 Next

 GetBinaryData = arrPass

Exit Function

GetBinaryDataErr:
 msg = "Error " & Err.Number & ": " & Err.Description
 MsgBox msg

End Function

 Writing and Reading Binary/ASCII Waveform Example

Oscilloscope Analysis and Connectivity Made Easy 313

Read ASCII Button Routine
Private Sub cmdReadAscii_Click()
 Dim sRet
 Dim i As Long
 Dim msg1 As String

 On Error GoTo cmdReadAsciiErr

 If optListBox.Value = True Then
 lstD.Clear
 sRet = GetAsciiData

 If CancelFlag Then Exit Sub
 If Not IsArray(sRet) Then Exit Sub

 For i = LBound(sRet, 1) To UBound(sRet, 1)
 lstD.AddItem sRet(i, 1) & "," & sRet(i, 2)
 Next

 Else
 msg1 = "This option not available for reading ASCII files"
 MsgBox msg1, vbOKOnly
 Exit Sub
 End If

 Exit Sub
cmdReadAsciiErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description

End Sub

Read Binary Button Routine
Private Sub cmdReadBinary_Click()

 Dim arr
 Dim i As Long
 Dim nLength As Long
 Dim fnum As Integer
 Dim shold As String
 Dim msg as String

 msg = "Record length limited to 50000 or less for list box display"
 On Error GoTo cmdReadBinaryErr

 arr = GetBinaryData
 If CancelFlag Then Exit Sub
 If Not IsArray(arr) Then
 MsgBox "Error in reading data."
 Exit Sub
 End If

 nLength = UBound(arr, 2)

 If optListBox.Value = True Then
 If nLength > 50000 Then
 MsgBox msg
 Exit Sub
 End If
 ’ display array in list box
 For i = LBound(arr, 2) To nLength
 lstD.AddItem arr(1, i) & "," & arr(2, i)
 Next

 Else ’ we are writing the binary data to an ASCII file
 Call HandleSaveDialog("BtoA")
 fnum = FreeFile

Writing and Reading Binary/ASCII Waveform Example

314 Oscilloscope Analysis and Connectivity Made Easy

 Open sFileName For Append As #fnum

 For i = LBound(arr, 2) To nLength
 shold = arr(1, i) & "," & arr(2, i)
 Print #fnum, shold
 Next
 Close #fnum
 End If
 Exit Sub
cmdReadBinaryErr:
 MsgBox "Error " & Err.Number & ": " & Err.Description
 Close
End Sub

Write ASCII Button Routine
Private Sub cmdWriteAscii_Click()
 Dim shold As String, sXData As String, sWrite As String
 Dim nsize As Long, fnum As Integer
 Dim i As Long
 Dim wfm, mData
 Dim rl As Long, buflength As Long
 Dim lb As Long, ub As Long
 Dim start As Long, finish As Long, diff As Long
 Dim flen As Long
 Const sep = ","

 ’This routine writes ASCII data with two different header formats,
 ’depending upon the
 ’method used to write data to disk; if using ReadList with
 ’ YModelEnabled only the XAxis
 ’information is stored in the header. This file format is:

 ’[record length];[trigger position];[x increment]
 ’linefeed character
 ’calculated value, calculated value, ...nRecordLength

 ’If using the ReadToFile method, both YAxis and XAxis information
 ’ must be stored in the
 ’ header file. This header format is:

 ’ the file format is:
 ’[record length];[trigger position];[x increment];[yoffset];[ymult];
 ’[yzero]
 ’linefeed character
 ’calculated value, calculated value, ...nRecordLength

 On Error GoTo cmdWriteASCIIErr

 Const HOFF As String = "HEADER OFF;:"
 With Tvc1
 .DeviceClear
 .Lock
 .WriteString "DATA:SOURCE CH1"
 ’ set the data encoding
 .WriteString "WFMOUTPRE:ENCDG ASC"
 .WriteString "WFMOUTPRE:BYT_NR 2"

 ’get the Yaxis properties for floating point conversion
 .WriteString HOFF & "WFMOUTPRE:YOFF?;YMULT?;YZERO?"
 mData = .ReadList(ASCIIType_BSTR, ";")

 If Not IsArray(mData) Then
 MsgBox "Error in creating array.", vbOKOnly
 Exit Sub
 End If

 ’ set starting and end points point
 .WriteString "DATA:START 0"

 Writing and Reading Binary/ASCII Waveform Example

Oscilloscope Analysis and Connectivity Made Easy 315

 ’ get recordlength
 .WriteString HOFF & "HORIZONTAL:RECORDLENGTH?"
 rl = CLng(.ReadString)
 ’ set data stop
 .WriteString "DATA:STOP " & rl

 ’ retrieve trigger position and x increment values
 .WriteString "WFMOUTPRE:PT_OFF?;XINCR?"
 ’ different header requirements; ReadList calculates Y axis
 ’ values for you
 ’ using ReadToFile method requires that you store Y axis
 ’ information and perform
 ’ calculations in code when reading the file from disk (see
 ’ GetAsciiData routine)
 If optReadList.Value = True Then
 sXData = RemoveLF(.ReadString)
 sXData = rl & ";" & sXData & vbLf

 CancelFlag = False
 Call HandleSaveDialog("A")
 If CancelFlag Then Exit Sub

 ElseIf optReadToFile = True Then
 ’[record length];[trigger position];[x increment];
 ’ [yoffset];[ymult];[yzero]
 sXData = RemoveLF(.ReadString)
 sXData = rl & ";" & sXData & ";" & mData(1) & ";" &
 mData(2) & ";" & RemoveLF(Str$(mData(3))) & vbLf

 CancelFlag = False
 Call HandleSaveDialog("AF")
 If CancelFlag Then Exit Sub

 End If

 .Timeout = 20000
 start = GetTickCount

 lblStatus.Caption = "Saving data...."
 DoEvents

 fnum = FreeFile
 Open sFileName For Append As #fnum
 ’ write the data header line
 Print #fnum, sXData

 If optReadList.Value = True Then
 .YModelEnabled = True
 .yoffset = mData(1)
 .ymult = mData(2)
 .yzero = mData(3)
 .WriteString HOFF & "CURVE?"
 wfm = .ReadList(ASCIIType_I2, ",")
 ’Allocate an oversized buffer in memory; 12 possible
 ’characters w/ 2 byte Unicode
 ’characters equals 24 possible bytes per value; we assume
 ’that we will have enough
 ’ to accomodate the comma separators.
 buflength = rl * 24
 ReDim bArr(buflength)
 tracker = 0
 lb = LBound(wfm)
 ub = UBound(wfm)
 For i = lb To ub
 If i < ub Then
 shold = wfm(i) & sep
 Else
 ’ remove last comma
 shold = wfm(i)
 End If

Writing and Reading Binary/ASCII Waveform Example

316 Oscilloscope Analysis and Connectivity Made Easy

 Call ConcatInBuffer(shold)
 Next

 ’ assign the array to a string
 sWrite = bArr
 ’ find the null character and take everything to the left
 ’ of it
 sWrite = Left(sWrite, InStr(sWrite, Chr$(0)) - 1)
 ’ write it to disk
 Print #fnum, sWrite
 ’ display time and filesize calculations
 finish = GetTickCount
 diff = finish - start
 flen = LOF(fnum)
 Close #fnum
 lblStatus.Caption =
 "Seconds: " & (diff / 1000) & " Reclength: " & rl & _
 " FileLength: " & CInt(flen / 1024) & "KB"
 .YModelEnabled = False
 ElseIf optReadToFile = True Then
 ’close the file w/ the header information and append to
 ’it using ReadToFile method of the TekVIDSA control
 Close #fnum
 .WriteString HOFF & "CURVE?"
 .FileAppendEnabled = True
 Do
 .ReadToFile sFileName, 1024, flen
 Loop While flen = 1024
 .FileAppendEnabled = False
 finish = GetTickCount
 diff = finish - start
 lblStatus.Caption =
 "Seconds: " & (diff / 1000) & " Reclength: " & rl & _
 " FileLength: " & CInt(FileLen(sFileName) / 1024) & "KB"
 End If

 .Unlock
 End With

 Exit Sub
cmdWriteASCIIErr:
 Dim msg As String
 Screen.MousePointer = vbDefault
 lblStatus.Caption = ""
 msg = "Error " & Err.Number & ": " & Err.Description
 MsgBox msg
 Close
End Sub

Write Binary Button Routine
Private Sub cmdWriteBinary_Click()

 Dim shold As String, sHeader As String, sXData As String
 Dim i As Long
 Dim mData
 Dim rl As Long, rlOut As Long
 Dim nCRpos As Long
 Dim fnum As Integer
 Dim start As Long, finish As Long, diff As Long
 Dim flen As Long
 Const HOFF As String = "HEADER OFF;:"

 ’ This routine stores xaxis and yaxis values in the header file.
 ’ It is separated from the
 ’ data portion by a line feed character. The header values are
 ’ separated by a semicolon

 ’ the file format is:
 ’[record length];[trigger position];[x increment];
 ’[yoffset];[ymult];[yzero]

 Writing and Reading Binary/ASCII Waveform Example

Oscilloscope Analysis and Connectivity Made Easy 317

 ’linefeed character
 ’values in 1 byte increments

 On Error GoTo cmdTestBinaryErr

 With Tvc1
 .DeviceClear
 .Lock
 .WriteString "DATA:SOURCE CH1"

 ’ set the data encoding, byte ordering, binary format,
 ’ and byte width
 .WriteString "WFMOUTPRE:ENCDG BIN"
 .WriteString "WFMOUTPRE:BYT_OR LSB"
 .WriteString "WFMOUTPRE:BN_FMT RI"
 .WriteString "WFMOUTPRE:BYT_NR 1"

 ’ set starting point
 .WriteString "DATA:START 1"

 ’ make sure we get the entire waveform
 .WriteString HOFF & "HORIZONTAL:RECORDLENGTH?"
 shold = .ReadString
 shold = RemoveLF(shold)
 rl = CLng(shold)

 .WriteString "DATA:STOP " & rl
 ’retrieve the Yaxis properties for floating point conversion
 .WriteString HOFF & "WFMOUTPRE:YOFF?;YMULT?;YZERO?"
 ’add to header string
 sHeader = RemoveLF(.ReadString)

 ’ retrieve trigger position and x increment values
 .WriteString "WFMOUTPRE:PT_OFF?;XINCR?"
 ’ continue building the header string
 sXData = RemoveLF(.ReadString)
 sXData = rl & ";" & sXData
 sHeader = sXData & ";" & sHeader & vbCr
 ’ write the header to the file
 CancelFlag = False
 Call HandleSaveDialog("B")
 If CancelFlag Then Exit Sub

 fnum = FreeFile
 Open sFileName For Binary As #fnum
 Put #fnum, , sHeader
 Close #fnum

 .Timeout = 20000
 start = GetTickCount

 .WriteString HOFF & "CURVE?"
 lblStatus.Caption = "Saving data...."
 DoEvents

 .FileAppendEnabled = True
 Do
 Call .ReadToFile(sFileName, 1024, rlOut)
 Loop While rlOut = 1024

 .FileAppendEnabled = False

 ’ display time and filesize calculations
 finish = GetTickCount
 diff = finish - start
 flen = FileLen(sFileName)
 Close #fnum
 lblStatus.Caption =
 "Seconds: " & (diff / 1000) & " Reclength: " & _

Writing and Reading Binary/ASCII Waveform Example

318 Oscilloscope Analysis and Connectivity Made Easy

 rl & " FileLength: " & CInt(flen / 1024) & "KB"

 .Unlock
 End With

 Exit Sub

cmdTestBinaryErr:
 Dim msg As String
 Screen.MousePointer = vbDefault
 lblStatus.Caption = ""
 msg = "Error " & Err.Number & ": " & Err.Description
 MsgBox msg
 Close
End Sub

Form Load Routine
Private Sub Form_Load()
 Me.Left = Screen.Width / 10
 Me.Top = Screen.Height / 25
End Sub

Handle Open Dialog Routine
Public Function HandleOpenDialog(ftype As String)

Dim msg As String
Dim bArr() As Byte
Dim sRet As String
Dim sFName As String
Dim fnum As Integer
Dim nLength As Long
 On Error GoTo HandleOpenDlgErr

 With dlgTVC
 .Flags = cdlOFNHideReadOnly + cdlOFNPathMustExist +
 cdlOFNExplorer
 .DialogTitle = "Retrieving Scope Data"
 .Filter = "Data files(*.dat)|*.dat|All files(*.*)|*.*"
 .FilterIndex = 1
 .ShowOpen
 sFName = .FileName
 sAsciiFile = .FileTitle
 fnum = FreeFile
 nLength = FileLen(sFName)
 ’ open and close to create file and erase any prior
 ’ contents if it exists
 If ftype = "A" Then
 Open sFName For Input As #fnum
 Else
 Open sFName For Binary As #fnum
 End If

 If ftype = "B" Then
 ReDim bArr(nLength) As Byte
 Get #fnum, , bArr
 HandleOpenDialog = bArr
 ElseIf ftype = "A" Then
 sRet = Input(nLength, #fnum)
 HandleOpenDialog = sRet

 End If
 Close #fnum
 End With

 Exit Function
HandleOpenDlgErr:
msg = "Error " & Err.Number & ": " & Err.Description

 Writing and Reading Binary/ASCII Waveform Example

Oscilloscope Analysis and Connectivity Made Easy 319

Select Case Err.Number
 Case mscomdlg.cdlCancel
 sFileName = ""
 CancelFlag = True
 Close
 Err.Clear
 Exit Function
 Case Else
 MsgBox msg, vbOKOnly
 Close
End Select

End Function

Handle Save Dialog Routine
Public Sub HandleSaveDialog(ftype As String)
’ this routine uses the MS Comon dialog control to open a file
(timestamp default) for saving
’ captured data to disk; called from SRQHandler routines
Dim msg As String
Dim sFileDefault As String
Dim d As Date
Dim fnum As Integer

On Error GoTo HandleSaveDlgErr
’ create a default timestamp file name
d = Now
sFileDefault = Format(d, "yy") & Format(d, "mm") & Format(d, "dd") _
 & "_" & Format(d, "hh") & Format(d, "nn") & Format(d, "ss")

sFileDefault = ftype & sFileDefault
With dlgTVC
 .Flags = cdlOFNHideReadOnly + cdlOFNPathMustExist + cdlOFNExplorer
 + cdlOFNOverwritePrompt
 .DialogTitle = "Save Scope Data"
 .Filter = "Data files(*.dat)|*.dat|All files(*.*)|*.*"
 sFileDefault = sFileDefault & ".dat"
 .FileName = sFileDefault
 .FilterIndex = 1
 .ShowSave
 sFileName = .FileName
 fnum = FreeFile
 ’ open and close to create file and erase any prior contents if it
 ’ exists
 If ftype = "A" Or ftype = "BtoA" Or ftype = "AF" Then
 Open sFileName For Output As #fnum
 ElseIf ftype = "B" Then
 Open sFileName For Binary As #fnum
 End If
 Close #fnum

End With

Exit Sub
HandleSaveDlgErr:
msg = "Error " & Err.Number & ": " & Err.Description
Select Case Err.Number
 Case mscomdlg.cdlCancel
 sFileName = ""
 CancelFlag = True
 Exit Sub
 Case Else
 MsgBox msg, vbOKOnly
End Select

End Sub

Writing and Reading Binary/ASCII Waveform Example

320 Oscilloscope Analysis and Connectivity Made Easy

Concatenate String in Buffer Routine
Public Sub ConcatInBuffer(ByRef s1 As String)
 ’ this routine uses CopyMemory (Alias for RtlMoveMemory) API call
 ’ to speed up
 ’ string concatenation in VB; enormous difference in performance
 Static Len_s1 As Long

 ’ Get Byte length of passed text.
 Len_s1 = LenB(s1)

 If Len_s1 > 0 Then
 ’ Copy passed string into preallocated buffer.
 Call CopyMemory(bArr(tracker), ByVal StrPtr(s1), Len_s1)

 ’ increment byte tracking variable by byte length of passed string
 tracker = tracker + Len_s1
 End If

End Sub

 Introduction

Oscilloscope Analysis and Connectivity Made Easy 321

Appendix D: Using the Waveform
Generator

Introduction

This appendix describes how to use the Waveform Generator program,
provided with this book, to generate a live waveform for use with examples.

To Generate a Live Waveform

The Waveform Generator program generates a signal from the sound circuit
on your oscilloscope. You will need a cable that can connect the sound
circuit output on the back of the oscilloscope to the Channel 1 input on the
front (see page 323 for details).

Set up Your Display Mode
You can work the examples either on your oscilloscope or on a connected
desktop PC. If you decide to work on the oscilloscope, you may find it
convenient to attach a second monitor as shown:

To attach a second monitor:

1. Connect any standard VGA monitor to the second monitor
video port on the back of your oscilloscope.

Note: If you accidentally use the wrong video port, you will see
a duplicate of what is on the oscilloscope screen on the second
monitor, rather than an extension of that space.

To Generate a Live Waveform

322 Oscilloscope Analysis and Connectivity Made Easy

2. Start up your oscilloscope.

The following message will display on the second monitor:

If you can read this message, Windows has successfully initialized
this display adapter.

3. After Windows finishes booting up, right-click anywhere on
the desktop and select Properties.

The Display Properties dialog box appears.

4. Select the Settings tab.

You will see a graphic display of two monitors labeled 2 and 1.

5. Drag the monitor icons and align them to match the physical
arrangement of your monitors. This makes the movement of
the cursor between monitors more natural.

6. Select the monitor labeled 2, select the check box labeled
Extend my Windows Desktop onto this monitor, set the
desired screen resolution (or leave it as is), and click OK.

For more information about setting up dual monitors, see the Microsoft
Windows 98 Resource Kit.

 To Generate a Live Waveform

Oscilloscope Analysis and Connectivity Made Easy 323

Locate the Software and Examples for This Book
The TekVISA API, TekVISA ActiveX Control and TekVISA Toolbar
software are located on the product software CD for your Series of
oscilloscope and may already be preinstalled on your oscilloscope.

To locate the examples needed for this book:

1. Insert the CD that accompanies your hardcopy of this book
either into the drive on the back of your oscilloscope or into
the drive on your desktop PC, depending on where you
intend to work the examples. (The examples can also be
downloaded from the Tektronix website at
http://www.tektronix.com).

2. Using Windows Explorer, browse to locate the examples for
this book, which are organized by chapter.

The folder structure will look similar to this:

The Waveform Generator program is stored in the Appendix_D
folder.

Connect the Cable
To generate a waveform, you will need a cable that can connect the sound
circuit output (a 1/8 inch phone plug) on the back of the oscilloscope to the
Channel 1 BNC input on the front.

Note: You can purchase ready-made cables and connectors from
your local electronics parts dealer. For example, Radio Shack offers
a Phono-to-BNC Adapter (part number 278-254) and a 6-ft. Y-
Adapter Audio Cable (part number 42-2481).

To Generate a Live Waveform

324 Oscilloscope Analysis and Connectivity Made Easy

To connect the cable to your oscilloscope:

1. Attach one end of your signal generator cable to the line out
port on the back of your oscilloscope.

2. Attach the other end of your signal generator cable to
Channel 1 on the front of your oscilloscope (or, for
TDS/CSA8000 Series Oscilloscopes, to any BNC connector
on an electrical module).

Start Up the Waveform Generator
To start up the waveform generator program:

1. Using Windows Explorer, locate the WFG.exe file on your
CD in the \Appendix_D folder:

2. Copy and Paste the WFG.exe file to the c: drive on your
oscilloscope, and double-click the WFG.exe file on your
c: drive to start up the program.

The following warning message appears.

3. Disconnect any headphones or speakers attached to your
oscilloscope, then click OK.

The Waveform Generator program appears on your screen with
several tabs to choose from.

 To Generate a Live Waveform

Oscilloscope Analysis and Connectivity Made Easy 325

Set Up the Oscilloscope and Calibrate the Sound Card
To set up the oscilloscope and calibrate the sound card:

1. From the Waveform Generator, click the Calibration tab.

2. Start your oscilloscope program.

3. To choose the proper oscilloscope settings for calibration,
perform these steps:

a. Start with the default configuration.

b. Set the record length to 5000.

c. Set the horizontal resolution to 20�s.

d. Set the vertical scale to 500 mV per division or any other
appropriate setting that gives a strong signal.

4. On the Waveform Generator, click the Start button on the
Calibration tab to start generating the calibration waveform.

Caution: To avoid uncomfortably loud noise or damage to
equipment, make sure you disconnect any headphones or
speakers attached to your oscilloscope before clicking Start.

To Generate a Live Waveform

326 Oscilloscope Analysis and Connectivity Made Easy

Your waveform may look something like this:

The waveform needs to be squared off like this:

5. Move the slider bar on the Calibration tab to the left or right

of 0 as needed to square off the tops and sides of the square
waveform that appears on your oscilloscope.

This adjustment compensates for individual characteristics of your
sound circuit card.

6. Click Apply when you are satisfied with the waveform
appearance.

You only have to calibrate your sound card once. Now you are ready
to export and save the waveform signal so you can use it with
examples in this book.

 To Generate a Live Waveform

Oscilloscope Analysis and Connectivity Made Easy 327

Generate the Waveform
To generate the Jitter waveform:

1. From the Waveform Generator program, click the Jitter
Adjustment tab.

2. Leave the Amplitude and Frequency slider bars at the

minimum amount for minimum jitter and click Start to start
generating the Jitter waveform.

Caution: To avoid uncomfortably loud noise or damage to
equipment, make sure you disconnect any headphones or
speakers attached to your oscilloscope before clicking Start.

Copy and Paste the Waveform Data into Excel

Note: If you want to save your data in a file so you can transfer it to
another PC or another program, follow the procedure to export and
import as described on page 328 through page 328, instead of
copying to the Clipboard.

To copy the waveform to the Clipboard:

1. Follow the recommended procedure to copy wavefrom data
into Excel for your oscilloscope.

The waveform data is saved in the Clipboard in a format that Excel
understands.

To paste the waveform data from the Clipboard into Excel:

1. Start up Excel and open a new, empty spreadsheet.

2. Select the cell where you want to begin pasting the
waveform.

To Generate a Live Waveform

328 Oscilloscope Analysis and Connectivity Made Easy

3. Select Edit > Paste from the Excel menu bar or type Ctrl-V to
paste the waveform data.

Export the Waveform into a File Appropriate for Excel
If you cannot use the cut-and-paste technique, you can export and import the
waveform data.

To export the waveform into an Excel-compatible file:

1. Follow the recommended procedure to export wavefrom data
into an Excel-compatible file for your oscilloscope.

The waveform data is saved under the filename that you assign it, in
tab-delimited format (.TXT), which is a format that Excel
understands.

Note: TDS5000 and 7000 Series Oscilloscopes offer two export
choices for spreadsheets:

• CSV format works best if you plan on loading the data using
Excel 2000’s File > Open menu selection. When you use File >
Open with a .CSV file, you get a new sheet started with none of
your formulas. You must then copy the data to a sheet with your
formulas or copy your formulas to the new data.

• TXT format works best if you plan on using Excel 2000’s Data >
Get External Data > Import Text File wizard. The advantage of
the Import Text File approach is that you can easily refresh the
data (by right-clicking and selecting Refresh Data) without
losing the formulas.

Import the Waveform into Excel
To import the waveform data from your oscilloscope into Excel:

1. If necessary, move the waveform files to a folder on the
computer where you are running Excel.

2. Start up Excel, name the blank worksheet, and save it.

3. Click the cell location where you want to begin loading the
waveform data.

4. From the Excel menu bar, select Data > Get External Data >
Import Text File.

5. Browse to the folder where the data is located, select the
name of your file, and click Import.

The Step 1 of 3 dialog box appears.

 To Generate a Live Waveform

Oscilloscope Analysis and Connectivity Made Easy 329

6. Click the Delimited button and click Next.

The Step 2 of 3 dialog box appears.

7. Select the check box next to Tab and click Next.

The Step 3 of 3 dialog box appears.

8. Click Finish.

A dialog box appears, asking if you want to import data into the
existing worksheet at the currently selected cell location.

9. Click OK.

To Generate a Live Waveform

330 Oscilloscope Analysis and Connectivity Made Easy

 Index

Oscilloscope Analysis and Connectivity Made Easy 331

Index
CD

to install TekVISA software on a PC
 297

with examples for this book xvi, 323
with TekVISA software 323

command and control terminology 38
connectivity

building blocks 1
built-in Tektronix features for 1
made easier 1
new building blocks for 3

display setup
how to attach a second monitor 321

Excel
how to copy and paste waveform data

into 327
how to export waveform data into a file

for 328
how to import waveform data into 328

Excel Chart Measurements example
building the form 104
changing properties 104
coding the 107
getting started 99
review of 124
running the 120
using VB instead of VBA 121

Excel Get Waveform example 41
building the form 48
changing properties 54
coding the 60
getting help 53
getting started 44
review of 76
running the 69
running with Jitter example 71
using VB instead of VBA 74

Excel Object Model
quick overview of 58
working with charts 118

Excel Test Run example
building the form 81
changing properties 81
coding the 83
getting started 77
review of 98
running the 95
using VB instead of VBA 97

jitter waveform
how to generate 327

LabVIEW
overview of 227

using Tektronix Plug-n-Play drivers
with 227

using VISA operations with 244
LabVIEW and Tektronix Plug-n-Play drivers

configuring vi’s from the Block
Diagram 240

configuring vi’s from the Front Panel
 242

creating an example 234
getting help 231
running the example 243

LabVIEW and VISA
creating an example 244
creating the Block Diagram 247
creating the Front Panel 244
running the example 252

LabWindows/CVI
overview of 208
using Tektronix Plug-n-Play drivers

with 209
LabWindows/CVI and LabVIEW

review of using PnP drivers and VISA
commands with 253

using Tektronix Plug-n-Play drivers
with 207

LabWindows/CVI and Tektronix Plug-n-Play
drivers
building the interface 213
coding the example 217
getting help 216
running the example 225

LAN connectivity for oscilloscopes 293
live waveform

how to calibrate the sound card for 325
how to connect the cable for 323
how to generate 321
how to set up the oscilloscope for 325

MATLAB Instrument Control Toolbox 3, 9, 167
adding GUI components to the

improved Jitter example 184
cleaning up instrument objects during

debugging 172
coding the improved Jitter example 189
communicating with VISA-GPIB

objects 169
configuring VISA resources 169
creating the Jitter example 174
functions 282
improving the Jitter example 184
Jitter example with 173
native GPIB commands and queries

with 173
review of 206

Index

332 Oscilloscope Analysis and Connectivity Made Easy

testing the improved Jitter example 204
testing the Jitter example 182
using the Instrument Control ASCII

Communication Tool 170
Native GPIB commands and queries 39, 255
Object Browser

using in Excel 57
using with VB 141
VB Intellisense feature 142
VBA Intellisense feature 60

Oscilloscope Analysis and Connectivity Made
Easy
document conventions xvi
how this book is organized xv
what this book is about xv
who should read this book xv

Tektronix Plug-n-Play drivers 3, 8, 207
functions 289
loading in LabVIEW 227
loading in LabWindows/CVI 209
viewing driver functions in LabVIEW

 229
TekVISA

overview 4
TekVISA ActiveX Control 3, 6

background information 37
methods, properties, and events 39, 263
waveform acquisition commands 43

TekVISA API 3, 6
TekVISA Toolbar 3, 5, 13

adding to Excel 14
Clear Activesheet button 23
Connect button 15
features 14
Help button 35
Measurement button 24
prerequisites 13
review of 36
Settings button 16
source code 36
TriggerCapture button 32
Waveform button 21

VB Triggered Waveform Capture example
building the form 130
getting help 141

getting started 127
review of 163
reviewing the code 143
running the 158
using VBA instead of VB 162

VB Writing and Reading Binary/ASCII
Waveform example 303
code listing 309
how the program works 307
user interface 305
using alternate methods for getting

waveform data 303
Virtual GPIB 3, 6
VISA operations 290
VXI-11 LAN Client

access setup 296
VXI-11 LAN Client/Server 3, 6

benefits of LAN access 294
C program example 301
deployment considerations 295
introduction to 293
LabVIEW example 301
LabWindows/CVI example 300
MATLAB example 300
Non-TekVISA VXI-11 Clients 302
programming tip 301
TekVISA installation 296
timeout settings 301
VB example 300
VXI-11 Standard 302

VXI-11 LAN Server
installation and configuration 295

waveform
preamble 43
record length 42
source 42

waveform acquisition
GPIB commands for 41

waveform data 41
formats 42
structure of 321

Waveform Generator
how to start up 324
using the 321

	Title Page
	Table of Contents
	List of Figures
	List of Tables

	Preface
	What This Book is About
	Who Should Read This Book
	How This Book is Organized
	Document Conventions

	Chapter 1: Connectivity Building Blocks
	Connectivity Made Easier
	Built- in Connectivity Features
	New Connectivity Building Blocks

	PART 1: EXCEL AND VISUAL BASIC
	Chapter 2: The TekVISA Toolbar
	Introduction
	Adding the TekVISA Toolbar to Excel
	Connecting to Oscilloscopes
	Saving and Restoring Scope Settings

	Capturing and Graphing Waveforms
	Clearing the Active Sheet
	Capturing and Graphing Measurements
	Capturing Triggered Waveforms

	Getting Help with the TekVISA Toolbar
	TekVISA Toolbar Source Code
	Chapter 2 Review

	Chapter 3: Understanding the TekVISA ActiveX Control
	Introduction
	Background Information
	Terminology
	Automated Acquisition

	Chapter 4. A Simple Program To Get Waveforms
	Introduction
	GPIB Commands for Waveform Acquisition
	The TekVISA ActiveX Control and Waveform Acquisition
	Getting Started
	The Get Waveform Example in Excel VBA
	Running the Program with the Jitter Example
	Using VB Instead of VBA
	Chapter 4 Review

	Chapter 5. A More Complex Four-Part Program
	Introduction
	The TekVISA Test Run Example in Excel VBA
	Using VB Instead of VBA
	Chapter 5 Review

	Chapter 6: A Measurement Charting Example
	Introduction
	The Chart Measurements Example in Excel VBA
	Using VB Instead of VBA
	Chapter 6 Review

	Chapter 7: A Triggered Waveform Capture Example
	Introduction
	Getting Started
	The Triggered Waveform Capture Example in VB
	Using VBA Instead of VB
	Chapter 7 Review

	PART 2: MATLAB AND LABWINDOWS/ CVI AND LABVIEW
	Chapter 8: Live Updates to MATLAB using ICT
	Introduction
	The Instrument Control Toolbox
	The Jitter Example with MATLAB ICT Functions
	Improved Jitter Example with a GUI Interface
	Chapter 8 Review

	Chapter 9: LabWindows/CVI and LabVIEW
	Introduction
	Tektronix Plug-n-Play Drivers
	Overview of LabWindows/CVI
	Using Tektronix Plug-n-Play Drivers with LabWindows/CVI
	Overview of LabVIEW
	Using Tektronix Plug-n-Play Drivers with LabVIEW
	Using VISA Operations with LabVIEW
	Chapter 9 Review

	Appendix A: Command and Control Reference
	Introduction
	Native GPIB Commands and Queries
	TekVISA Active X Control Methods, Properties, and Events
	MATLAB Instrument Control Toolbox Functions
	PnP Driver Functions
	VISA Operations

	Appendix B: Fast LAN Access to Your Oscilloscope
	Introduction
	VXI-11 and LAN Connectivity for Oscilloscopes
	Benefits of LAN Access
	Deployment Considerations
	VXI-11 LAN Server Installation and Configuration
	VXI-11 LAN Client Access Setup
	Application Examples
	Programming Tips
	VXI-11 Standard

	Appendix C: Other VB Examples
	Introduction
	Alternate Methods for Getting Waveform Data Using the TekVISA Control
	Writing and Reading Binary/ASCII Waveform Example

	Appendix D: Using the Waveform Generator
	Introduction
	To Generate a Live Waveform

	Index

